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ABSTRACT

An approach based on the idea that the spinning nucleus being stretched out along the symmetry axis under the 
influence of some of centrifugal force has been proposed. The stretching in this work is treated within the framework 
of quantum mechanics rather than classical mechanics which had been used by Diamond Stephens and Swiatecki. Our 
approach led to a new formula that describes the dependence of the moment of inertia on the angular momentum. This 
formula is applied for the calculation of rotational ground state bands of even-even nuclei in the atomic mass range 150 < 
A < 190  and that having energy ratios in the range between 2.9 < E4 / E2 < 3.33. The results show an overall agreement 
with the experimental data up to high level energies. There are a small and systematic deviation appears at I > 12 . This 
deviation increases with the increasing in I and also differs from one nucleus to another.
Keywords: Bands; energy level; model; properties; rotational; stretching

ABSTRAK

Pendekatan berdasarkan idea bahawa nukleus berputar yang meregang di sepanjang paksi simetri di bawah pengaruh 
beberapa daya pengempar telah diusulkan. Peregangan dalam kertas ini dirawat dalam kerangka mekanik kuantum 
dan bukan mekanik klasik yang telah digunakan oleh Diamond Stephens dan Swiatecki. Pendekatan kami membawa 
kepada formula baharu yang menunjukkan pergantungan momen inersia pada momentum sudut. Formula ini 
digunakan untuk pengiraan jalur keadaan asas putaran nukleus genap-genap dalam julat jisim atom 150 < A < 190  dan 
mempunyai nisbah tenaga dalam julat antara 2.9 < E4 / E2 < 3.33. Hasilnya menunjukkan kesepakatan keseluruhan 
dengan data uji kaji hingga tenaga tahap tinggi. Terdapat penyimpangan kecil dan sistematik yang muncul pada I > 12. 
Penyimpangan ini meningkat dengan peningkatan I dan juga berbeza daripada satu nukleus ke nukleus yang lain.
Kata kunci: Jalur; model; putaran; regangan; tahap tenaga

INTRODUCTION

Bohr, in his model (1976, 1952, 1951) of describing the 
nucleus in terms of the coupled particle motion and surface 
oscillations predicted, in the special case of the strong-
coupling, the low-lying states of nuclear spectrum is 
rotational with spin sequence I = 0, 2, 4, ...  even parity 
and with level energies follow the simple formula

 (1)

where J is the moment of inertia. However, it is found 
later that the observed energy spacing of the states of 
the ground band increase less rapidly than (1) predicted 
when J is constant (Sorensen 1973). Bohr and Mottelson 
(1953) suggested that this decrease in the energy spacing 
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may be understood within the context of the coupling 
between rotational and vibrational modes of motion 
which contributes a term of the form ( ) 2

1B I I− +    and 
hence (1) becomes
 

(2)

The two parameters A and B in this equation are related 
to the moment of inertia and to the rotation-vibration 
coupling coefficient, respectively. However, such 
correction was found to be insufficient to represent the 
experimental spectra obtained with the states with higher 
values of I or even for low lying states of transitional 
nuclei (Preston & Bhaduri 1975). One can generalize (2) 
to an infinite power series form (Sood 1967) 
 

(3)

where A, B, C, D, ... are parameters which can 
be determined by fitting this equation with the 
experimental results. The ground rotational bands 
of actinide and of rare-earth even-even nuclei were 
analyzed using the first four terms of (3) (Xu et al. 1989), 
where the parameters A, B, C, and D were obtained by 
the least-squares fitting. Although the success of this 
approach gave a good agreement with experiment for 
the data available up a very high I  is impressive, it should 
be noted that this approach do not explain the physical 
meaning of the parameters C and D.

Harris (1964) suggested that E can be expanded 
in powers of ω2 instead of I (I + 1). It turned out that the 
expansion in ω2 converges more rapidly than that of I 
(I + 1). This feature could be exploited to find relations 
between higher parameters in (3). Particularly, 
considering only the first two terms in the expansion of 
Harris imply the relations (Bohr & Mottelson 1998)

These equations were compared with the values 
of A, B, C, and D obtained using least square fitting 
technique for several nuclei in the rare-earth region, it 
is seen that these equations are obeyed in most cases to 
around 70% (Bohr & Mottelson 1998), it can be seen 
Table 1 and Figures 1 and 2 (Xu et al. 1989). In any way, 
the problem of writing the coefficient of higher terms in 

(3) in terms of first two basic parameters A and B was 
discussed by Gupta (1969, 1967) and later Trainor and 
Gupta (1971) introduces a model with a rotational–
vibrational interaction that relates all parameters C, D, 
E, ... to the first two basic parameters A and B. This model 
is known as non-rigid rotator model and the energy states 
are expressed as a power series in terms of B / A and the 
weight factor I (I + 1) as:
 

(4)

It has been shown that the first three terms and 
even the first four terms of (4) are capable of solving the 
problem only within a very short range 3.25 < R < 3.33 
(Figure 1).

A detailed analysis by Sood (1968a, 1968b, 1967) 
and Volkov (1971) showed that the use of any truncated 
series in I (I + 1) in (4) is not sufficient to describe the 
experimental spectrum. Instead, he suggested that the 
phenomenological sum an infinite term in I (I + 1) of that 
equation can give the following compact expression for 
the energy E (I) 

 (5)

where  
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be consistent with that derived by Bohr for describing 
the experimental spectrum with the provision that A (I)  
in (5) is variable and it is a decreasing function of I 
(J is increasing as function of I). Although this two–
parameter model by Sood (1967) fits with high accuracy 
the experimental spectrum of rare–earth nuclei including 
the Os isotopes and N = 90 nuclei, there are many 
questions about the parameter N  has been left open such 
as; what is the physical quantity that the parameter N  
in (5) represents? Or what are the factors that N depends 
on? The answer to these questions is very important to 
specify the factors which control the increase of J with 
the increase in I .

An alternative approach to interpret such decreasing 
in the energy space was introduced first by Morinaga 
(1966) and later by Diamond et al. (1964). Morinaga 
was the first to suggest that the decrease in energy 
spacing is due to the increase in the moment of inertia 
J. Diamond et al. (1964) attributed this increase in J to 
some sort of centrifugal stretching. The authors assumed 
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the suggestion of Bohr that the energy of an axially 
symmetric nucleus should include, in addition to the 
rotational energy, a potential energy
 

(6)

where J is moment of inertia of the nuclei and C is 
the stiffness of the nucleus. The authors assume the 
hydrodynamical formula of J (i.e., J ∞ βI ). Where βI in 
(6) is the value of β  which satisfied the condition
 

(7)

so that the total energy of that state is minimized. This 
approach gives good fit only for strongly deformed 
nuclei. Bands outside this region cannot be fitted with 
reasonable accuracy.

Holmberg and Lipas (1968) conducted a study 
based on the idea of Diamond et al. (1964), in which 
they derived a new two parameters formula for the level 
energies in the ground state bands called ab formula 

                                             where a, b are constants.

This formula was examined by many authors such as 
Wu et al. (1992) who used this formula to determine the 
spins of 22 super deformed bands observed in the A 
~190  region. The agreement between the calculated 
and observed transition energies was incredibly well 
when a correct spin assignment is made. In fact, this 
result is expected in advance as we mentioned earlier, 
since the idea of the minimal energy of Diamond 
works well in in the case of the super deformed nuclei. 
Authors Hu and Zeng (1997) made a comparison of the 
Harris and ab expressions for the description of nuclear 
normally deformed and super-deformed bands. They 
show that in normally deformed nuclei, there exist an 
obvious and systematic deviation of the Harris formula 
from the experiment. In contrast, the prediction of the 
ab formula is very close to the experiment, and maybe 
conveniently used for the description of both normally 
deformed and super-deformed bands.

A modification of the ab formula was made by 
Huang et al. (1989) who take into consideration small 
axial symmetry and vibrational effect. This approach led 
to a derivation of a three-parameter formula. The authors 
claimed that the third term C, describes the effect of 
anharmonicity but there is no evidence to support this 

claim. However, this obtained modified formula gives 
an excellent agreement with experiment for all actinide 
and rare-earth deformed nuclei up to a very high spin. 

Mariscot t i  e t  a l .  (1969) claimed that  the 
responsibility for the failure of Diamon’s model to 
describe the spectrum of nuclei outside the deformability 
region is that the increase in beta is not large enough 
to explain the deviation from rule and hence, they 
assumed that the moment of inertia J depends, in 
addition to the deformation parameter β, on pairing 
effect, they suggested β in (7) should be replaced by a 
general variable t which might represent not only the 
deformation parameter, but also all other microscopic 
feathers like the effective pairing. The dependence of 
J on t can be expressed as J = const.tn, n being integer. 
Since the best fit for all ground state bands ranging 2.34 
< R < 3.33  were obtained n = 1, then J itself can be 
considered as a general variable and the equation of the 
total energy for the ground state bands, (7), takes the form,
 

(8)

The authors assumed that the minimal energy principle
 

(9)

must be satisfied for each state of I. The model of the 
Mariscotti et al. (1969) is known as the variable 
moment of inertia (VMI) model. The limit of validity of 
this model was taken for J0 > 0 which is equivalent to 
> 2.34 . An extension for this model to permit negative 
values of J0 were proposed by Scharff–Goldhaber and 
Goldhaber (1970). Another extension was made by Toki 
and Faessler (1976) to include asymmetric deformed 
nuclei.

Another work in which the Coriolis mixture of low-
lying energy state bands were considered to analyze the 
deviation from the adiabatic condition i.e., I (I + 1) rule 
of even-even deformed nuclei was proposed (Okhunov 
et al. 2015; Usmanov et al. 2021, 2019, 2018,  & 2010). 
In that model, the moment inertia J0 and J1 by Harris 
parametrization for the energy and angular momentum 
were calculated and the obtained values were used in 
the calculation of the energy levels of the ground state 
bands for several isotopes in rare-earth region. The results 
obtained show a very good agreement with experimental 
data. 

Recently, the effects of possible non collective pairs 
in even-even 124-128 Sn  are studied in the nucleon-pair shell 
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model (He et al. 2020), and also the effective moment of 
inertia of even-even rotating nuclei have been studied 
(El Sheikh et al. 2020) by expanding the Bohr’s equation 
into account the second and third terms of this expansion 
in addition to first one. The modified form of Bohr’s 
relationship, is verified on axially symmetric nuclei of 
atomic mass ranging between 150 and 190 as well as on 
a number of triaxially symmetric nuclei.

In this work, we follow the suggestion of Diamond 
et al. (1964), that the spinning nucleus being stretched 
along its symmetry axis with the exception that the 
stretching is treated in our work according to quantum 
mechanics rather than classical mechanics which was 
already used in their work which leads to a new formula 
that describe the dependence of the moment of inertia on 
the angular momentum. This formula has been applied 
to calculate the level energies of the ground state bands 
of a large number of nuclei in the strongly deformed and 
in the transitional regions that are in the atomic range 
150 < A < 190 and having energy ratios 2.9 < R < 3.33. 
In the case of strongly deformed nuclei this formula 
shows an excellent agreement with experiments up to 
very high energy levels (Figure 4), for moderate deformed 
and transitional nuclei there are small and systematic 
deviations that appear in the form of dispersion around 
the theoretical curve. In our work, we only consider the 
effect of the stretching we compare our results with, other 
approaches who consider in addition to the stretching 
other factors like pairing and Coriolis forces (Mariscotti 
et al. 1969; Okhunov et al. 2015) in order to find how 
much these factors, contribute to the moment of inertia 
and, accordingly, to the values of level energies of the 
nuclei considered in this work.

A brief description of the formulation of this 
formula will be displayed in the next section. Application 
of this formula to the ground state bands of an even-
even nuclei whose energy ratio not less than 2.9 is given 
subsequently. Lastly, in the final section, the important 
conclusions will be summarized.

FORMALISM

Following the suggestion of Diamond et al. (1964), the 
increase in the moment of inertia can be interpreted on 
the basis of the idea that spinning nucleus exhibits some 
sort of centrifugal stretching along the symmetric axis, 
the very simple classical form of the moment of inertia 
of the mass element dm is 
 

(10)

where r is the effective radius of rotation. According 
to the hydrodynamical model, very little of the nuclear 
matter is actually taking part in the effective rotational 
motion or, in other words, the rotational motion can be 
pictured as a motion of wave around the nuclear surface, 
so
 

(11)

where 24A Rπ≈ 2 is the total area of the surface, 2 2 sinR d R d dθ θ φΩ ≈22 2 sinR d R d dθ θ φΩ ≈ 2 2 sinR d R d dθ θ φΩ ≈
2 2 sinR d R d dθ θ φΩ ≈2 sin 2 2 sinR d R d dθ θ φΩ ≈ is the surface element, R is the distance 

of the mass element dm from the center of the nucleus. 
Where r in (10) can be written as r0 + ∆r , where ∆r is 
the stretched in the nucleus due to rotation. It follows
 

(12)

We assume that the nucleus has symmetry axis which is 
perpendicular to its rotational axis then the stretched can 
be expanded in body fixed-space in terms of a complete 
set of spherical harmonics (Eisenberg & Greiner 1987) 
as ( )*

0
,r a Y

r λµ
λµ λµ θ φ∆

=∑ , where *aλµ  is the deformation 

parameter in body-fixed coordinate. Putting this definition 
in (12) we get 
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Integrating both sides of (13) over the whale surface of 
the nucleus, one can find 
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The integration 4d πΩ =∫ , refer to the integration over solid 
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where ,aλ µ  is the deformation parameter in body-fixed 
coordinates. It is found that even-even nuclei can be 
accurately described in terms of a deformation of order 
λ = 2. In (15), the suffix index µ which represents the 
orientation of the nucleus in space–fixed coordinates 
runs from -λ to λ. In our case µ runs from -2 to 2. We 
drop the subscript λ = 2 from all deformation parameters 
henceforth
 

(16)

Where αµ can be written by using the identity αµ
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Each of the first two terms in (17) includes two 
operators µζ  and µζ −  the first acts on the state µ and 
the second on a different state -µ but according to the 
selection rule which connects the ground state band to 
the one–phonon state, where we have only one state 
either µ or -µ these two terms should vanish.
Using the commutation relation 
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Since the summation in (18) runs from -µ to µ, hence the 
summation over *

µ µζ ζ− −  and *
µ µζ ζ  are identical, then 

the (18) can be written in the form
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where *n̂µ µ µζ ζ=  is the number operator. In the case 
of the ground state band the number operator is zero. 
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J
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It is clear that (20) is recursion relation of JI (i.e. JI are 
defined in terms of itself). It represents the moment of 
inertia at angular momentum I approximated to the 
second order. The factor 5 in (20) arises because the 
summation over µ runs from -2 to 2 through µ = 0 as 
mentioned above. Finally, the energy levels in the ground 
state bands are casted into the following form,
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quantized -β stretching equation. These parameters 
embed in them the intrinsic moment of inertia J0 and 
stiffness C of the nucleus. They are constant for a 
particular nucleus, but their values differ from one 
nucleus to another. In the present model, they are 
adjustable parameters and evaluated by fitting (21) 
against experimentally measured energy levels.

RESULTS AND DISCUSSION

The simple expression (21), has been used to evaluate 
the level energies up to spin I = 20. The parameters A and 
B have been determined by means of the least square 
fitting method involving the first three experimentally 
measured energy levels (i.e., I = 2, 4, 6) in the ground 
state band. Our discussion includes all even-even 
i so topes  62 64 66 68 70 72 74, , , , , ,Sm Gd Dy Er Yb Hf W and 
76Os with the neutron numbers ranging from 90 
to 114, which are found in the atomic mass range 
between 150 and 190 and having the energy ratio  
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4 22,9 3,33E E< < . Our results for the energy levels are 
presented in Table 1 which also includes the experimental 

data and the data obtained by the VMI model. 

TABLE 1. The energy levels E (I) (keV) of the ground state bands of even-even isotopes of Sm, Gd, Dy, Er, Yb, Hf and W. (Exp. 
(NuDat 2.8.), VMI (Mariscotti et al. 1969), CW is current work)

Nuclei A B Results
I

2 4 6 8 10 12 14 16

152Sm 21.50 0.0105

Exp. 121.8 366.5 706.9 1125.4 1609.3 2148.8 2736.2 3365

VMI 121.0 369.9 712.3 1127.3 1601.8 2127.2 2697.2 3307

CW 121.8 366.5 691.6 1082.5 1540.2 2069.8 2675.4 3360.4

154Sm 13.77 0.0016

Exp. 82.3 266.8 544.1 902.8 1333.0 1825.9 2373.0 2968.2

VMI 81.5 267.7 550.4 920.3 1368.3 1886.5 2468.2 3107.7

CW 81.8 267.0 544.0 898.7 1317.9 1791.7 2311.0 2875.5

154Gd 20.88 0.0068

Exp. 123.1 371.0 717.7 1144.4 1637.1 2184.7 2777.3 3404.5

VMI 122.0 374.4 722.8 1146.0 1630.7 2167.8 2750.9 3375.1

CW 120.6 372.8 717.2 1130.7 1607.4 2149.0 2759.4 3442.2

156Gd 14.94 0.0019

Exp. 89.0 288.2 584.7 965.1 1416.1 1924.5 2475.8 3059.5

VMI 88.8 288.4 585.0 965.2 1417.9 1934.2 2506.9 3130.7

CW 88.7 288.4 584.7 960.9 1402.5 1898.9 2444 3034.6

158Gd 13.31 0.0009

Exp. 79.5 261.5 539.0 904.1 1349.5 1865.0

VMI 79.6 261.4 537.8 899.5 1338.0 1845.4 2415.3 3042.1

CW 79.4 261.5 539.0 902.2 1340.5 1843.9 2404.0 3014.1

160Gd 12.59 0.0007

Exp. 75.3 248.5 514.8 867.9 1300.7 1806.3 2377.3 3008.1

VMI 75.1 247.5 511.5 860.0 1285.7 1781.8 2342.2 2961.7

CW 75.2 248.5 514.8 866.9 1296.6 1795.5 2355.6 2970.2

156Dy 23.72 0.0099

Exp. 137.8 404.2 770.4 1215.6 1725.0 2285.9 2887.8 3523.3

VMI 137.1 407.3 769.3 1201.3 1690.3 2228.1 2808.5 3427.1

CW 134.7 409.9 769.5 1205.0 1713.8 2301.1 2971.6 3729.5

158Dy 16.52 0.0022

Exp. 98.8 317.1 637.7 1043.9 1520.0 2048.8 2612.2 3190.3

VMI 98.8 317.0 635.3 1036.9 1509.2 2042.7 2630.3 3266.4

CW 98.3 317.4 637.6 1038.5 1504.2 2025.1 2596.9 3255.7

160Dy 14.56 0.0013

Exp. 86.8 283.8 581.1 966.9 1428.0 1950.5 2513.8 3089.8

VMI 86.7 284.0 582.6 971.7 1441.5 1983.4 2590.2 3256.0

CW 86.7 283.9 581.1 965.0 1422.3 1941.8 2515.0 3136.4

162Dy 13.51 0.0009

Exp. 80.7 265.7 548.5 921.3 1375.1 1901.1 2491.7 3138.6

VMI 80.9 266.2 549.2 921.5 1374.8 1901.6 2495.3 3150.2

CW 81.7 265.7 548.5 919.7 1369.2 1887.1 2464.6 3094.9
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164Dy 12.29 0.0007

Exp. 73.4 242.2 501.3 843.7 1261.3 1745.9 2290.6 2887.1

VMI 73.5 242.1 500.1 840.3 1255.4 1738.7 2284.2 2886.8

CW 73.4 242.2 501.3 843.3 1260.0 1742.6 2283.9 2876.4

160Er 21.24 0.0047

Exp. 125.8 389.9 765.7 1229.3 1761.1 2340.4 2932.7 3466.5

VMI 125.8 392.5 767.1 1227.4 1758.4 2350.0 2994.9 3687.3

CW 124.0 391.0 765.4 1219.8 1741.3 2326.7 2977.9 3698.2

162Er 17.15 0.0021

Exp. 102.0 329.6 666.7 1096.7 1602.8 2165.1 2745.7 3292.4

VMI 101.0 327.1 661.7 1089.1 1596.4 2173.5 2812.7 3507.7

CW 101.6 329.8 666.7 1092.3 1590.1 2148.5 2761.3 3425.9

164Er 15.32 0.0012

Exp. 91.4 299.4 614.4 1024.6 1518.1 2082.8 2702.6 3411.2

VMI 90.9 297.6 610.0 1016.7 1507.1 2072.3 2704.7 3398.2

CW 91.3 299.5 614.4 1022.9 1511.5 2068.4 2684.2 3352.6

166Er 13.51 0.0010

Exp. 80.6 265.0 545.5 911.2 1349.5 1846.5 2389.3 2967.3

VMI 80.6 264.8 544.6 910.6 1354.2 1867.3 2443.5 3077.0

CW 80.6 265.0 545.5 911.7 1352.5 1857.8 2418.7 3029.1

168Er 13.34 0.0005

Exp. 79.8 264.1 548.7 928.3 1396.8 1947.3 2571.9 3259.5

VMI 79.8 264.1 548.9 928.9 1398 1950.2 2579.6 3281.1

CW 79.8 264.1 548.7 927.5 1393.1 1937.7 2553.6 3233.4

164Yb 20.84 0.0043

Exp. 123.3 385.6 760.1 1223.1 1753.4 2329.9 2899.2 3695.6

VMI 122.0 386.4 756.9 1215.2 1737.8 2323.8 2972.7 3688.4

CW 122.4 384.8 757.0 1217.2 1750.5 2346.4 2997.5 3697.9

166Yb 17.21 0.0021

Exp. 102.4 330.5 668.0 1098.3 1605.9 2176.0 2779.5 3490.1

VMI 102.0 330.7 668.0 1093.6 1590.6 2188.0 2759.0 3423.2

CW 101.9 329.6 666.4 1096.1 1605.8 2185.3 2826.9 3524.2

168Yb 14.73 0.0015

Exp. 87.7 286.6 585.3 970.0 1425.5 1936.0 2488.5 3073.1

VMI 87.7 286.6 585.3 969.4 1425.0 1940.9 2509.1 3124.7

CW 87.0 248.3 581.2 966.1 1428.7 1960.1 2553.3 3202.5

170Yb 14.09 0.0008

Exp. 84.3 277.4 573.3 963.3 1437.5 1983.4 2580.4 3195.1

VMI 84.1 277.5 573.3 962.4 1434.5 1979.5 2588.4 3253.6

CW 84.2 277.4 572.9 962.4 1437.7 1990.9 2615.0 3304.9

172Yb 13.16 0.0006

Exp. 78.7 260.3 540.0 912.1 1370.1 1907.5 2518.7 3198.4

VMI 78.7 260.3 540.0 911.1 1365.7 1895.5 2492.5 3149.4

CW 78.9 260.3 538.6 906.6 1357 1882.9 2477.8 3136.4

174Yb 12.78 0.0005

Exp. 76.5 253.1 526.0 889.9 1336.0 1861.0 2457.0 3117.0

VMI 76.3 252.9 526.3 891.9 1344.4 1878.3 2488.4 3169.8

CW 76.5 253,1 526.0 889.3 1336.3 1859.4 2451.1 3104.8
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176Yb 13.74 0.0005

Exp. 82.1 271.9 564.5 953.9 1431 1984.6 2602.0 3270

VMI 82.2 271.9 564.5 953.5 1431.1 1988.8 2618.6 3312.9

CW 82.0 271.0 561.9 948.2 1422.9 1979.1 2610.6 3311.6

168Hf 21.01 0.0047

Exp. 124.1 385.9 757.3 1213.7 1736.1 2306.1 2857.5 3310.4

VMI 122.7 386.8 757.1 1206.5 1722.2 2301.1 2945.3 3657.7

CW 123.8 386.2 755.0 1208.0 1730.7 2313 2947.8 3629.3

170Hf 17.01 0.0030

Exp. 100.7 321.7 642.6 1043.0 1504.2 2015.9 2566.7 3151.1

VMI 100.3 321.9 642.5 1040.1 1499.4 2012.6 2577.0 3193.1

CW 101.0 320.7 636.7 1031.0 1491.0 2007.9 2574.5 3185.7

172Hf 16.00 0.0018

Exp. 95.2 309.2 628.3 1037.5 1521.2 2064.7 2654.1 3277.2

VMI 95.0 308.1 624.7 1030.2 1512.5 2062.2 2617.9 3335.6

CW 95.0 309.3 628.3 1034.7 1512.6 2050.9 2642.2 3282.7

174Hf 15.29 0.0014

Exp. 91.0 297.4 608.3 1009.6 1485.9 2020.5 2597.5 3208.9

VMI 91.0 297.5 608.8 1013.1 1499.5 2059.0 2684.1 3368.7

CW 90.9 297.5 608.3 1009.0 1485.0 2026.0 2622.0 3267.8

176Hf 14.81 0.0011

Exp. 88.3 290.2 596.8 997.7 1481.1 2034.7 2646.6 3307.7

VMI 88.1 289.6 296.2 998.3 1486.5 2052.3 2688.4 3388.7

CW 88.3 290.2 596.8 996.4 1476.4 2025.8 2635.0 3297.3

178Hf 15.61 0.0009

Exp. 93.2 306.6 632.2 1058.6 1570.3 2149.6 2776.6 3435.0

VMI 93.2 306.7 632.1 1059.5 1579.1 2182.0 2860.7 3608.7

CW 93.1 306.6 632.2 1058.6 1573.7 2165.6 2824.6 3542.7

180Hf 15.60 0.0005

Exp. 93.3 308.6 640.8 1084 1631.0 2274.3 3005.4 3813.5

VMI 93.3 308.7 641.3 1084.7 1631.6 2274.8 3007.4 3823.2

CW 93.3 308.6 640.8 1082.4 1624.4 2257.4 2972.2 3760.2

174W 19.10 0.0038

Exp. 113.0 356.4 706.4 1138.9 1637.5 2189.4 2785.2 3397.3

VMI 112.2 354.9 701.8 1132.9 1634.4 2196.4 2811.6 3474.4

CW 112.1 357.0 705.9 1133.7 1625.6 2175.7 2783.4 3450.9

176W 18.27 0.0026

Exp. 108.3 348.2 699.4 1139.7 1648.5 2206.3 2802.6 3427.6

VMI 109.1 348.7 696.4 1133.2 1645.4 2222.7 2857.4 3543.6

CW 108.0 348.7 701.9 1148.2 1674.5 2274.3 2945.8 3689.6

178W 17.80 0.0020

Exp. 105.9 342.7 694.2 1141.5 1665.4 2244.5 2858.7 3488.4

VMI 105.4 341.4 690.7 1136.9 1666.5 2269.1 2936.5 3662.3

CW 105.6 342.9 694.2 1139.1 1660.6 2245.8 2888.4 3584.9

180W 17.39 0.0016

Exp. 103.6 337.4 688.5 1138.5 1664.2 2235.2 2822.9 3412.7

VMI 103.1 335.7 683.5 1131.5 1667 2279.8 2961.4 3705.2

CW 103.4 337.6 688.5 1138.2 1670.3 2271.7 2933.4 3650.1
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182W 16.74 0.0008

Exp. 100.1 329.4 680.4 1144.3 1712.0 2372.6 3112.9 3910.1

VMI 100.0 329.2 678.9 1138.0 1698.7 2349.1 3081.9 3890.0

CW 100.0 329.4 680.4 1141.5 1700.4 2344.9 3064.6 3849.8

184W 18.60 0.0011

Exp. 111.2 364.1 748.3 1252.2 1860.8 2557.0 3319.9 4116.9

VMI 111.1 364.4 747.8 1248.0 1852.3 2549.8 3331.3 4189.1

CW 110.9 364.3 748.3 1247.7 1846.5 2530.3 3287.8 4110.5

186W 20.45 0.0016

Exp. 122.6 396.5 809.3 1349.2 2002.4 2750.9 3562.4

VMI 122.4 399.8 817.2 1358.3 2008.3 2755.1 3588.5 4500.6

CW 121.6 396.9 809.2 1337.3 1961.9 2667.6 3443.8 4284.6

182Os 21.41 0.0037

Exp. 126.9 400.3 794 1277.9 1812 2346.1 2840.7 3320.1

VMI 127.3 400.5 788.7 1268.9 1825.8 2448.5 3129 3861.2

CW 125.8 401 793.9 1276.2 1831 2451.3 3136.2 3887.8

184Os 20.07 0.0023

Exp. 119.8 383.7 774.1 1274.8 1871.2 2547.6 3261.4 4046.5

VMI 119.4 385.0 775.4 1271.1 1856.8 2520.8 3254.2 4049.8

CW 118.8 384.3 774.0 1263.6 1833.9 2472.4 3173.1 3934.1

186Os 23.00 0.0030

Exp. 137.2 434.1 868.9 1420.9 2068.0 2781.3 3557.7

VMI 136.6 436.3 870.6 1415.8 2054.5 2774 3564.8 4419.5

CW 135.4 435 869.0 1406.6 2028.6 2722.7 3486.5 4320

188Os 26.05 0.0047

Exp. 155.0 478.0 940.0 1514.8 2170.1 2856.3 3562.6 4236.5

VMI 154.3 481.4 941.5 1506.9 2159.6 2886.9 3679.8 4531.3

CW 152.1 479.8 939.5 1497.7 2138.2 2857.1 3656.7 4540.8

190Os 31.80 0.0089

Exp. 186.7 547.9 1050.4 1666.8 2357.7

VMI 185.3 554.6 1052.4 1648.5 2325.0 3069.8 3874.8 4733.4

CW 181.5 552.1 1049.1 1645.1 2338.3 3134.4 4040.7 506.6

In Table 1, the data for VMI model are obtained 
from Mariscotti et al. (1969) and the experimental data 
from the decay data website http://www.nndc.bnl.gov/
nudat2/. From the table we can see that the obtained 
results have a good agreement with the experimental 
data for most nuclei which is given in Table 1. Very few 
cases are found to display an error of 5% which arises 
because of the spread of the experimental points which 
increases rapidly with I. The results of this work and 
that of the VMI model are in most cases coincident. The 
present model has the advantage of being simpler and 

clearer in the form of the energy levels than the VMI 
model.

Furthermore, in Table 2, the calculated values of 
the effective moment of inertia J0 for each nucleus 
considered are listed. The current work results are 
obtained using the formula 

2

0 2
J

A
=
  where we have 

used the values of A from Table 1. The results of VMI 
are obtained from Table 2 (Mariscotti et al. 1969). Table 
2 shows an excellent coincidence of the current results 
and that calculated according to VMI.
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TABLE 2. The effective moment of inertia J0 calculated according to (20) in this work of even-even isotopes of Sm, Gd, Dy, Er, 
Yb, Hf, W, and Os. (J0

cw is current work, and J0
VMI

 is VMI (Mariscotti et al. 1969))

Nuclei J0
cw  J0

VMI Nuclei J0
cw  J0

VMI

152 Sm 0.0233 0.0234  174 Yb 0.0391 0.0392

 154 Sm 0.0363 0.0365  176 Yb 0.0364 0.0364

 152 Gd 0.0239 0.0233  168 Hf 0.0238 0.0233

 156 Gd 0.0335 0.0333  170 Hf 0.0294 0.0289

 158 Gd 0.0376 0.0374  172 Hf 0.0313 0.0312

 160 Gd 0.0397 0.0397  152 Hf 0.0327 0.0327

 156 Dy 0.0211 0.0201  152 Hf 0.0338 0.0338

 158 Dy 0.0303 0.0298  178 Hf 0.0320 0.0321

 160 Dy 0.0343 0.0343  180 Hf 0.0321 0.0321

 162 Dy 0.0370 0.0369  174 W 0.0262 0.0260

 164 Dy 0.0407 0.0406  176 W 0.0274 0.0269

 160 Er 0.0235 0.0229  178 W 0.0281 0.0280

 162 Er 0.0292 0.0293  180 W 0.0288 0.0288

 164 Er 0.0326 0.0327  182 W 0.0299 0.0298

 166 Er 0.0370 0.0369  184 W 0.0269 0.0268

 168 Er 0.0375 0.0375  186 W 0.0244 0.0243

 170 Er 0.0381 0.0378  182 Os 0.0234 0.0228

 164 Yb 0.0240 0.0237  184 Os 0.0249 0.0247

 166 Yb 0.0291 0.0289  186 Os 0.0217 0.0215

 168 Yb 0.0339 0.0342  188 Os 0.0192 0.0187

 170 Yb 0.0355 0.0354  190 Os 0.0157 0.0150

 172 Yb 0.0380 0.0379

The results of the level energies of the ground 
state bands calculated using our formula (21) for 

170 176 170 180 174 178
70 72 74, ,Yb Hf W− − −  isotopes were compared 
with VMI model (Mariscotti et al. 1969) mentioned before 
and with the results based on the phenomenological 

model which takes into account the Coriolis mixture 
of low-lying state bands (Okhunov et al. 2015). This 
comparison is shown in Figures 1 and 2 which includes 
also experimental data obtained from the decay data 
website http://www.nndc.bnl.gov/nucdat2/.
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FIGURE 2. The energy spectra of rotational ground state bands of W 
isotopes

 

FIGURE 1. The energy spectra of rotational ground state bands for Yb and Hf isotopes
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This comparison showed the results of this 
model are coincide with the results of VMI and 
phenomenological models and also good agreement 
with the experiment data. This coincidence means that the 
effect of such factors on the nuclei under consideration 
and for the energy levels less than 12 is small, that is the 
energy levels for considered nuclei are less than the 
energy required to split the nucleon pairs.

A graphical comparison of the calculated results 
and experimental data of the energy ratios of the excited 
states EI / E2 as a function of R = E4 / E2 in the range 

2.90 to 3.33 for all I up to 20 is displayed in Figure 
3. It is shown clearly that the coincidence between 
experimental data and the predictions of the current work 
for energy I < 14 has a good agreement, that is theoretical 
curve passes nearly through all experimental points. For 
I < 14 there are small and systematic deviation differ 
from one nucleus to another and increases rapidly with 
the increasing I. This deviation appears as a dispersion 
of the experimental points around the theoretical curve. 
Since this deviation differ according to the nucleus, it is 
related to microscopic structure of the nucleus.

FIGURE 3. The energy ratio EI / E2 for different values of I as a function of E4 / E2. 
The solid curves are results of current work which are computed according to (21).

In Figure 4, the ratio E10 / E2 is plotted against E4 / E2 
for the current model, the experimentally obtained data 
and three other models, namely the Gupta ((4) Gupta 
1969), Bohr-Mottelson 2 – parameter models ((2) Bohr 
& Mottelson 1953), and Sood ((5) Sood 1969).

While the prediction of our work compares nicely 
with the experimental data points through all the 
region under consideration, both Gupta and Bohr–
Mottelson 2 – parameter models diverge from the 

experimental data except at the proximity around the 
4

2
~ 3.33E

E
≈   regime. This infers that Gupta and Bohr–

Mottelson 2 – parameter model can hold only a few 
nuclei which is confined in the range of 4

2
3.25 3.33E

E
< < . 

Although the success of Sood is impressive, it has many 
shortcomings nonetheless, for example a parameter N is 
introduced to (5) without scientific justification, nothing 
has been mentioned about the physical meaning or the 

4

2

E
E
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identity of this parameter in spite of its importance in 
fitting the experimental points.

Figure 5 shows the increasing behavior of the ratio E10 / 
JI / J0 for three different nuclei as a function of I.

FIGURE 4.  A comparison of the current work with various theoretical results and with 
experimental data. Red curve is from the Bohr-Mottelson 2 parameters formula, green curve 
is VMI model, yellow curve is current work, brown curve is Sood model (Sood 1967), blue 
curve is from the Gupta model (Gupta 1969) (based on 3 terms in the Gupta series), closed 

circles represent the experimental results and the yellow one represents this work

FIGURE 5. The ration JI / J0 as a function in I for three different nuclei. The solid 
curves are the results of current work and dashed curves are VMI model results. 
The red curve is for 154 Gd , the green curve is for 160 Er, and the yellow curve is 

for 190 Os nuclei correspondingly
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The dashed curves are drawn on the basis of VMI 
model where we have used (8) and (11) mentioned in 
Mariscotti et al. (1969) together with the values of the 
parameter σ listed in Table 1 (Mariscotti et al. 1969). 
The solid curves in Figure 5 represent the current work. 
They are drawn using (20) in this work. Two features 
should be considered in this figure; first, the VMI 
model predicts that this ratio increases without limit as 
I increases, i.e., at high I, it can be more than 2 while, 
according to our results this ratio cannot exceed 2, i.e. JI 
/ J0 = 2 is a horizontal asymptotic to our curves. Second, 
VMI predicts increasing in JI / J0much rapidly than that 
predicted according to our work.

CONCLUSION

The quantization of the stretching that spinning nucleus 
exhibit led to a formula for the moment of inertia that 
can be applied successfully for all nuclei in the atomic 
mass range 150 < A < 190  with E4 / E2 > 2.9 . While 
the classical treatment of such stretching works well 
only for nuclei in the region of strongly deformed nuclei 
where E4 / E2 > 3.25. Unlike VMI where the moment of 
inertia was considered as a general variable, our work has 
a characteristic that the two parameters in our formula 
are clear and their physical meanings are well known.

The full coincidence (I < 14) of our formula which 
is derived on the basis that the moment of inertia depends 
only on the deformation parameter with the results 
presented in references (Mariscotti et al. 1969; Okhunov 
et al. 2015) which have taken into consideration, in 
addition to deformation parameter, the pairing effect 
and Coriolis interaction leads to a conclusion that the 
contributions of the latter two parameters, i.e. pairing 
effect and Coriolis interaction are so small and it can be 
neglected in the case of I < 14. For I < 14 the effect of 
these two factors, for a specific nucleus, increasing with 
I and it differs from nucleus to another. For most nuclei 
such deviation still small up to I = 16. It is appeared 
obviously that the deviation from the theoretical curve 
increases as we go from strongly deformed nuclei where 
E4 / E2 > 3.3 toward harmonic nuclei E4 / E2 ~ 3.24.
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