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ABSTRACT

An approach based on the idea that the spinning nucleus being stretched out along the symmetry axis under the
influence of some of centrifugal force has been proposed. The stretching in this work is treated within the framework
of quantum mechanics rather than classical mechanics which had been used by Diamond Stephens and Swiatecki. Our
approach led to a new formula that describes the dependence of the moment of inertia on the angular momentum. This
formula is applied for the calculation of rotational ground state bands of even-even nuclei in the atomic mass range /50 <
A < 190 and that having energy ratios in the range between 2.9 < E,/ E, < 3.33. The results show an overall agreement
with the experimental data up to high level energies. There are a small and systematic deviation appears at / > /2 . This
deviation increases with the increasing in / and also differs from one nucleus to another.
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ABSTRAK

Pendekatan berdasarkan idea bahawa nukleus berputar yang meregang di sepanjang paksi simetri di bawah pengaruh
beberapa daya pengempar telah diusulkan. Peregangan dalam kertas ini dirawat dalam kerangka mekanik kuantum
dan bukan mekanik klasik yang telah digunakan oleh Diamond Stephens dan Swiatecki. Pendekatan kami membawa
kepada formula baharu yang menunjukkan pergantungan momen inersia pada momentum sudut. Formula ini
digunakan untuk pengiraan jalur keadaan asas putaran nukleus genap-genap dalam julat jisim atom /50 <4 < /90 dan
mempunyai nisbah tenaga dalam julat antara 2.9 < £,/ E, < 3.33. Hasilnya menunjukkan kesepakatan keseluruhan
dengan data uji kaji hingga tenaga tahap tinggi. Terdapat penyimpangan kecil dan sistematik yang muncul pada 7/ > /2.
Penyimpangan ini meningkat dengan peningkatan / dan juga berbeza daripada satu nukleus ke nukleus yang lain.

Kata kunci: Jalur; model; putaran; regangan; tahap tenaga

INTRODUCTION

2
E(I):Z—J[l(1+1)] (1)
Bohr, in his model (1976, 1952, 1951) of describing the

nucleus in terms of the coupled particle motion and surface
oscillations predicted, in the special case of the strong-
coupling, the low-lying states of nuclear spectrum is
rotational with spin sequence / =0, 2, 4, ... even parity
and with level energies follow the simple formula

where J is the moment of inertia. However, it is found
later that the observed energy spacing of the states of
the ground band increase less rapidly than (1) predicted
when J is constant (Sorensen 1973). Bohr and Mottelson
(1953) suggested that this decrease in the energy spacing
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may be understood within the context of the coupling
between rotational and vibrational modes of motion
which contributes a term of the form —B[1(1 -rl)]2 and
hence (1) becomes

E([):A[l(]+1)]—B[1(1+1)]2 2

The two parameters 4 and B in this equation are related
to the moment of inertia and to the rotation-vibration
coupling coefficient, respectively. However, such
correction was found to be insufficient to represent the
experimental spectra obtained with the states with higher
values of / or even for low lying states of transitional
nuclei (Preston & Bhaduri 1975). One can generalize (2)
to an infinite power series form (Sood 1967)

E(1):A~1(1+1)—B[1(1+1)]2+c[1(1+1)]3— 3

D[I(I+1)]4+-~’

where 4, B, C, D, ... are parameters which can
be determined by fitting this equation with the
experimental results. The ground rotational bands
of actinide and of rare-earth even-even nuclei were
analyzed using the first four terms of (3) (Xu et al. 1989),
where the parameters 4, B, C, and D were obtained by
the least-squares fitting. Although the success of this
approach gave a good agreement with experiment for
the data available up a very high 7 is impressive, it should
be noted that this approach do not explain the physical
meaning of the parameters C and D.

Harris (1964) suggested that £ can be expanded
in powers of w? instead of 7 (/ + 1). It turned out that the
expansion in @? converges more rapidly than that of 7
(I + 1). This feature could be exploited to find relations
between higher parameters in (3). Particularly,
considering only the first two terms in the expansion of
Harris imply the relations (Bohr & Mottelson 1998)

2 3
C (2] 2oy(2)
A A A A

These equations were compared with the values
of 4, B, C, and D obtained using least square fitting
technique for several nuclei in the rare-earth region, it
is seen that these equations are obeyed in most cases to
around 70% (Bohr & Mottelson 1998), it can be seen
Table 1 and Figures 1 and 2 (Xu et al. 1989). In any way,
the problem of writing the coefficient of higher terms in

(3) in terms of first two basic parameters 4 and B was
discussed by Gupta (1969, 1967) and later Trainor and
Gupta (1971) introduces a model with a rotational—
vibrational interaction that relates all parameters C, D,
E, ... to the first two basic parameters 4 and B. This model
is known as non-rigid rotator model and the energy states
are expressed as a power series in terms of B /4 and the
weight factor / (/ + 1) as:

E(I):A-I(I+1)l1—§l(]+1)+3(§I([+1)j2 _..}’(4)

It has been shown that the first three terms and
even the first four terms of (4) are capable of solving the
problem only within a very short range 3.25 <R < 3.33
(Figure 1).

A detailed analysis by Sood (1968a, 1968b, 1967)
and Volkov (1971) showed that the use of any truncated
series in / (I + 1) in (4) is not sufficient to describe the
experimental spectrum. Instead, he suggested that the
phenomenological sum an infinite term in 7 (/ + 1) of that
equation can give the following compact expression for
the energy E (1)

E(I)=A(I)-1(1+1) 6)
(B/A)I(I+1) _
where A(I)=4 1_1+N(B/A)I(I+l)}’ which could

be consistent with that derived by Bohr for describing
the experimental spectrum with the provision that 4 (/)
in (5) is variable and it is a decreasing function of 7/
(J is increasing as function of /). Although this two—
parameter model by Sood (1967) fits with high accuracy
the experimental spectrum of rare—earth nuclei including
the Os isotopes and N = 90 nuclei, there are many
questions about the parameter N has been left open such
as; what is the physical quantity that the parameter N
in (5) represents? Or what are the factors that N depends
on? The answer to these questions is very important to
specify the factors which control the increase of J with
the increase in /.

An alternative approach to interpret such decreasing
in the energy space was introduced first by Morinaga
(1966) and later by Diamond et al. (1964). Morinaga
was the first to suggest that the decrease in energy
spacing is due to the increase in the moment of inertia
J. Diamond et al. (1964) attributed this increase in J to
some sort of centrifugal stretching. The authors assumed



the suggestion of Bohr that the energy of an axially
symmetric nucleus should include, in addition to the
rotational energy, a potential energy

E(I):%[I([H)]Jréc(ﬂ, 7/30)2’ (6)

where J is moment of inertia of the nuclei and C is
the stiffness of the nucleus. The authors assume the
hydrodynamical formula of J (i.e., J o f,). Where f3,in
(6) is the value of § which satisfied the condition

OE(I) _ o’ ™
op;
so that the total energy of that state is minimized. This
approach gives good fit only for strongly deformed
nuclei. Bands outside this region cannot be fitted with
reasonable accuracy.

Holmberg and Lipas (1968) conducted a study
based on the idea of Diamond et al. (1964), in which
they derived a new two parameters formula for the level
energies in the ground state bands called ab formula

E= a[1/1+b-l(1+1) —IJ where a, b are constants.

This formula was examined by many authors such as
Wu et al. (1992) who used this formula to determine the
spins of 22 super deformed bands observed in the 4
~190 region. The agreement between the calculated
and observed transition energies was incredibly well
when a correct spin assignment is made. In fact, this
result is expected in advance as we mentioned earlier,
since the idea of the minimal energy of Diamond
works well in in the case of the super deformed nuclei.
Authors Hu and Zeng (1997) made a comparison of the
Harris and ab expressions for the description of nuclear
normally deformed and super-deformed bands. They
show that in normally deformed nuclei, there exist an
obvious and systematic deviation of the Harris formula
from the experiment. In contrast, the prediction of the
ab formula is very close to the experiment, and maybe
conveniently used for the description of both normally
deformed and super-deformed bands.

A modification of the ab formula was made by
Huang et al. (1989) who take into consideration small
axial symmetry and vibrational effect. This approach led
to a derivation of a three-parameter formula. The authors
claimed that the third term C, describes the effect of
anharmonicity but there is no evidence to support this
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claim. However, this obtained modified formula gives
an excellent agreement with experiment for all actinide
and rare-earth deformed nuclei up to a very high spin.
Mariscotti et al. (1969) claimed that the
responsibility for the failure of Diamon’s model to
describe the spectrum of nuclei outside the deformability
region is that the increase in beta is not large enough
to explain the deviation from rule and hence, they
assumed that the moment of inertia J depends, in
addition to the deformation parameter £, on pairing
effect, they suggested £ in (7) should be replaced by a
general variable # which might represent not only the
deformation parameter, but also all other microscopic
feathers like the effective pairing. The dependence of
J on ¢ can be expressed as J = const.t", n being integer.
Since the best fit for all ground state bands ranging 2.34
< R <3.33 were obtained n = 1, then J itself can be
considered as a general variable and the equation of the
total energy for the ground state bands, (7), takes the form,

n’ 1 2,
E(1):5[1(1+1)]+5C(J1—J0) (8)
The authors assumed that the minimal energy principle

(1) o ©)
oJ

must be satisfied for each state of /. The model of the
Mariscotti et al. (1969) is known as the variable
moment of inertia (VM) model. The limit of validity of
this model was taken for J, > 0 which is equivalent to
>2.34 . An extension for this model to permit negative
values of J were proposed by Scharfi~Goldhaber and
Goldhaber (1970). Another extension was made by Toki
and Faessler (1976) to include asymmetric deformed
nuclei.

Another work in which the Coriolis mixture of low-
lying energy state bands were considered to analyze the
deviation from the adiabatic condition i.e., / (/+ 1) rule
of even-even deformed nuclei was proposed (Okhunov
etal. 2015; Usmanov et al. 2021, 2019, 2018, & 2010).
In that model, the moment inertia J; and J, by Harris
parametrization for the energy and angular momentum
were calculated and the obtained values were used in
the calculation of the energy levels of the ground state
bands for several isotopes in rare-earth region. The results
obtained show a very good agreement with experimental
data.

Recently, the effects of possible non collective pairs
in even-even '2*12 Sp are studied in the nucleon-pair shell
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model (He et al. 2020), and also the effective moment of
inertia of even-even rotating nuclei have been studied
(EI Sheikh et al. 2020) by expanding the Bohr’s equation
into account the second and third terms of this expansion
in addition to first one. The modified form of Bohr’s
relationship, is verified on axially symmetric nuclei of
atomic mass ranging between 150 and 190 as well as on
a number of triaxially symmetric nuclei.

In this work, we follow the suggestion of Diamond
et al. (1964), that the spinning nucleus being stretched
along its symmetry axis with the exception that the
stretching is treated in our work according to quantum
mechanics rather than classical mechanics which was
already used in their work which leads to a new formula
that describe the dependence of the moment of inertia on
the angular momentum. This formula has been applied
to calculate the level energies of the ground state bands
of a large number of nuclei in the strongly deformed and
in the transitional regions that are in the atomic range
150 < A4 < 190 and having energy ratios 2.9 < R < 3.33.
In the case of strongly deformed nuclei this formula
shows an excellent agreement with experiments up to
very high energy levels (Figure 4), for moderate deformed
and transitional nuclei there are small and systematic
deviations that appear in the form of dispersion around
the theoretical curve. In our work, we only consider the
effect of the stretching we compare our results with, other
approaches who consider in addition to the stretching
other factors like pairing and Coriolis forces (Mariscotti
et al. 1969; Okhunov et al. 2015) in order to find how
much these factors, contribute to the moment of inertia
and, accordingly, to the values of level energies of the
nuclei considered in this work.

A brief description of the formulation of this
formula will be displayed in the next section. Application
of this formula to the ground state bands of an even-
even nuclei whose energy ratio not less than 2.9 is given
subsequently. Lastly, in the final section, the important
conclusions will be summarized.

FORMALISM

Following the suggestion of Diamond et al. (1964), the
increase in the moment of inertia can be interpreted on
the basis of the idea that spinning nucleus exhibits some
sort of centrifugal stretching along the symmetric axis,
the very simple classical form of the moment of inertia
of the mass element dm is

dJ =ridm> (10)

where r is the effective radius of rotation. According
to the hydrodynamical model, very little of the nuclear
matter is actually taking part in the effective rotational
motion or, in other words, the rotational motion can be
pictured as a motion of wave around the nuclear surface,
SO

dm=Y R2a0-M 40 (11)
A 47

where 4 = 47 R? is the total area of the surface, R?dQ =
R?sin Od0d¢ is the surface element, R is the distance
of the mass element dm from the center of the nucleus.
Where r in (10) can be written as r+ Ar, where Ar is
the stretched in the nucleus due to rotation. It follows

2 .

2

dJ = (ry +4r) Ppo-21+2 | Laa (1)
4r n ) 4rn

We assume that the nucleus has symmetry axis which is

perpendicular to its rotational axis then the stretched can

be expanded in body fixed-space in terms of a complete
set of spherical harmonics (Eisenrierg & Greiner 1987)

as —_ Za/w

parameter in body-fixed coordinate. Putting this definition
in (12) we get

49 ¢ where a A is the deformation

2
M
= £1+Zalﬂ (9¢] s (13)
—2[1423d) v, (0.0)+ Y & dh Yy Y [P d
0 A A L WA ) g

Integrating both sides of (13) over the whale surface of
the nucleus, one can find

[jdgmz%tj 1 (0.9)dQ+

jM (14)

-y alﬂaﬂ.ﬂ.IYlﬂ € |

A !

The integrationJ‘ dQ =4r referto the integration over solid
angle, it is well known that the integration IY i (0,4)dQ
which is the second term in the above equation is zero for
a11/1>0andJ‘Y/1 Yﬂ. dQ=(- ) 110, - The quantity
( l)ﬂ Ay equals to a_y .. Putting all tﬁese requirements
in (14) we get



where a A, is the deformation parameter in body-fixed
coordinates. It is found that even-even nuclei can be
accurately described in terms of a deformation of order
A =2.1In (15), the suffix index x# which represents the
orientation of the nucleus in space—fixed coordinates
runs from -4 to A. In our case # runs from -2 to 2. We
drop the subscript 4 = 2 from all deformation parameters
henceforth

1

J=J0[1+EZ(—1)'”a_ﬂauJ ' (16)

7

_ Alihm

=y |1+47rzc
7

Where a, can be written by using the identity a,

:\/%(Qﬁ(_l)ﬂ C,J) .The quantity [C,ﬂ +(-1)" ;J

[4’” +(-1)" é’jﬂ} can be treated as follows

e o1 e,

[g,y NE gﬂ[gy +(-1)" gfy} -

(1 (Coul it Cuu)

(17)
C L+l

Each of the first two terms in (17) includes two
operators Cuand & u the first acts on the state x4 and
the second on a different state -u but according to the
selection rule which connects the ground state band to
the one—phonon state, where we have only one state
either u or -u these two terms should yanis
Using the commutatlon relation [2 }]—1 which
leadsto ¢_ #L =1+¢ W theterm( ) {g“_ﬂgfﬂ+§;§ﬂ
in (17) becomes (—1)* {1+g_ﬂg_ﬂ+gﬂgﬂ} Therefore, (17)
becomes

1 ho * * :
Jy=J, {HEE(;(H:#CHC,@)H (18)

Since the summation in (18) runs from -u to u, hence the
summation over ¢_,¢_, and ¢,¢, are identical, then
the (18) can be written in the form

Jy=J, {H;Z[Z(Hzgﬂg)ﬂ

where 7, =¢ ;g“ . 1s the number operator. In the case
of the ground state band the number operator is zero.
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Replacing fig by 7°1(1+1) in (18) is reduced to

2J,
S 1+ih21(1+1) s w21(1+1)
17700 4 4y,C 0 ol S () 21(1+1)
0 4z 4J,C
=Jp|1+ i—hz (=) |20)
47 4, o h21(1+1)

It is clear that (20) is recursion relation of J, (i.e. J, are
defined in terms of itself). It represents the moment of
inertia at angular momentum / approximated to the
second order. The factor 5 in (20) arises because the
summation over # runs from -2 to 2 through u = 0 as
mentioned above. Finally, the energy levels in the ground
state bands are casted into the following form,

nI(1+1)
2,

n*1(1+1)

E()=

2
2143 h 1(1+1)
h21(1+1) 2n

A7 4, Cr
AI(I+1)
2

I 2
whereA——adB—5 f .
2J, 47 4J,C

quantized -f stretching equation. These parameters
embed in them the intrinsic moment of inertia ./, and
stiffness C of the nucleus. They are constant for a
particular nucleus, but their values differ from one
nucleus to another. In the present model, they are
adjustable parameters and evaluated by fitting (21)
against experimentally measured energy levels.

J=

RESULTS AND DISCUSSION

The simple expression (21), has been used to evaluate
the level energies up to spin / =20. The parameters 4 and
B have been determined by means of the least square
fitting method involving the first three experimentally
measured energy levels (i.e., / = 2, 4, 6) in the ground
state band. Our discussion includes all even-even
isotopes 625 4G 66Dvs 63 ET> 70YDs 75 HS 5 14 and
2605 with the neutron numbers ranging from 90
to 114, which are found in the atomic mass range
between 150 and 190 and having the energy ratio
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2,9<E,/E, <3,33. Our results for the energy levels are ~ data and the data obtained by the VMI model.
presented in Table 1 which also includes the experimental

TABLE 1. The energy levels E (/) (keV) of the ground state bands of even-even isotopes of Sm, Gd, Dy, Er, Yb, Hf and W. (Exp.
(NuDat 2.8.), VMI (Mariscotti et al. 1969), CW is current work)

Nuclei A B Results
4 6 8 10 12 14 16

Exp. 121.8  366.5 706.9 11254 16093  2148.8  2736.2 3365
152Sm 21.50  0.0105 VMI 121.0  369.9 7123 1127.3 1601.8 21272 26972 3307
CwW 121.8  366.5 691.6 1082.5 15402  2069.8 26754 33604

Exp. 82.3 266.8 544.1 902.8 1333.0 18259  2373.0  2968.2
134Sm 13.77  0.0016 VMI 81.5 267.7 550.4 920.3 1368.3 1886.5 24682  3107.7
CwW 81.8 267.0 544.0 898.7 13179 1791.7  2311.0 28755

Exp. 123.1  371.0 717.7 11444  1637.1  2184.7 27773  3404.5
Gd  20.88  0.0068 VMI 122.0 3744 722.8 1146.0  1630.7  2167.8 27509  3375.1
CwW 120.6 3728 717.2 1130.7  1607.4  2149.0 27594 34422

Exp. 89.0 288.2 584.7 965.1 1416.1 19245 24758  3059.5
Gd 14.94  0.0019 VMI 88.8 288.4 585.0 965.2 14179 19342 25069  3130.7

CwW 88.7 288.4 584.7 960.9 1402.5  1898.9 2444 3034.6

Exp. 79.5 261.5 539.0 904.1 13495  1865.0
8Gd 13.31  0.0009 VMI 79.6 261.4 537.8 899.5 1338.0 18454 24153  3042.1
CW 79.4 261.5 539.0 902.2 1340.5  1843.9  2404.0 3014.1

Exp. 753 248.5 514.8 867.9 1300.7  1806.3  2377.3  3008.1
10Gd 12.59  0.0007 VMI 75.1 247.5 511.5 860.0 12857  1781.8 23422  2961.7
CwW 75.2 248.5 514.8 866.9 1296.6 17955  2355.6  2970.2

Exp. 137.8  404.2 770.4 1215.6  1725.0 22859  2887.8 35233
16Dy 23.72  0.0099 VMI 137.1 4073 769.3 1201.3 16903  2228.1  2808.5  3427.1
CW 1347 409.9 769.5 1205.0  1713.8  2301.1  2971.6  3729.5

Exp. 98.8 317.1 637.7 1043.9  1520.0 2048.8 26122 31903
Dy 16.52  0.0022 VMI 98.8 317.0 635.3 1036.9  1509.2 20427 26303  3266.4
CW 98.3 317.4 637.6 1038.5 15042 2025.1 2596.9 32557

Exp. 86.8 283.8 581.1 966.9 1428.0  1950.5  2513.8  3089.8
19Dy 14.56  0.0013 VMI 86.7 284.0 582.6 971.7 14415 19834  2590.2  3256.0
CwW 86.7 283.9 581.1 965.0 14223 1941.8  2515.0 31364

Exp. 80.7 265.7 548.5 921.3 1375.1 1901.1 24917  3138.6
2Dy 13.51  0.0009 VMI 80.9 266.2 549.2 921.5 1374.8 1901.6 24953 31502
CwW 81.7 265.7 548.5 919.7 1369.2  1887.1  2464.6  3094.9
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Exp. 734 2422 5013 8437 12613 17459  2290.6  2887.1
sipy 1229 0.0007  VMI 735 2421 500.1 8403 12554 17387 22842  2886.8
CcwW 734 2422 5013 8433 12600 1742.6 22839 28764
Exp. 1258 389.9 7657 12293  1761.1 23404 29327  3466.5
WE- 2124 00047  VMI 1258 3925  767.1 12274 17584 23500 29949  3687.3
CW 1240 3910 7654 12198 17413 23267 29779 36982
Exp. 1020 3296 6667 10967 1602.8 2165.1 27457 32924
WEr 1715 00021  VMI  101.0  327.1  661.7  1089.1 15964 21735 28127  3507.7
CW  101.6 3298 6667 10923  1590.1 21485 27613  3425.9
Exp. 914 2994 6144  1024.6 15181 2082.8 2702.6  3411.2
WE- 1532 00012  VMI 909  297.6  610.0 10167 1507.1 20723 27047 33982
CwW 913 2995 6144 10229  1511.5 20684 26842 33526
Exp. 80.6 2650 5455 9112 13495 18465  2389.3  2967.3
WE- 1351 0.0010  VMI  80.6 2648 5446  910.6 13542  1867.3 24435  3077.0
CcwW 80.6 2650 5455 9117 13525 1857.8 24187  3029.1
Exp. 798 2641 5487 9283 13968 19473 25719  3259.5
SEr 1334 0.0005  VMI 798 2641 5489 9289 1398 19502  2579.6  3281.1
cwW 798 2641 5487 9275  1393.1 19377  2553.6 32334
Exp. 1233 3856  760.1  1223.1 17534 23299 2899.2  3695.6
syp 20.84  0.0043  VMI 1220 3864 7569 12152  1737.8 23238 29727  3688.4
CW 1224 3848 7570 12172 17505 23464 29975  3697.9
Exp. 1024 3305  668.0 10983 16059 21760 27795  3490.1
wyp 1721 0.0021  VMI 1020 3307 668.0  1093.6 1590.6  2188.0  2759.0 34232
CW 1019 3296 6664 10961 16058 21853 28269  3524.2
Exp. 87.7 2866 5853  970.0 14255 19360 2488.5  3073.1
syp 1473 0.0015  VMI 877 2866 5853 9694 14250 19409  2509.1 31247
cwW 87.0 2483 5812  966.1 14287  1960.1 25533  3202.5
Exp. 843 2774 5733 9633 14375 19834 25804  3195.1
Yp 1409 0.0008  VMI 841  277.5 5733 9624 14345 19795 25884  3253.6
cwW 842 2774 5729 9624 14377 19909 26150  3304.9
Exp. 787 2603 5400  912.1  1370.1  1907.5 2518.7  3198.4
”yp 1316 0.0006  VMI 787 2603 5400  9Il.1 13657 18955  2492.5  3149.4
cwW 789 2603 5386  906.6 1357 18829 24778 31364
Exp. 765 2531 5260  889.9 13360 1861.0 2457.0  3117.0
7Yp 1278 0.0005  VMI 763 2529 5263 8919 13444 18783 24884 31698
cwW 765 2531 5260 8893 13363 18594  2451.1 31048




1220

Exp. 82.1 271.9 564.5 953.9 1431 1984.6  2602.0 3270
76Yb 13.74  0.0005 VMI 82.2 271.9 564.5 953.5 1431.1 1988.8  2618.6 33129
CwW 82.0 271.0 561.9 948.2 14229  1979.1  2610.6  3311.6
Exp. 1241  385.9 757.3 1213.7  1736.1  2306.1  2857.5 33104
% 21.01  0.0047 VMI 122.7  386.8 757.1 1206.5 17222 2301.1 29453  3657.7
CW 123.8  386.2 755.0 1208.0  1730.7 2313 2947.8  3629.3
Exp. 100.7  321.7 642.6 1043.0 15042 20159  2566.7 3151.1
I"Hf 17.01  0.0030 VMI 100.3 3219 642.5 1040.1 1499.4  2012.6  2577.0  3193.1
CwW 101.0  320.7 636.7 1031.0  1491.0  2007.9 25745 31857
Exp. 95.2 309.2 628.3 1037.5  1521.2  2064.7  2654.1 32772
I2Hf 16.00  0.0018 VMI 95.0 308.1 624.7 1030.2 15125 20622 26179  3335.6
CwW 95.0 309.3 628.3 10347  1512.6 20509 26422 32827
Exp. 91.0 297.4 608.3 1009.6 14859  2020.5 25975  3208.9
I7Hf 1529 0.0014 VMI 91.0 297.5 608.8 1013.1 1499.5  2059.0  2684.1 3368.7
CwW 90.9 297.5 608.3 1009.0  1485.0  2026.0  2622.0  3267.8
Exp. 88.3 290.2 596.8 997.7 1481.1 20347  2646.6  3307.7
I7SHEf 14.81  0.0011 VMI 88.1 289.6 296.2 998.3 1486.5 20523  2688.4  3388.7
CwW 88.3 290.2 596.8 996.4 1476.4 20258  2635.0 32973
Exp. 93.2 306.6 632.2 1058.6  1570.3  2149.6  2776.6  3435.0
ISHFf 15.61  0.0009 VMI 93.2 306.7 632.1 1059.5  1579.1  2182.0  2860.7  3608.7
CwW 93.1 306.6 632.2 1058.6  1573.7  2165.6  2824.6  3542.7
Exp. 933 308.6 640.8 1084 1631.0 22743 30054  3813.5
ISHf 15.60  0.0005 VMI 933 308.7 641.3 1084.7  1631.6 22748  3007.4 38232
CwW 933 308.6 640.8 1082.4 16244 22574 29722  3760.2
Exp. 113.0 3564 706.4 1138.9 1637.5  2189.4 27852 33973
/4 19.10  0.0038 VMI 1122 3549 701.8 1132.9 16344  2196.4  2811.6 34744
CW 112.1  357.0 705.9 1133.7 16256 21757 27834 34509
Exp. 108.3 3482 699.4 1139.7 16485 22063  2802.6  3427.6
/4 18.27  0.0026 VMI 109.1 3487 696.4 11332 16454 22227 28574  3543.6
CwW 108.0  348.7 701.9 11482 16745 22743 29458  3689.6
Exp. 105.9 3427 694.2 1141.5 16654 22445 28587 34884
W 17.80  0.0020 VMI 1054 3414 690.7 1136.9 1666.5  2269.1 2936.5 36623
CwW 105.6 3429 694.2 1139.1 1660.6 22458 28884  3584.9
Exp. 103.6 3374 688.5 1138.5 16642 22352 28229 34127
18w 17.39  0.0016 VMI 103.1  335.7 683.5 1131.5 1667 2279.8 29614  3705.2
CwW 1034  337.6 688.5 11382 16703  2271.7 29334  3650.1
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Exp. 100.1 3294 680.4 11443 1712.0 ~ 2372.6 31129  3910.1

e 16.74  0.0008 VMI 100.0 3292 678.9 1138.0  1698.7  2349.1  3081.9  3890.0
CwW 100.0 3294 680.4 1141.5 17004 23449  3064.6  3849.8
Exp. 111.2  364.1 748.3 1252.2 1860.8  2557.0 33199 41169

1w 18.60  0.0011 VMI 111.1 364.4 747.8 1248.0 18523  2549.8 33313  4189.1
CwW 1109 3643 748.3 1247.7  1846.5 25303  3287.8  4110.5
Exp. 122.6  396.5 809.3 13492 20024 27509  3562.4

/4 20.45 0.0016 VMI 1224 399.8 817.2 13583  2008.3  2755.1 35885  4500.6
CwW 121.6  396.9 809.2 1337.3 1961.9  2667.6  3443.8  4284.6
Exp. 126.9 4003 794 1277.9 1812 2346.1  2840.7  3320.1

820s 21.41  0.0037 VMI 127.3  400.5 788.7 1268.9  1825.8 24485 3129 3861.2
CwW 125.8 401 793.9 1276.2 1831 24513 31362  3887.8
Exp. 119.8  383.7 774.1 12748 18712  2547.6  3261.4  4046.5

18405 20.07  0.0023 VMI 119.4 3850 775.4 1271.1 1856.8  2520.8 32542  4049.8
CwW 118.8 3843 774.0 1263.6 18339 24724  3173.1 3934.1
Exp. 1372 4341 868.9 14209  2068.0 27813  3557.7

%60s 23.00  0.0030 VMI 136.6 4363 870.6 1415.8  2054.5 2774 3564.8 44195
CwW 135.4 435 869.0 1406.6  2028.6  2722.7  3486.5 4320
Exp. 155.0  478.0 940.0 1514.8  2170.1 28563  3562.6  4236.5

%0s 26.05  0.0047 VMI 1543 4814 941.5 15069  2159.6  2886.9  3679.8  4531.3
CwW 152.1 4798 939.5 1497.7 21382  2857.1  3656.7  4540.8
Exp. 186.7 5479 10504  1666.8  2357.7

05 31.80  0.0089 VMI 1853 5546 10524  1648.5 23250 3069.8 3874.8 47334
CwW 181.5  552.1 1049.1 1645.1 23383 31344  4040.7 506.6

In Table 1, the data for VMI model are obtained
from Mariscotti et al. (1969) and the experimental data
from the decay data website http://www.nndc.bnl.gov/
nudat2/. From the table we can see that the obtained
results have a good agreement with the experimental
data for most nuclei which is given in Table 1. Very few
cases are found to display an error of 5% which arises
because of the spread of the experimental points which
increases rapidly with /. The results of this work and
that of the VMI model are in most cases coincident. The
present model has the advantage of being simpler and

clearer in the form of the energy levels than the VMI
model.

Furthermore, in Table 2, the calculated values of
the effective moment of inertia J; for each nucleus

considered are listed. The current work results are
2

obtained using the formula J :;I_A where we have
used the values of 4 from Table 1. The results of VMI
are obtained from Table 2 (Mariscotti et al. 1969). Table
2 shows an excellent coincidence of the current results
and that calculated according to VMI.
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TABLE 2. The effective moment of inertia J calculated according to (20) in this work of even-even isotopes of Sm, Gd, Dy, Er;
Yb, Hf, W, and Os. (J,*" is current work, and J"*is VMI (Mariscotti et al. 1969))

Nuclei J JM Nuclei g JM
152 Sm 0.0233 0.0234 174 Yb 0.0391 0.0392
154 Sm 0.0363 0.0365 176 Yb 0.0364 0.0364
192 Gd 0.0239 0.0233 18 Hf 0.0238 0.0233
156 Gd 0.0335 0.0333 0 Hf 0.0294 0.0289
18 Gd 0.0376 0.0374 2 Hf 0.0313 0.0312
10 Gd 0.0397 0.0397 2 Hf 0.0327 0.0327
156 Dy 0.0211 0.0201 152 Hf 0.0338 0.0338
158 Dy 0.0303 0.0298 78 Hf 0.0320 0.0321
10 Dy 0.0343 0.0343 80 Hf 0.0321 0.0321
12 Dy 0.0370 0.0369 7w 0.0262 0.0260
164 Dy 0.0407 0.0406 176 W 0.0274 0.0269
10 Er 0.0235 0.0229 8 W 0.0281 0.0280
12 B 0.0292 0.0293 180 0.0288 0.0288
14 Ep 0.0326 0.0327 182 0.0299 0.0298
166 Ep 0.0370 0.0369 18 W 0.0269 0.0268
18 B 0.0375 0.0375 186 0.0244 0.0243
170 Ep 0.0381 0.0378 182 Os 0.0234 0.0228
194 YD 0.0240 0.0237 184 Os 0.0249 0.0247
166 YD 0.0291 0.0289 186 Os 0.0217 0.0215
18 Yh 0.0339 0.0342 188 Os 0.0192 0.0187
70Yb 0.0355 0.0354 190 Os 0.0157 0.0150
12 Yb 0.0380 0.0379

The results of the level energies of the ground model which takes into account the Coriolis mixture
state bands calculated using our formula (21) for  of low-lying state bands (Okhunov et al. 2015). This
L YBOe  HFTO0 L w747 isotopes were compared  comparison is shown in Figures 1 and 2 which includes
with VMI model (Mariscotti et al. 1969) mentioned before also experimental data obtained from the decay data
and with the results based on the phenomenological website http://www.nndc.bnl.gov/nucdat2/.
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This comparison showed the results of this
model are coincide with the results of VMI and
phenomenological models and also good agreement
with the experiment data. This coincidence means that the
effect of such factors on the nuclei under consideration
and for the energy levels less than 12 is small, that is the
energy levels for considered nuclei are less than the
energy required to split the nucleon pairs.

A graphical comparison of the calculated results
and experimental data of the energy ratios of the excited
states £,/ E, as a function of R = £, / E, in the range

2.90 to 3.33 for all 7 up to 20 is displayed in Figure
3. It is shown clearly that the coincidence between
experimental data and the predictions of the current work
for energy / < 14 has a good agreement, that is theoretical
curve passes nearly through all experimental points. For
I < 14 there are small and systematic deviation differ
from one nucleus to another and increases rapidly with
the increasing /. This deviation appears as a dispersion
of the experimental points around the theoretical curve.
Since this deviation differ according to the nucleus, it is
related to microscopic structure of the nucleus.

60 -
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FIGURE 3. The energy ratio £, / E, for different values of / as a function of £, / E,.
The solid curves are results of current work which are computed according to (21).

InFigure 4, the ratio £,/ E, is plotted against £,/ £,
for the current model, the experimentally obtained data
and three other models, namely the Gupta ((4) Gupta
1969), Bohr-Mottelson 2 — parameter models ((2) Bohr
& Mottelson 1953), and Sood ((5) Sood 1969).

While the prediction of our work compares nicely
with the experimental data points through all the
region under consideration, both Gupta and Bohr—
Mottelson 2 — parameter models diverge from the

experimental data except at the proximity around the

ﬂzN3,33 regime. This infers that Gupta and Bohr—
E

Mzottelson 2 — parameter model can hold only a few

nuclei which is confined in the range of 3.25< % <3.33.
2
Although the success of Sood is impressive, it has many

shortcomings nonetheless, for example a parameter N is
introduced to (5) without scientific justification, nothing
has been mentioned about the physical meaning or the
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FIGURE 4. A comparison of the current work with various theoretical results and with
experimental data. Red curve is from the Bohr-Mottelson 2 parameters formula, green curve
is VMI model, yellow curve is current work, brown curve is Sood model (Sood 1967), blue
curve is from the Gupta model (Gupta 1969) (based on 3 terms in the Gupta series), closed

circles represent the experimental results and the yellow one represents this work

identity of this parameter in spite of its importance in  Figure 5 shows the increasing behavior of the ratio £, /
fitting the experimental points. J, 1 J, for three different nuclei as a function of /.

FIGURE 5. The ration J] / J0 as a function in / for three different nuclei. The solid
curves are the results of current work and dashed curves are VMI model results.
The red curve is for '** Gd , the green curve is for ' Er, and the yellow curve is

for ' Os nuclei correspondingly
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The dashed curves are drawn on the basis of VMI
model where we have used (8) and (11) mentioned in
Mariscotti et al. (1969) together with the values of the
parameter o listed in Table 1 (Mariscotti et al. 1969).
The solid curves in Figure 5 represent the current work.
They are drawn using (20) in this work. Two features
should be considered in this figure; first, the VMI
model predicts that this ratio increases without limit as
I increases, i.e., at high /, it can be more than 2 while,
according to our results this ratio cannot exceed 2, i.e. J,
/J,= 2 is a horizontal asymptotic to our curves. Second,
VMI predicts increasing in J, / Jmuch rapidly than that
predicted according to our work.

CONCLUSION

The quantization of the stretching that spinning nucleus
exhibit led to a formula for the moment of inertia that
can be applied successfully for all nuclei in the atomic
mass range 150 <4 <190 with £,/ E, > 2.9 . While
the classical treatment of such stretching works well
only for nuclei in the region of strongly deformed nuclei
where E, / E, > 3.25. Unlike VMI where the moment of
inertia was considered as a general variable, our work has
a characteristic that the two parameters in our formula
are clear and their physical meanings are well known.

The full coincidence (/ < 14) of our formula which
is derived on the basis that the moment of inertia depends
only on the deformation parameter with the results
presented in references (Mariscotti et al. 1969; Okhunov
et al. 2015) which have taken into consideration, in
addition to deformation parameter, the pairing effect
and Coriolis interaction leads to a conclusion that the
contributions of the latter two parameters, i.e. pairing
effect and Coriolis interaction are so small and it can be
neglected in the case of / < 14. For / < 14 the effect of
these two factors, for a specific nucleus, increasing with
I and it differs from nucleus to another. For most nuclei
such deviation still small up to 7 = 16. It is appeared
obviously that the deviation from the theoretical curve
increases as we go from strongly deformed nuclei where
E,/ E,> 3.3 toward harmonic nuclei £, / E, ~ 3.24.
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