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ABSTRACT

Flooding is an environmental hazard that occurs almost everywhere around the world. Analysis of streamflow data can 
give us important climatic information for flooding events. Persistent homology (PH), a new analysis tool in topological 
data analysis (TDA) offers a new way to look at the information in a data set using qualitative approach. PH uses 
topology to extract topological features such as connected components and cycles that exist in the data set. In this paper, 
we present a new approach for streamflow data analysis for flood detection by using PH. An analysis was conducted 
at Sungai Kelantan, Malaysia. The result shows that PH gives different pattern of topological features for dry and wet 
periods. In particular, there are more persistent topological features in the form of connected components and cycles in 
the wet periods compared to the dry periods. We observed that the time series of the distance measure corresponding 
to the evolution of the components is consistent with the time series of the streamflow data. As a conclusion, this study 
suggests that the time series of the distance measure corresponding to the evolution of the components can be used for 
flood detection at Sungai Kelantan, Malaysia.
Keywords: Flood; persistent homology; streamflow; time delay embedding; topological data analysis

ABSTRAK

Banjir merupakan bencana alam yang berlaku hampir di seluruh dunia. Analisis data aliran sungai mampu memberikan 
maklumat iklim yang penting bagi kejadian banjir. Homologi gigih (HG), suatu alat analisis baharu dalam bidang analisis 
data bertopologi (ADB) menawarkan pendekatan baharu bagi mendapatkan maklumat dalam suatu set data menggunakan 
pendekatan kualitatif. HG menggunakan konsep topologi untuk mendapatkan maklumat berkaitan ciri topologi seperti 
komponen berkait, lubang dan lompong yang hadir dalam set data tersebut. Kajian ini membentangkan pendekatan 
baharu bagi analisis data aliran sungai bagi pengesanan banjir menggunakan kaedah HG. Suatu analisis telah dijalankan 
di Sungai Kelantan, Malaysia. Hasil kajian menunjukkan bahawa HG memberikan corak ciri-ciri topologi data aliran 
sungai yang berbeza bagi musim kering dan banjir. Secara khususnya, terdapat lebih banyak ciri topologi yang gigih dalam 
bentuk komponen berkait and lubang pada data musim banjir berbanding musim kering. Hasil kajian juga menunjukkan 
bahawa data siri masa ukuran jarak berkaitan perubahan komponen berkait adalah konsisten dengan data siri masa 
aliran sungai. Kesimpulannya, kajian ini mencadangkan data siri masa ukuran jarak berkaitan perubahan komponen 
berkait boleh digunakan sebagai ukuran bagi pengesanan banjir di Sungai Kelantan, Malaysia.
Kata kunci: Analisis data bertopologi; arus sungai; banjir; homologi gigih; pembenaman masa penangguhan

INTRODUCTION

Flooding is an environmental hazard that occurs almost 
everywhere around the world. Floods are generally 
defined as an overflow of water onto land that is usually 
dry. Flooding is one of the most common natural disaster 

that contributes to high number of deaths and loss of 
properties. Historical records of floods have shown that 
flooding has an imminent impact on people’s livelihoods, 
and it is unavoidable (Jonkman & Kelman 2005). Floods 
occur almost every year in tropical countries including 
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Malaysia. In Malaysia, the major type of flooding that 
seriously plagued human life and the environment is 
monsoon flooding (Chan & Parker 1996).

Flooding has been recorded in Malaysia since the 
1800s. The first recorded major flood event occurred 
in 1886 and had caused extensive damage in Kelantan, 
Malaysia (Chan & Parker 1996). Kelantan is one of the 
largest states in Malaysia and is affected by monsoon 
flooding every year (Awadalla & Noor 1991). Based on 
the report by Department of Drainage and Irrigation 
(DID 2010) on the flood events at Kelantan, starting the 
year 2000, the first severe flood that hit Kelantan was 
reported on December 2001 due to the unusual tropical 
cyclone Vamei. Afterwards, in the year of 2007 and 
2009 heavy rainfall again had triggered major floods in 
Kelantan. To date, the worst flood reported in Kelantan 
was at the end of 2014, commonly known as Kelantan 
Big Yellow Flood 2014 (Alias et al. 2016).

In general, understanding of observational and 
historical hydro-climatological data such as streamflow 
data is important because they provide climate indicators 
for environmental risks such as flooding (Chang 2007). 
In monsoon areas, which can be associated with annual 
flooding due to high intensity of rainfall, knowledge 
about changes in streamflow data is very important to 
understand flooding risk and to allow preparation for 
mitigation. The answer will determine future flood 
management policy and decisions.

In previous research, one of the most commonly 
used tools to analyze and forecast extreme hydrological 
events is through frequency analysis of hydrograph 
(graph of discharged over time) (Belmar et al. 2011; 
Hannah et al. 2000). This approach usually defined 
hydrograph by a limited number of features and does not 
use of the hydrograph’s complete information content. 
This may lead to negative impacts, particularly in terms 
of information loss and substantial simplification of 
the overall hydrological phenomenon. In 2012, new 
analysis tool known as functional data analysis (FDA) 
was proposed to the hydrological context to explore 
hydrograph (Chebana et al. 2012). FDA directly uses 
the whole time series of streamflow data which includes 
the information on shape, peak and timing. By taking 
into account all of the available information of the 
streamflow data, then, FDA treat the entire hydrograph 
as a functional observation (function or curve). Through 
looking at the whole hydrograph as a single observation, 
they suggest that it is more descriptive of the real 
phenomenon and makes better use of the whole time 
series. FDA had also been used to describe dry and 
wet periods of Malaysia through spatial and temporal 

variability of rainfall data (Suhaila & Yusop 2016). 
However, as FDA relies on smoothing step of curves, a 
little lack of accuracy on the function estimation may 
cause an increase in uncertainty of the model.

Some other previous research focused on conceptual 
hydrological models to get a better understanding of 
extreme events (Adnan 2010; Faizah 2015; Modaresi et 
al. 2018). In another direction, a chaotic approach has 
also been used to study hydrological process (Adenan 
& Noorani 2016; Fuwape et al. 2016). Note that the 
modelling approach maybe prone to some errors due 
to lack of information and this may lead to failure in 
understanding physical phenomenon. Also, even though 
the chaotic approach uses observational streamflow 
data, this approach is essentially quantitative in nature 
since they do not provide qualitative or topological 
information of the evolution of the data.
 In the world of data science, topological data analysis 
(TDA) has recently provided a new approach for data 
analysis (Carlsson 2009; Ghrist 2008). TDA is an area 
in which data analysis, algebraic topology, statistics, 
and other related fields converge. TDA’s main objective 
is to used geometry and topology ideas and findings to 
develop tools to study qualitative features or structures 
of data. To achieve this goal, accurate descriptions of 
qualitative features, tools to calculate them in practice 
and some assurance of the robustness of these features are 
required. One way to address all the issues is an approach 
in TDA called persistent homology (PH). Since this 
framework is based on algebraic topology, which offers 
a well-understood theoretical framework to explore 
qualitative features of data with a complex structure, it is 
therefore appealing for applications. It is also stable in 
terms of small perturbations in input data (Cohen-Steiner 
et al. 2007). This is an important key of PH since all the 
available data are used and all their features would be 
analyzed without necessarily increasing the uncertainty.
 The idea of PH is mainly the same as in the classical 
analysis, e.g., representing and visualizing the data, 
studying the variability and trends, comparing different 
data set, as well as modelling and predicting. PH has 
been shown to be a powerful tool for analyzing complex 
data sets. For an excellent review of the current status 
of PH including its background theory, application and 
software (Otter et al. 2017). PH techniques have been 
applied to diverse problems including spatial data 
clustering (Pereira & de Mello 2015), complex dynamical 
systems (Khushboo & Shalabh 2017), financial systems 
(Gidea & Katz 2018), air quality research (Zulkepli et 
al. 2020a, 2020b, 2019) and hydrological field (Musa 
et al. 2020, 2019). Of recent interest is the exploration 
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and application of TDA to time-delay embedding of time 
series for the modelling and classification of dynamical 
system and time varying events (Musa et al. 2020; Pereira 
& de Mello 2015; Zulkepli 2020a, 2020b). To the best of 
our knowledge, PH has not been applied to streamflow 
data. As PH provide new information on the datasets 
based on the qualitative information, we believe that this 
approach could be used as an alternative framework, or 
it can also be employed parallel complement to bring 
additional insight on streamflow data analysis.

Motivated by this new technique of data analysis and 
the research gap on the application of PH on streamflow 
data, in this paper we apply PH to streamflow data. 
The main objective of this paper was to attract attention 
to the topological properties of streamflow data for 
hydrological applications through the PH framework. 
Also, is to illustrates the potential of this new technique 
for flood detection. Therefore, the paper concludes 
with considerations of the potential of the method for 
streamflow data analysis applications using PH for flood 
detection. This flood detection is a preliminary step of 
streamflow data analysis using PH as it tells us that this 
new information on topological properties of streamflow 
data contain information of the flood events that later can 
be used for further analysis.

In particular, in this paper, we analyze the time 
series data of streamflow at the Guillemard Bridge 
station, Sungai Kelantan, Malaysia to investigate the 
relation between streamflow data and flooding events. 
Our data consists of 15 years from 2000 to 2014. Using 
the PH processing pipeline for time series, first we apply 
time-delay embedding to obtain point cloud data from 
the time series, followed by computing homology groups 
to determine persistent homology which will then be 
presented in topological summaries known as barcodes 
and persistence diagrams. By employing Wasserstein 
distance measure on the evolution of the topological 
features, we obtain a time series of the monthly changes 
associated with this evolution.

In the next section, we provide a concise and 
informal review of the PH methodology for time series 
processing. In subsequent section, we introduce our 
streamflow time series data. We presents our analysis 
and results in the next section and last section concludes 
the paper. For the computational part on this paper, we 
employ the R-package ‘TDA’ (Fasy et al. 2021).

DATA

Malaysian climate is governed by two regimes that 
are the southwest and northeast monsoons (Chan & 
Parker 1996). The southwest monsoon which usually 

commences in May and ends in August is responsible 
for the dry period for the whole country. The northeast 
monsoon which usually takes place between November 
to February is responsible for the wet period (heavy 
rains) in the east coast of the Peninsular Malaysia and 
frequently cause monsoon flooding. 

Kelantan is one of the largest states in Malaysia 
and is affected annually by monsoon flooding. Sungai 
Kelantan which is one of the main rivers in Kelantan 
is situated in northeast of the Peninsular Malaysia 
between the 40  40' and 60  12' North, and longitudes 1010  
20' and 1020  20' East. It is the longest river in Kelantan 
at 248 km and drains an area of 13,100 km2. The total 
area of Kelantan is 15,022 km2 and about 68.5% of the 
population lives in Sungai Kelantan Basin.

Due to the northeast monsoon which brings 
along heavy rains, Sungai Kelantan often overflows in 
the period, causing an almost annual recurrence of 
monsoon flooding (Awadalla & Noor 1991). Since the 
year 2000, based on Kelantan flood report (DID 2010), 
the first severe flood that hit Kelantan was reported on 
December 2001 which was due to the unusual tropical 
cyclone Vamei that hits South China Sea. Heavy rainfall 
in the year 2007 and 2009 had also triggered major 
floods at Kelantan. To date, the worst flood reported 
in Kelantan was at the end of 2014 and is commonly 
known as Kelantan Big Yellow Flood 2014 (Alias et al. 
2016). Based on these events, analysis for streamflow 
data of Sungai Kelantan is important as it can be a crucial 
climatic indicator for flood events in Kelantan. Therefore, 
in this research we focus our streamflow analysis at 
Sungai Kelantan.

Daily data of Sungai Kelantan flow at Guillemard 
Bridge station (measured in m3s-1) were obtained from the 
Earth Observation Centre, Institute of Climate Change, 
Universiti Kebangsaan Malaysia. The data involves in 
this analysis have 0.0549 missing data that were filled 
using the results from the computation of the linear 
interpolation method. Figure 1 shows the time series 
plot of the streamflow data for 15 years from year 2000 
until 2014. The highest magnitude of streamflow is at 
the end of year 2014, followed by 2009, 2007 and 2001. 
Some important statistical parameters of the time series 
are shown in Table 1.

RECONSTRUCTION OF PHASE SPACE

In this study, PH processing pipeline for time series 
are implemented. Since PH is a method that extract the 
topological features of a data set, which is not readily 
available in time series in its standard form, therefore 
we use Takens’ embedding theorem (Taken 1981) to 
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prepare the data. Takens’ embedding theorem states that 
time series can be used to reconstruct the phase space 

of the associated dynamical system, resulting in point 
cloud data. 

FIGURE 1.  Time series plot of daily mean streamflow data of Sungai Kelantan flow at 
Guillemard Bridge station from 01/01/2000 until 31/12/2014

TABLE 1. Statistics of streamflow time series of Sungai Kelantan flow at Guillemard Bridge station from 01/01/2000 until 
31/12/2014

Statistics Daily

Number of data 5478

Average 454.03

Max 18339.4

Min 49.9

Standard deviation 795.08

Skew 10.06

Kurtosis 154.21

Given a time series x1, x2,…, xN, Takens’ embedding 
theorem (Taken 1981) states that the constructed phase 
space consists of vectors xn (m,τ) = (xn, xn+τ, …, xn+(m-1)τ)  
where m is the embedding dimension and τ is the time 
delay which have to be chosen appropriately. The value 
of m and τ can be found using method of average mutual 
information and Cao method, respectively (Hamid & 
Noorani 2017; Zaim & Hamid 2017). However, in this 
research we fixed the value τ = 1 and m = 2 as our previous 
research on PH on water level data of Sungai Kelantan 

(Musa et al. 2020, 2019) using these values shows good 
analysis. As we obtained 2-dimensional point cloud data 
from the reconstruction of phase space, therefore, we 
can then extract the topological features associated with 
the constructed phase space and compute the homology 
groups to determine the persistent homology.

PERSISTENT HOMOLOGY

The core idea in PH is to analyze topological features 
in the data set. From the point cloud data obtained via 
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the reconstruction of phase space, we then construct 
simplicial complexes. The building blocks for a simplicial 

complex are k-simplex which are 0-simplex (vertex), 
1-simplex (edge), 2-simplex (triangle), illustrated in 
Figure 2.

FIGURE 2. Buildup of simplicial complex from simplices

To analyze how topological features appears and 
disappears, the idea of filtered simplicial complex is used. 
For example, consider the set of points in ℝ 

𝑘𝑘 > 0, 𝐸𝐸[|𝑧𝑧𝑡𝑡|2𝑘𝑘] < ∞ 

2 shown in 
Figure 3 (top). Let ε be a nonnegative real number which 
is interpreted as a distance parameter. By considering 
ε ball at each data point, we build an edge (1-simplex) 
between two points a and b if and only if the distance 
between them is less than ε. Similarly, we build a triangle 
(2-simplex) if and only if the pairwise distances between 
three points are each less than ε. This will produce filtered 
simplicial complexes as illustrated in Figure 3 (top). This 
construction of simplicial complexes is known as filtered 
Vietoris-Rips simplicial complexes or Rips complexes 
(Edelsbrunner & Harer 2010).

Based on the Rips complexes, one usually interested 
to understand their basic topological features such as 
the number of components, holes, and voids. Algebraic 
topology captures these topological features by counting 
the rank of each homology group of the simplicial 
complex. For each simplicial complex, X, algebraic 
topology can compute its k-dimensional homology Hk 
(X) for each natural number k∈{0,1,2,…}. The rank 
of the 0-dimensional homology group H0 (X) counts 
the number of connected components, the rank of the 
1-dimensional homology group H1 (X) count of number 
of holes, the rank of the 2-dimensional homology group 
H2 (X) count of number of voids and so on. These 
ranks of homology group also known as Betti number. 
Therefore, the pth Betti number counts the number of 
p-dimensional holes of the simplicial complex. As the 
value of distance parameter ε increases, simplices are 
added to the simplicial complex and therefore the Betti 
number also changes, complexes. Persistent homology 
then captures which topological features that are persist 
across the scale.

Precisely, Figure 3 (top) shows an example of 
filtered simplicial complexes for point cloud data 
consisting of four points. In the beginning, at filtration 
value ε0, we can see that there are 4 components, H0 (X) 
= 4. The components survive through filtration value 
ε1 and ε2. At filtration value ε3, edges or 1-simplexes 
are formed and connect all the points together into a 
single connected component and hence changes the 
Betti number of 0-dimensional holes to H0 (X) = 1. The 
component never varnishes as the filtration value is further 
increased. Also, at filtration value ε3, a 1-dimensional hole 
in the data is born as the edges form a rectangle, H1 (X) 
= 1. The 1-dimensional hole dies out at filtration value 
ε4 when the 2-simplex or triangle appears.

TOPOLOGICAL SUMMARIES

By constructing filtered simplicial complex, PH can 
show us the evolution of topological features that exist 
in the data set. Now we need tools to summarize every 
topological feature that have been captured by PH. These 
topological summaries will provide a concise description 
of the topological changes over all scales of the data. 
These topological summaries store information of the 
growth, birth and death of different topological features 
across dimensions.

The first topological summary that has been 
introduced is commonly known as a barcode. Barcode 
is a finite collection of intervals that represent the 
lifetime of topological features (connected components, 
holes). The left endpoint of the interval represents the 
filtration value εi at which the topological feature is 
born, and its right endpoint represents the filtration 
value εj, with j > i, at which the topological feature dies. 
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If the topological feature live forever, we represent its 
lifetime by the interval [εi, ε∞). Figure 3 (bottom) shows 
the corresponding barcode for point cloud data in Figure 
3 (top).

Based on Figure 3 (bottom), from the barcode we 
can see that for topological features of dimension 0 
(components), there are four components that are born 
at filtration value ε0 = 0 and three dies at filtration value 
ε3 = 3 (given by the first three black intervals [ε0, ε3)). 
These three components that vanishes merged with the 
fourth component which lives forever and is given by 
the interval [ε0, ε∞). For topological features of dimension 
1 (holes) the interval is colored as red in the barcode. 
The hole appears at filtration value  ε3 = 3 and dies at 
filtration value ε4 = 4.25 given by the red interval [ε3, 
ε4). In the barcode, the lifetime of a topological feature 
is the difference between death point and birth point of 
the topological feature. The longer the lifetime of the 
topological features the more persistence the topological 
features are.

An alternative way to visualize topological features 
captured by PH from the data set is through persistence 
diagram. Persistence diagram is a finite multiset of 
all birth-death pairs of topological features points in 
the extended ℝ2̅̅̅̅  plane, where ℝ̅ = ℝ ∪ {∞}. plane, where ℝ2̅̅̅̅  plane, where ℝ̅ = ℝ ∪ {∞}. ∪{∞}. The line 
in the barcode corresponding to the interval (εi, εj) is 

represented as the point (εi, εj) in the persistence diagram 
while the points on the diagonal line represent topological 
features that are born and dies at the same time (each 
of the points on the diagonal has infinite multiplicity). 
This diagonal line helps us see which topological 
features that are persistent. Point that lies close to the 
diagonal line indicates that the topological feature is not 
persistent, while points that stand far from the diagonal 
line corresponds to the persistent topological features. 
Figure 4 shows the point cloud data from Figure 3 with 
the respective barcode and persistence diagram.

DISTANCE MEASURES

As topological summaries such as barcodes and 
persistence diagrams only give us a visualization of the 
topological features that exist in the data that have been 
captured by PH, we need another mathematical tool to 
extract information from these topological summaries. 
Since barcodes and persistence diagrams contain the 
same information on the topological features that exist in 
the data, therefore for further analysis we will only look 
at persistence diagrams instead of barcodes.
 Given a set of persistence diagrams, it is only natural 
for us to compare them with respect to their topological 
similarity. This can be done by using a distance metric. 

FIGURE 3. Filtered simplicial complex (top) and the corresponding barcode (bottom)
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One of the common distance metrics is Wasserstein 
metric (Edelsbrunner & Harer 2010), which will be used 
in this study. The definition of  pth Wasserstein metric is 
as follows:

(1)

where X and Y are persistence diagrams and the 
summation is over all bijections ϕ: X→Y. Here ‖ ∙ ‖∞ is 
the sup norm. Since the diagonal set is by default part 
of all persistent diagrams, the pairing points between 
X and Y via ϕ can include pairing between off-diagonal 
points and diagonal points.

Note that different values of degree p yield different 
types of measurement of the distances between 
persistent diagrams. Using p = ∞, the corresponding 
distance only measures the distance between the most 
significant features in the diagrams. Using p ≥ 1, the 
corresponding distance Dp puts more weight on the 
significant features than on the least significant ones. One 
of the remarkable properties of persistence diagrams is 
their robustness (Cohen-Steiner et al. 2007), meaning 
that small changes in the input data produce persistence 
diagrams that are close to one another relative to the 
Wasserstein metric. In this study we use Wasserstein 
metric degree p = 1.

RESULTS AND DISCUSSION

In this section, we apply our PH processing pipeline 
to the daily streamflow data of Sungai Kelantan at 
Guillemard Bridge station and discuss the findings. The 

discussion of the findings is divided into two parts. The 
first part shows some examples of the differences in 
topological features for dry and wet period based on their 
reconstructed phase space, barcodes and persistence 
diagrams. The purpose of this part is to investigate the 
pattern of topological features for dry and wet periods. 
In the second part we employ a distance measure on 
the evolution of the topological features and obtain a 
time series of the monthly changes associated with this 
evolution.

For the first part of the results, here we show the 
results that we obtained by applying PH to selected 
streamflow data for dry and wet periods. Since the dry 
period usually commences in May and up to August 
(Chan & Parker 1996) therefore for the analysis here 
we select the data during dry period for year 2000, May 
until August 2000. Here we have chosen the year 2000 
to illustrate our findings for the dry periods because we 
observed that the pattern of topological features for dry 
periods are consistent for each year throughout the 15 
years. For the wet periods, we choose our data set based 
on the historical severe flood events, December 2001, 
December 2007 and November 2009, lastly December 
2014.

The reconstructed phase space, barcodes and 
persistence diagrams for the dry periods are shown in 
Figure 5 while for the wet periods are shown in Figure 
6. For the dry period, the points in the reconstructed 
phase space (left column in Figure 5) are densely packed 
together near the origin which indicate that the values 
of streamflow are low and in the same range. However, for 
the wet period (Figure 6), the points in the reconstructed 
phase space are spread out, which indicate there are low 

FIGURE 4. Point cloud data, barcode and persistence diagram

                                                𝐷𝐷𝑝𝑝(𝑋𝑋, 𝑌𝑌) = inf𝜙𝜙 [∑‖𝑞𝑞 − 𝜙𝜙(𝑞𝑞)‖∞
𝑝𝑝

𝑞𝑞∈𝑋𝑋
]

1
𝑝𝑝
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and high values of streamflow data with a wide range of 
values. For comparison purpose, we fixed the upper 
limit of the axes in the reconstructed phase spaces to 
be 10000. An exception was made for the wet period 
December 2014 (Kelantan Big Yellow Flood 2014) 
where we had to increase the limit up to 20000 to cover 
all the points.

The topological features that PH can extract 
from two-dimensional point cloud data are connected 
components (0-dimensional topological features) 
and holes (1-dimensional topological features). In a 

barcode, each black interval corresponds to a connected 
component while red interval corresponds to a hole. The 
left endpoint of the interval gives us the filtration value 
at which a topological feature is born while the right 
endpoint tells us when the topological feature dies.  In 
Figures 5 and 6, note that the left endpoint for all black 
intervals is 0, since all the points or components are born 
at filtration value 0. The longest interval which starts at 
the filtration value 0 and dies at the filtration value 5000 
(maximum filtration value) indicates that once the graph 
is fully connected into a single connected component, it 

FIGURE 5.  Persistent homology during dry period May to August 2000
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remains fully connected (hence the component never dies) 
as the filtration value is further increased.

Persistency of topological features can be measured 
by finding the difference between the death and birth 
of the topological features. The larger the difference 
between death and birth of the topological feature the 
more persistent the topological feature is. Therefore, 
based on the barcodes for dry periods in Figure 5 (middle 
row), we can see that there are only short black and 

red intervals that indicate short-lived (non-persistent) 
connected components and holes. For the wet periods in 
Figure 6 (middle row), some of the black intervals passed 
through filtration value 3000 which are significantly 
longer compared to the dry periods. This indicates that 
there are long-lived (persistent) connected components 
for the wet period data set. Barcodes for the wet periods 
also contain longer red intervals compared to the barcodes 
for the dry periods. This tells us that there exist long-
lived (persistent) holes in wet period data.

FIGURE 6.  Persistent homology for severe flood events December 2001, December 2007, 
November 2009 and December 2014
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An alternative way to summarize the information 
on topological features is through persistence diagrams. 
In a persistence diagram, each black dot corresponds 
to a connected component (0-dimensional topological 
features), while red dot corresponds to a hole 
(1-dimensional topological features). The x-coordinate 
of a dot gives us filtration value at which a topological 
feature is born while the y-coordinate tell us when 
the topological feature dies. In Figures 5 and 6 (right 
columns), the x-coordinate for all black dots is 0, since 
all the points or components are born at filtration value 
0. The black dot with the highest y-coordinate, that is 
5000 (maximum filtration value), corresponds to the 
fully connected graph.

The concentration of the black and red dots 
near the diagonal line of Figure 5 (right column) 
indicates that there are only short-lived (non-persistent) 
connected components and holes in the dry period 
data. Nevertheless, Figure 6 (right column) shows 
that there are black and red dots located far from the 
diagonal line. This indicates that there exists long-lived 
(persistent) connected components and holes in the wet 
period data. These observations can further be quantified 
by computing the time series of the Wasserstein 
distance of the persistence diagrams.

For the second part of the results, we employ a 
distance measure on the evolution of the topological 
features in the time-ordered persistence diagrams and 
obtain a time series of the monthly changes associated 
with this evolution. The Wasserstein metric provide 
a means for comparing the topological similarity 
between persistent diagrams. As we want to see the 
changes associated with the evolution of the topological 
features so here, we compare the topological similarity 
for each persistence diagram relative to an ‘origin’ 
persistence diagram. Here an origin persistence diagram 
corresponds to an empty persistence diagram which 
only consists of the diagonal line. Each comparison of 
persistence diagrams with the origin will result in one 
distance measure, so that we will have a time series 
of the distance measures providing an evolution of the 
monthly changes of the topological features. Our aim 
is to assess how various topological features of the 
data affect the growth of the distance measures of the 
persistence diagrams.

Overall, based on the time series of the Wasserstein 
metric for the connected components (0-dimensional 
topological features) in Figure 7 (top), we can see that 
there are 15 peaks in this time series which corresponds 

FIGURE 7.  Wasserstein metric for dimension 0 (top) and dimension 1 (bottom)
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to the 15 wet periods of the 15 years of the data set. 
The highest magnitude is during December 2014, 
followed by November 2009, December 2007, and 
December 2001. All these peaks in the time series of 
the distance measures correspond to the flood events in 
the original streamflow data, implying the consistency 
of the Wasserstein distance of the 0-dimensional 
topological features (connected components). Therefore, 
by calculating the distance measures of persistence 
diagrams which corresponds to the connected components 
(0-dimensional topological features) can give us 
information on detecting floods at Sungai Kelantan, 
Malaysia.

For the time series of the Wasserstein distance for 
holes (1-dimensional topological features) in Figure 7 
(bottom), there are wet periods which show no clear 
peaks. The highest magnitude is found during December 
2009, followed by December 2014, January 2009, and 
December 2001. This result shows that the time series of 
the distance measures corresponding to the evolution of 
the holes is not consistent with the original time series 
of the streamflow data. Thus, the distance measures 
corresponding to the holes (1-dimensional topological 
features) does not seems to give us significant 
information on the flooding events at Sungai Kelantan, 
Malaysia.

CONCLUSION

The primary aim of this paper is to introduce the PH 
framework to hydrological applications based on the 
topological properties of streamflow time series. This 
paper has presented an objective procedure for flood 
detection using PH as an aid to explore the streamflow 
time series. This study involved the application of TDA, 
specifically PH on detecting floods based on streamflow 
data. PH provides qualitative information of the data set 
or more precisely topological features such as connected 
components and cycles that exists in the data set. This 
paper presents a new approach for streamflow data 
analysis by using PH to the daily data of Sungai Kelantan 
streamflow from 2000 to 2014.

From the results, it is clear that PH can characterize 
the dry and wet periods through producing different 
patterns of topological features for both situations. 
In this regard, there are more persistent connected 
components and holes during the wet periods compared 
to the dry periods. By employing a distance measure on 
the evolution of the topological features we obtained a 
time series of the monthly changes associated with this 
evolution. We observed that the time series corresponding 

to the evolution of the components is consistent with the 
time series of the streamflow data. In conclusion, this 
study suggests that the time series of the distance measure 
corresponding to the evolution of the components can be 
used for flood detection at Sungai Kelantan, Malaysia.
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