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ABSTRACT

The fatigue failure of materials can be investigated by applying the Birnbaum-Saunders (BS) distribution to fatigue 
failure datasets. The coefficient of variation (CV) is an important descriptive statistic that is widely used to measure 
the dispersion of data. In addition, for two independent datasets following BS distributions, the ratio of their CVs 
can be used to compare their CVs, especially when the difference is small, and constructing confidence intervals for 
this scenario is of interest in this study. Hence, we propose new confidence intervals for the ratio of the CVs from two 
BS distributions by using the bootstrap confidence interval (BCI), the fiducial generalized confidence interval (FGCI), a 
Bayesian credible interval (BayCI), and the highest posterior density (HPD) interval approaches. The performances of the 
proposed confidence intervals were compared with the generalized confidence interval (GCI) in terms of their coverage 
probabilities and average lengths via Monte Carlo simulations. The results indicate that the HPD interval outperformed 
the others when the coverage probabilities and the average lengths were both considered together. The efficacies of the 
proposed methods and GCI are illustrated using real datasets of the fatigue life of 6061-T6 aluminum coupons.
Keywords: Bayesian; Birnbaum-Saunders distribution; coefficients of variation; confidence interval; fatigue failure 

ABSTRAK

Kegagalan lesu bahan boleh dikaji dengan menggunakan taburan Birnbaum-Saunders (BS) pada set data kegagalan 
lesu. Pekali variasi (CV) ialah statistik deskriptif penting yang digunakan secara meluas untuk mengukur serakan data. 
Di samping itu, untuk dua set data tak bersandar disebabkan taburan BS, nisbah CV mereka boleh digunakan untuk 
membandingkan CV mereka, terutamanya apabila perbezaannya kecil dan membina selang keyakinan untuk senario ini 
adalah penting dalam kajian ini. Oleh itu, kami mencadangkan selang keyakinan baharu untuk nisbah CV daripada dua 
taburan BS dengan menggunakan pendekatan selang keyakinan bootstrap (BCI), selang keyakinan umum fidusial 
(FGCI), selang boleh percaya Bayesian (BayCI) dan selang ketumpatan posterior tertinggi (HPD). Prestasi selang 
keyakinan yang dicadangkan telah dibandingkan dengan selang keyakinan umum (GCI) dari segi kebarangkalian liputan 
dan panjang purata melalui simulasi Monte Carlo. Keputusan menunjukkan bahawa selang HPD mengatasi yang lain 
apabila kebarangkalian liputan dan panjang purata kedua-duanya diambil kira secara bersama. Keberkesanan kaedah 
yang dicadangkan dan GCI diilustrasi menggunakan set data sebenar hayat lesu kupon aluminium 6061-T6.
Kata kunci: Bayesian; kegagalan lesu; pekali variasi; selang keyakinan; taburan Birnbaum-Saunders

INTRODUCTION

In engineering, the initiation and propagation of cracks 
in materials are caused by repeated stress cycles; the 

cracks can then grow to a critical size that eventually 
results in fatigue failure, which is one of the main reasons 
for mechanical failure. Therefore, satisfactory prior 
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knowledge of the fatigue life of materials is important 
for keeping crack formation within acceptable limits, to 
predict the effects of changes in operational conditions, 
and to identify the cause of fatigue failure and instigate 
efficient mitigating action. In practice, positively skewed 
unimodal statistical distributions such as gamma, Weibull, 
Birnbaum-Saunders (BS), and lognormal are wildly 
applied for analyzing the fatigue life of materials, with 
the BS distribution being the most suitable because it was 
originally derived from features of the fatigue process 
(Marshall & Olkin 2007). The BS distribution has two 
positive parameters: α (the shape parameter) and β  (the 
scale parameter) denoted as BS(α, β) developed under the 
assumption that the ultimate failure of an item occurs due 
to the development and growth of cracks in the material 
under cyclic loading. The BS distribution has attractive 
properties and a close relationship with the normal 
distribution (Birnbaum & Saunders 1969a). One of these 
is that a random variable following a BS distribution can 
be generated by transforming it to a standard normal 
distribution (Johnson et al. 1994). The BS distribution 
has been applied in many areas. For example, Birnbaum 
and Saunders (1996b) originally applied it to investigate 
the fatigue life of 6061-T6 aluminum coupons. Leiva et 
al. (2011) used the BS distribution with an unknown shift 
parameter to model wind energy flux. Recently, the BS 
distribution has been used for evaluating the effect of 
nanoparticles at different loading levels on the hardness 
of a commercially available polymeric bone cement.

Statistical inference with the parameters of the 
BS distribution has been published in many articles. 
Birnbaum and Saunders (1996b) originally investigated 
the maximum likelihood estimators (MLEs) of α and 
β. Subsequently, their asymptotic distributions were 
derived by Engelhardt et al. (1981). Ng et al. (2003) 
proposed modified moment estimators (MMEs) of α and 
β, and applied a bias-reduction method to mitigate the bias 
inherent in maximum likelihood and modified moment 
estimation. Sun (2009) formulated a confidence 
interval for scale parameter β. Wang (2012) considered 
generalized confidence intervals (GCI) for the shape 
parameter α, mean, quantiles, and reliability function of 
a BS distribution. Li and Xu (2016) presented fiducial 
inference for the parameters of BS distribution. 
Recently, Wang et al. (2016) proposed Bayesian 
estimators and confidence intervals for the parameters of 
a BS distribution using an efficient sampling algorithm 
via the generalized ratio-of-uniforms method.

One of the most useful descriptive statistical 
measures for describing the dispersion of data is the 
coefficient of variation (CV). It is defined as the standard 

deviation (σ) divided by the mean (µ):η σ µ= . 
For describing variation within data, the CV is more 
meaningful than the standard deviation because one 
can compare data from different distributions and/or 
units. For statistical inference using the CV for various 
distributions, please see Mahmoudvand and Hassani 
(2009), Niwitpong (2013), and Thangjai et al. (2021) 
works. When there are two independent populations, 
researchers may need to compare their coefficients of 
variation (CVs). Therefore, the problem of comparing two 
CVs is of interest. Several researchers have considered 
confidence intervals for the ratio of CVs for comparing 
two independent population CVs. For example, confidence 
intervals for the ratio of CVs of delta-lognormal 
distribution were proposed by Buntao and Niwitpong 
(2013) based on the generalized variable approach and 
the method of variance estimates recovery (MOVER). 
Subsequently, Sangnawakij et al. (2015) constructed 
confidence intervals for the ratio of CVs of gamma 
distributions using MOVER based on the Score and Wald 
intervals. Niwitpong and Wongkhao (2016) applied the 
GCI and MOVER to construct confidence intervals for the 
ratio of CVs of normal distributions with a known ratio of 
variances. Hasan and Krishnamoorthy (2017) developed 
confidence intervals for the ratio of CVs of lognormal 
distributions using the MOVER and fiducial approaches. 
Recently, Nam and Kwon (2017) improved confidence 
intervals for the ratio of CVs of lognormal distributions 
by using the Wald-type, Fieller-type, log, and MOVER 
methods. However, there were a few proposed inference 
procedures for the ratio of CVs of BS distributions. 
For example, Puggard et al. (2020) proposed the GCI 
approach for the ratio of CVs of BS distributions and 
compared its performance with bias-corrected percentile 
bootstrap (BCPB) and the bias-corrected and accelerated 
(BCa) confidence intervals; they recommended GCI 
since it produced coverage probabilities higher than or 
close to the nominal confidence level (those of BCPB 
and BCa were lower than it) and the shortest average 
lengths for all of the test scenarios. Therefore, the 
goal of the present study is to propose new confidence 
intervals for the ratio of CVs of two BS distributions 
using the bootstrap confidence interval (BCI) based on 
the constant-bias-correcting (CBC) parametric bootstrap 
method, the fiducial generalized confidence interval 
(FGCI), a Bayesian credible interval (BayCI) based on an 
efficient sampling algorithm via the generalized ratio-
of-uniforms method, and the highest posterior density 
(HPD) interval. We then compared their performances 
with GCI, as recommended in the previous study of 
Puggard et al. (2020).
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	 The rest of this study is organized as follows. The 
next section contains a summary of some of the properties 
of the BS distribution followed by an introduction to 
the methods for constructing confidence intervals for 
the ratio of CVs of BS distributions. Subsequent section 
presents the simulation study and results. This is followed 
by details of applying the proposed methods to datasets 
of fatigue lifetime of 6061-T6 aluminum coupons 
represented by Birnbaum and Saunders (1996b). Finally, 
conclusions are drawn in the last section.

METHODS

In this section, we review some of the background about 
the BS distribution and define GCI and the proposed 
methods: BCI, FCGI, BayCI, and the HPD interval for 
constructing the confidence interval for the ratio of the 
CVs from two BS distributions.

Suppose Xij = (Xi1, Xi2, ..., X1 2( , ,..., )X
iij i i inX X X=  ,) 1, 2i = , 1, 2,..., ij n=  

comprise a vector of random samples from BS 
distributions with shape parameters α i and scale 
parameters βi; i.e., Xij ~ BS(αi, βi), and let xij = (xi1, xi2, 
..., x1 2( , ,..., )X

iij i i inX X X=  ) be the observed values of Xij. The corresponding 
cumulative distribution function (CDF) and probability 
density function are given by  
		

(1)

and
		   

(2)

respectively, where xij > 0, αi > 0, βi > 0, and Φ(.) is the 
standard normal CDF.

Note that if Xij ~ BS(αi, βi), then
		       

(3)

where N(µ, σ2) refers to a normal distribution with mean 
µ and variance σ2. Thus,
	

	 (4)

follows a BS distribution with parameters (α i, β i). 
Therefore, the above transformation can be used to 
generate a sample from a BS distribution. Using this 
transformation, the expected value and variance can be 
respectively obtained as
		

(5)

and
		

(6)

In addition, if Xij ~ BS(αi, βi), then Xij
-1

 ~ BS(αi, βi
-1) 

(Birnbaum & Saunders 1969a). Subsequently, the 
expected value and variance of

 
Xij

-1 can be respectively 
expressed as
		

(7)

and

		  (8)

By equations (5) and (6), the CVs denoted by 

21( ) 1
2ij i iE X   = + 

 
,  (5) 

and 

 2 2
ij i i i

5Var(X )=(α β ) 1+ α
4

 
 
 

. (6) 

In addition, if ( , )ij i iX BS   , then 1 1( , )ij i iX BS  − −  (Birnbaum & Saunders 1969a). 

Subsequently, the expected value and variance of 1
ijX −  can be respectively expressed as 

 1 1 21( ) 1
2ij i iE X  − −  = + 

 
,  (7) 

and 

 1 2 2 25( ) 1
4ij i i iVar X   − −  = + 

 
. (8) 

By equations (5) and (6), the CVs denoted by i , 1,2i =  are obtained as 

 
2

2

51( ) 4
1( ) 1
2

i iij
i

ij i

Var X

E X

 




+
= =

+
. (9) 

Therefore, the ratio of CVs denoted by   becomes 
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, i = 1,2 
are obtained as
		

(9)

Therefore, the ratio of CVs denoted by ω becomes
		

(10)

The following methods are applied to construct 
confidence intervals for ω.

GENERALIZED CONFIDENCE INTERVALS (GCI)

When the conventional pivotal quantity is either non-
existent or difficult to obtain, one can use the generalized 
pivotal quantity (GPQ) to construct a confidence interval 
(Weerahandi 1993). For the BS distribution, the GPQs 
for βi and αi were proposed by Sun (2009) and Wang 
(2012), respectively. The GPQ for βi is obtained as
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where Rω(v) is the 100% percentile of Rω. GCI can be 
obtained by using the following algorithm.
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* can be calculated by using the 
BFGS quasi-Newton nonlinear optimization algorithm. 
Suppose that B bootstrap samples are available, then 
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where the subscript F indicates that the expectation is 
taken with respect to F. The bootstrap estimator of the 
bias is obtained by replacing true distribution F with  
F
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i  and i  (denoted by ˆi  and î ) by maximizing the log-likelihood function. 

  ˆ ˆ ˆ( , ) ( )F i i F i i F i ib E E     = − = − , (16) 

F  with ˆˆ ,i i
F  . Hence, the estimator of the bias can be defined as 

 
ˆ ˆˆ ˆ, ,

ˆ ˆ( , ) ( )
i i i i

F i i F i ib E
   

   = − . (17) 

Following this, 
ˆˆ ,

ˆ( )
i i

F iE
 

  is approximated by 

 *( ) *
,( )

1
ˆ ˆ1/ , 1,2,...,

B

i ki
k

B k B 

=
= = . (18) 

 



	 	 2269
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According to MacKinnon and Smith (1998), the corrected 
estimate for bootstrap sample (denoted as , 1, 2i iα = ) can 
be obtained as
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By Equation (10), the bootstrap estimator of ω becomes
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Thus, based on BCI, the 100(1-γ)% confidence interval 
for ω is
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where ˆ ( )ω ν  is the 100% percentile of ω̂ . BCI can be 
obtained by using the following algorithm.
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1. Compute MLE estimator 

 

1 3
2 2

2
1 1

1( , ) ( ) 2
2

i in n
iji i i

i i i i i
ij ij i ijj ji

x
l n log log

x x x
     

= =

 
      

= − + + − + −                 
 

  . (15) 
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FIDUCIAL GENERALIZED CONFIDENCE INTERVAL (FGCI)

The original idea of generalized fiducial inference can be 
traced back to Hannig (2009). Suppose that data Z and 
model parameter ϑ∈Ξ  have the following functional 
relationship:
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Since ( , ( , ))ij i iJ α βx  plays the same role as the 
prior distribution in Bayesian methodology (Li & Xu 
2016), it can be applied in a similar way to the Bayesian 
posterior distribution to obtain the fiducial estimates of 
αi and βi (denoted as *

iα  and *
iβ , respectively) from 

the generalized fiducial distribution. Hence, the arms 
function in package dlm of R software was applied to 
obtain *

iα  and *
iβ . According to Equation (10), the 

fiducial estimates of ω become
		

(29)

Based on FGCI, the 100(1-γ)% confidence interval for 
ω is
		

(30)

where ( )ω ν  is the 100% percentile of ω . FGCI can be 
obtained by using the following algorithm.

The algorithm for FGCI
1. Generate ijx ,  1, 2i = ,  1, 2,..., ij n=  from a BS 
distribution. 2. Generate K samples of αi and βi by 
using the arms function. 3. Burn-in P  samples and keep 
the remaining (K - P) samples. 4. Since the generated 
sample is dependent, one way to reduce autocorrelation is 
to thin the sample. Therefore, select sampling lag  L > 1, 
which retains the final number of samples as  K' = (K - P) 
/ L. 5. Compute the fiducial estimates of ω and obtain 

(1) (2) ( ), ,..., Kω ω ω ′   . 6. Compute ( / 2)ω γ  and (1 / 2)ω γ− .

BAYESIAN CREDIBLE INTERVAL (BAYCI)

Bayesian inference combines the observed data (through 
the likelihood function) with prior information about a 
parameter (through the prior distribution) and expresses 
the combination of these in terms of the posterior 
distribution of the parameter based on Bayes’ theorem 
(Bayes 1763). Since the independent Jeffreys’ prior 
of the BS distribution results in an improper posterior 
distribution and the continuous conjugate joint prior 
distribution does not exist, Wang et al. (2016) proposed 
an efficient sampling algorithm based on the generalized 
ratio-of-uniforms method to generate samples from the 
posterior distribution.

Let 1, 2( ,..., )
iij i i inx x x=x , 1, 2i = , 1, 2,..., ij n=  be a 

sample from ( , )i iBS α β , then the likelihood function is 
given by (26). Proper priors with known hyperparameters 

are considered to guarantee the propriety of the 
subsequent posteriors. It is assumed that iβ  ~ ,1 ,1( , )i i iIG a bβ �

and 2
,2 ,2( , )i i iIG a bα �~ 2

,2 ,2( , )i i iIG a bα � , where i = 1,2  and ( , )IG a b  refers to 
an inverse gamma (IG) distribution with parameters  a 
and b. Hence, if ( , )Z IG a b� ~ ( , )Z IG a b� , the pdf of the IG distribution 
is given by 
	

	 (31)

Subsequently, the joint posterior density of 2
iα  and iβ  

can be expressed as
		

(32)

Hence, it follows that the marginal posterior distribution 
of iβ  takes the form
	

(33)

By applying Equation (32), the conditional posterior 
distribution of 2

,2 ,2( , )i i iIG a bα � given iβ  and the data becomes
		

(34)

Markov Chain Monte Carlo methods can be used 
to generate samples from a posterior distribution. At the 
mth iteration, for m = 1, 2, ..., M, a new value, βi(m), is 
obtained by adopting the generalized ratio-of-uniforms 
method. Next, αi,(m) is generated from the IG distribution 
given in (34) depending on βi(m). Following this, a new 
value, αi,(m), is the square root of αi,(m). Note that we used 
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Subsequently, the joint posterior density of 2
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 

becomes 
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Subsequently, the joint posterior density of 2
i  and i  can be expressed as 
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 
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Subsequently, the joint posterior density of 2
i  and i  can be expressed as 
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 

becomes 
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Subsequently, the joint posterior density of 2
i  and i  can be expressed as 
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 

becomes 
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Subsequently, the joint posterior density of 2
i  and i  can be expressed as 
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 

becomes 
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Subsequently, the joint posterior density of 2
i  and i  can be expressed as 
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 

becomes 
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Subsequently, the joint posterior density of 2
i  and i  can be expressed as 
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Hence, it follows that the marginal posterior distribution of i  takes the form 
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By applying Equation (32), the conditional posterior distribution of 2
i  given i  and the data 

becomes 
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the R-package of LearnBayes to generate αi,(m). The 
generalized ratio-of-uniforms method is explained in the 
following subsection.

THE GENERALIZED RATIO-OF-UNIFORMS METHOD

The generalized ratio-of-uniforms method (Wakefield et 
al. 1991) was used to generate iβ , for i = 1, 2, with the 
marginal posterior distribution in (33). Variables ( , )i iu v  
are uniformly distributed in

	                                                              ,  (35)

where 0ir ≥  is a constant and ( )| ijπ ⋅ x  is from (33). 
Consequently, ir
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uniformly over ( )iC r  directly. Hence, the accept-reject 
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αi,(m) after a simple algebraic transformation. 6. Compute 
the estimator of ω by applying
		

(36)

7. Repeat Steps (3) to (6), M times. 8.  Calculate the 
100(1-γ)% credible interval by applying
		

(37)

where *ˆ ( )ω ν  is the 100% percentile of *ˆ ( )ω ν. 

THE HIGHEST POSTERIOR DENSITY (HPD) INTERVAL

The HPD interval has two important properties: (i) the 
densities of the points inside the interval are higher 
than those of the point outside the interval; and (ii) it 
provides the narrowest length of the interval containing 
100(1-γ)% of the posterior probability (Box & Tiao 
1992). Therefore, at steps (8) in the previous section, 
we calculated the HPD interval by applying the package 
HDInterval version 0.2.2 from R version 3.5.1 in the 
simulations and computations.

SIMULATION STUDIES

The performances of the five methods derived in the 
previous section were evaluated in terms of their 
coverage probabilities and average lengths through 
a Monte Carlo simulation study using R statistical 
software. The nominal confidence level was set at 1-γ = 
0.95. In comparison, a confidence interval becomes the 
best choice for a particular scenario when its coverage 
probability is above or close to 0.95 and its average length 
is the shortest. For the parameter configurations, the 
sample sizes (n1, n2) were set at (10,10), (20, 20), (30,30), 
(50,50) and (100,100) for equal sample sizes and (10, 20), 
(30, 20), (30,50) and (100,50) for unequal sample sizes. 
Since β is the scale parameter,  β1 = β2 = 1were fixed 
to avoid loss of generality, while the different values of 
shape parameters (α1, α2) were considered: (0.25, 0.25), 
(0.25, 0.50), (0.25, 1.00), (0.25, 2.00), (0.25, 3.00), (0.50, 
0.50), (0.50, 1.00), (0.50, 2.00), (0.50, 3.00), (1.00, 1.00), 
(1.00, 2.00), (1.00, 3.00), (2.00, 2.00), (2.00, 3.00) and 
(3.00, 3.00). For each combination of sample sizes (n1, 
n2) and the shape parameters (α1, α2), the simulation 
results were obtained after running 1,000 replications, 
with 5,000 pivotal quantities for GCI, B = 500 for BCI, 
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K = 3,000  for FGCI and M = 1,000  for BayCI and 
the HPD interval. Wang et al. (2016) showed that the 
Bayesian estimation of the BS distribution is insensitive 
to the choice of ri and the hyperparameters ai,1,bi,1, ai,2 
and bi,2, for i = 1, 2. They recommended that ri should be 
an integer that is ri > 1 and the hyperparameters should 
be set such that ai,1 = bi,1 = ai,2 = bi,2 < 10-3. Moreover, 

Congdon (2001) suggested that the hyperparameters 
should be set close to 0. Therefore, r1 = r2 = 2 and ai,1 = 
bi,1 = ai,2 = bi,2 < 10-4  were used for BayCI. The simulation 
results for equal and unequal sample sizes are reported in 
Tables 1 and 2, respectively. Figures 1 and 2 summarize 
the coverage probabilities and average lengths of the 
methods, respectively.

TABLE 1.  The coverage probabilities and average lengths of five methods for the nominal 95% confidence intervals for the ratio of 
the CVs of BS distributions with equal sample sizes ( 1 2n n= )

1 2( , )n n 1 2( , )α α
Coverage probability (Average length)

GCI BCI FGCI BayCI HPD
(10,10) (0.25,0.25) 0.962

(1.6366)

0.913

(1.3267)

0.946

(1.5187)

0.963

(1.6090)

0.952

(1.5066)
(0.25,0.50) 0.957

 (0.7993)

0.898

(0.6460)

0.937 

(0.7424)

0.952

(0.7863)

0.942

 (0.7333)
(0.25,1.00) 0.953 

(0.3958)

0.899

(0.3192)

0.942

(0.3694)

0.952

(0.3895)

0.953 

(0.3606)
(0.25,2.00) 0.938

(0.2073)

0.877

(0.1609)

0.924

(0.1904)

0.936

(0.2035)

0.945

(0.1880)
(0.25,3.00) 0.946

(0.1636)

0.890

(0.1227)

0.926

(0.1483)

0.938

(0.1611)

0.942

(0.1484)
(0.50,0.50) 0.951

(1.5860)

0.909

(1.2971)

0.941

(1.4869)

0.950

(1.5589)

0.946

(1.4605)
(0.50,1.00) 0.950

(0.7809)

0.892

(0.6377)

0.934

(0.7322)

0.944

(0.7667)

0.948

(0.7141)
(0.50,2.00) 0.944

(0.4186)

0.889

(0.3300)

0.933

(0.3884)

0.940

(0.4120)

0.946

(0.3827)
(0.50,3.00) 0.948

(0.3232)

0.883 

(0.2455)

0.939 

(0.2951)

0.942 

(0.3169)

0.943

(0.2952)
(1.00,1.00) 0.956

(1.3154)

0.908 

(1.1447)

0.941 

(1.2597)

0.949 

(1.2921)

0.949

(1.2311)
(1.00,2.00) 0.952

(0.6528)

0.898

(0.5518)

0.942 

(0.6204)

0.951 

(0.6380)

0.945

(0.6105)
(1.00,3.00) 0.936

(0.5003)

0.872

(0.4101)

0.925 

(0.4702)

0.934 

(0.4898)

0.930

(0.4703)
(2.00,2.00) 0.953

(0.7591)

0.882 

(0.7096)

0.936 

(0.7437)

0.949 

(0.7377)

0.947

(0.7188)
2.00,3.00) 0.956

(0.5205)

0.885 

(0.4788)

0.934 

(0.5063)

0.948 

(0.5041)

0.950

(0.4956)
(3.00,3.00) 0.959

(0.4640)

0.887 

(0.4550)

0.938 

(0.4600)

0.947 

(0.4494)

0.950

(0.4417)
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(20,20) (0.25,0.25) 0.951 

(1.0252)

0.932 

(0.9296)

0.946 

(0.9939)

0.949 

(0.0172)

0.953

 (0.9824)
(0.25,0.50) 0.947

(0.4959)

0.925 

(0.4504)

0.937 

(0.4810)

0.948 

(0.4926)

0.945

(0.4750)
(0.25,1.00) 0.914

(0.2380)

0.921 

(0.2153)

0.931 

(0.2306)

0.942 

(0.2365)

0.942

(0.2272)
(0.25,2.00) 0.957

(0.1245)

0.926 

(0.1105)

0.943 

(0.1197)

0.949 

(0.1239)

0.947 

(0.1186)
(0.25,3.00) 0.962

(0.0962)

0.923 

(0.0836)

0.948 

(0.0918)

0.959 

(0.0959)

0.948 

(0.0917)
(0.50,0.50) 0.942

(0.9951)

0.918 

(0.9073)

0.937 

(0.9637)

0.945 

(0.9867)

0.937

(0.9547)
(0.50,1.00) 0.954

(0.4821)

0.929 

(0.4377)

0.947 

(0.4673)

0.950 

(0.4770)

0.949

(0.4594)
(0.50,2.00) 0.948

(0.2489)

0.925 

(0.2213)

0.938 

(0.2400)

0.946 

(0.2472)

0.943

(0.2369)
(0.50,3.00) 0.965

(0.1959)

0.931 

(0.1707)

0.958 

(0.1873)

0.961 

(0.1945)

0.964

(0.1869)
(1.00,1.00) 0.948

(0.8383)

0.923 

(0.7823)

0.943 

(0.8201)

0.947 

(0.8303)

0.940

(0.8073)
(1.00,2.00) 0.956

(0.4193)

0.923

(0.3858)

0.949

(0.4075)

0.953 

(0.4149)

0.948

(0.4036)
(1.00,3.00) 0.946

(0.3244)

0.928 

(0.2925)

0.943 

(0.3142)

0.936 

(0.3205)

0.944

(0.3133)
(2.00,2.00) 0.964

(0.4836)

0.927 

(0.4748)

0.951 

(0.4757)

0.957 

(0.4736)

0.951

(0.4660)
2.00,3.00) 0.959

(0.3355)

0.922 

(0.3235)

0.947 

(0.3280)

0.953 

(0.3265)

0.953

(0.3230)
(3.00,3.00) 0.942

(0.2893)

0.913 

(0.2875)

0.933

(0.2831)

0.940 

(0.2785)

0.945

(0.2753)
(30,30) (0.25,0.25) 0.950

(0.7871)

0.937 

(0.7376)

0.946

(0.7700)

0.947 

(0.7838)

0.953

(0.7637)
(0.25,0.50) 0.958

(0.3878)

0.945 

(0.3638)

0.958 

(0.3793)

0.957 

(0.3867)

0.958

(0.3763)
(0.25,1.00) 0.940

(0.1875)

0.923 

(0.1753)

0.934 

(0.1839)

0.938 

(0.1870)

0.933

(0.1816)
(0.25,2.00) 0.953

(0.0963)

0.938 

(0.0889)

0.955 

(0.0940)

0.953 

(0.0959)

0.952 

(0.0929)
(0.25,3.00) 0.954

(0.0763)

0.939 

(0.0693)

0.951

(0.0740)

0.951 

(0.0759)

0.952

(0.0736)
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(0.50,0.50) 0.950

(0.7855)

0.932 

(0.7377)

0.949 

(0.7682)

0.950 

(0.7811)

0.951

(0.7616)
(0.50,1.00) 0.948

(0.3742)

0.937 

(0.3502)

0.945 

(0.3660)

0.947 

(0.3713)

0.947

(0.3612)
(0.50,2.00) 0.953 

(0.1960)

0.941 

(0.1814)

0.946 

(0.1909)

0.952 

(0.1952)

0.956

(0.1894)
(0.50,3.00) 0.947 

(0.1527)

0.929

(0.1388)

0.944

(0.1483)

0.942

(0.1523)

0.940 

(0.1478)
(1.00,1.00) 0.955

(0.6650)

0.933

(0.6358)

0.949

(0.6544)

0.955

(0.6606)

0.951

(0.6465)
(1.00,2.00) 0.945

(0.3357)

0.928

(0.3170)

0.942 

(0.3297)

0.941

(0.3328)

0.941

(0.3262)
(1.00,3.00) 0.944

(0.2585)

0.929

(0.2399)

0.943

(0.2524)

0.947

(0.2565)

0.942

(0.2516)
(2.00,2.00) 0.958

(0.3830)

0.927

(0.3871)

0.942

(0.3775)

0.945 

(0.3769)

0.947

(0.3718)
2.00,3.00) 0.960

(0.2644)

0.939

(0.2581)

0.950

(0.2595)

0.959

(0.2592)

0.960

(0.2568)
(3.00,3.00) 0.959

(0.2236)

0.941

(0.2233)

0.946

(0.2189)

0.953

(0.2173)

0.952

(0.2152)
(50,50) (0.25,0.25) 0.952

(0.5895)

0.948 

(0.5669)

0.948 

(0.5809)

0.952

(0.5864)

0.949

(0.5760)
(0.25,0.50) 0.956

(0.2917)

0.949

(0.2791)

0.952

(0.2883)

0.956

(0.2901)

0.955

(0.2849)
(0.25,1.00) 0.957

(0.1402)

0.944

(0.1341)

0.953

(0.1382)

0.957

(0.1394)

0.954

(0.1366)
(0.25,2.00) 0.943

(0.0725)

0.941

(0.0690)

0.942 

(0.0713)

0.942

(0.0723)

0.947

(0.0708)
(0.25,3.00) 0.945

(0.0568)

0.926 

(0.0534)

0.943 

(0.0556)

0.946

(0.0556)

0.942 

(0.0553)
(0.50,0.50) 0.934

(0.5880)

0.923

(0.5648)

0.924

(0.5792)

0.935

(0.5862)

0.932

(0.5750)
(0.50,1.00) 0.946

(0.2831)

0.935

(0.2721)

0.945

(0.2793)

0.947

(0.2818)

0.944

(0.2761)
(0.50,2.00) 0.952

(0.1452)

0.943

(0.1378)

0.951

(0.1427)

0.951 

(0.1448)

0.952 

(0.1416)
(0.50,3.00) 0.948

(0.1151)

0.928 

(0.1081)

0.939 

(0.1127)

0.939 

(0.1146)

0.939 

(0.1122)
(1.00,1.00) 0.951 

(0.5053)

0.934 

(0.4903)

0.944 

(0.4995)

0.951 

(0.5019)

0.946 

(0.4943)
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(1.00,2.00) 0.952

(0.2526)

0.944

(0.2439)

0.953

(0.2499)

0.954

(0.2513)

0.950

(0.2474)
(1.00,3.00) 0.951

(0.1958)

0.930 

(0.1869)

0.943 

(0.1927)

0.953 

(0.1946)

0.948 

(0.1917)
(2.00,2.00) 0.941 

(0.2885)

0.929 

(0.2866)

0.936 

(0.2859)

0.943 

(0.2860)

0.938 

(0.2829)
2.00,3.00) 0.959 

(0.1998)

0.948 

(0.1959)

0.954 

(0.1976)

0.953 

(0.1965)

0.955 

(0.1947)
(3.00,3.00) 0.949 

(0.1662)

0.940 

(0.1654)

0.943 

(0.1638)

0.940 

(0.1629)

0.941 

(0.1614)
(100,100) (0.25,0.25) 0.950

(0.4062)

0.936

(0.3954)

0.947

(0.4026)

0.950

(0.4045)

0.944

(0.3991)
(0.25,0.50) 0.945

(0.2007)

0.941

(0.1955)

0.947

(0.1985)

0.945

(0.1997)

0.939

(0.1969)

(0.25,1.00) 0.936

(0.0953)

0.938

(0.0931)

0.941

(0.0946)

0.940

(0.0950)

0.937

(0.0936)
(0.25,2.00) 0.952

(0.0494)

0.951

(0.0479)

0.952

(0.0488)

0.951

(0.0492)

0.952

(0.0485)
(0.25,3.00) 0.954

(0.0391)

0.936

(0.0378)

0.949

(0.0387)

0.951

(0.0390)

0.946

(0.0384)
(0.50,0.50) 0.943

(0.4059)

0.933

(0.3971)

0.942

(0.4028)

0.940

(0.4051)

0.936

(0.3998)
(0.50,1.00) 0.960

(0.1955)

0.948

(0.1910)

0.957

(0.1936)

0.956

(0.1948)

0.953

(0.1920)
(0.50,2.00) 0.950

(0.0999)

0.937

(0.0966)

0.948

(0.0991)

0.948

(0.0995)

0.948

(0.0980)
(0.50,3.00) 0.932

(0.0796)

0.922

(0.0770)

0.929

(0.0787)

0.928

(0.0794)

0.930

(0.0782)
(1.00,1.00) 0.952

(0.3541)

0.946

(0.3479)

0.951

(0.3518)

0.954

(0.3530)

0.944

(0.3487)
(1.00,2.00) 0.947

(0.1753)

0.945

(0.1713)

0.948

(0.1738)

0.944

(0.1745)

0.945

(0.1724)
(1.00,3.00) 0.938

(0.1368)

0.935

(0.1331)

0.937

(0.1353)

0.932

(0.1361)

0.926

(0.1345)
(2.00,2.00) 0.952

(0.1992)

0.942

(0.1976)

0.949

(0.1981)

0.957

(0.1978)

0.950

(0.1959)
2.00,3.00) 0.950

(0.1382)

0.942

(0.1364)

0.948

(0.1374)

0.947

(0.1373)

0.945

(0.1361)
(3.00,3.00) 0.950

(0.1142)

0.937

(0.1136)

0.941

(0.1130)

0.949

(0.1128)

0.948

(0.1118)
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TABLE 2.  The coverage probabilities and average lengths of five methods for the nominal 95% confidence intervals for the 
ratio of the CVs of BS distributions with unequal sample sizes ( 1 2n n≠ )

1 2( , )n n 1 2( , )α α
Coverage probability (Average length)

GCI BCI FGCI BayCI HPD
(10,20) (0.25,0.25) 0.959

(1.3624)

0.908

(1.0617)

0.947

(1.2382)

0.961

(1.3345)

0.952

(1.2419)
(0.25,0.50) 0.948

 (0.6874)

0.894

(0.5353)

0.928 

(0.6248)

0.943

(0.6719)

0.940

 (0.6256)
(0.25,1.00) 0.957 

(0.3389)

0.908

(0.2618)

0.945

(0.3074)

0.947

(0.3318)

0.951 

(0.3072)
(0.25,2.00) 0.939

(0.1911)

0.903

(0.1419)

0.935

(0.1708)

0.933

(0.1874)

0.945

(0.1729)
(0.25,3.00) 0.939

(0.1529)

0.879

(0.1107)

0.923

(0.1357)

0.931

(0.1498)

0.941

(0.1380)
(0.50,0.50) 0.946

(1.3652)

0.895

(1.0797)

0.940

(1.2520)

0.945

(1.3403)

0.945

(1.2565)
(0.50,1.00) 0.948

(0.6698)

0.902

(0.5269)

0.933

(0.6112)

0.942

(0.6551)

0.944

(0.6123)
(0.50,2.00) 0.946

(0.3695)

0.897

(0.2784)

0.939

(0.3344)

0.943

(0.3628)

0.952

(0.3386)
(0.50,3.00) 0.960

(0.3031)

0.906 

(0.2234)

0.951

(0.2720)

0.948 

(0.2970)

0.956

(0.2770)
(1.00,1.00) 0.945

(1.0766)

0.892 

(0.9136)

0.935 

(1.0116)

0.935 

(1.0525)

0.936

(1.0111)
(1.00,2.00) 0.943

(0.5765)

0.878

(0.4707)

0.932 

(0.5359)

0.942 

(0.5631)

0.925

(0.5414)
(1.00,3.00) 0.933

(0.4640)

0.876

(0.3685)

0.929 

(0.4295)

0.929 

(0.4524)

0.927

(0.4367)
(2.00,2.00) 0.958

(0.5996)

0.884 

(0.5506)

0.930 

(0.5764)

0.954 

(0.5801)

0.938

(0.5710)
2.00,3.00) 0.958

(0.4522)

0.882 

(0.4013)

0.944 

(0.4321)

0.953 

(0.4359)

0.938

(0.4307)
(3.00,3.00) 0.956

(0.3637)

0.899 

(0.3507)

0.938 

(0.3548)

0.945 

(0.3500)

0.950

(0.3465)
(30,20) (0.25,0.25) 0.947 

(0.8943)

0.931 

(0.8431)

0.943 

(0.8775)

0.945 

(0.8900)

0.943

 (0.8683)
(0.25,0.50) 0.960

(0.4422)

0.941 

(0.4166)

0.959 

(0.4338)

0.960 

(0.4396)

0.959

(0.4282)
(0.25,1.00) 0.947

(0.2099)

0.920 

(0.1986)

0.935 

(0.2069)

0.944 

(0.2088)

0.942

(0.2029)
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(0.25,2.00) 0.948

(0.1026)

0.930 

(0.0958)

0.943 

(0.1004)

0.948 

(0.1021)

0.947 

(0.0989)
(0.25,3.00) 0.952

(0.0789)

0.936 

(0.0725)

0.944 

(0.0768)

0.949 

(0.0787)

0.945 

(0.0761)
(0.50,0.50) 0.943

(0.8914)

0.910 

(0.8405)

0.935

(0.8763)

0.943 

(0.8879)

0.944

(0.8655)
(0.50,1.00) 0.946

(0.4258)

0.921 

(0.4043)

0.940 

(0.4194)

0.946 

(0.4241)

0.949

(0.4119)
(0.50,2.00) 0.951

(0.2085)

0.934 

(0.1948)

0.949 

(0.2044)

0.950 

(0.2072)

0.951

(0.2009)
(0.50,3.00) 0.954

(0.1601)

0.939 

(0.1471)

0.949 

(0.1559)

0.948 

(0.1592)

0.950

(0.1544)
(1.00,1.00) 0.941

(0.7640)

0.911 

(0.7344)

0.928 

(0.7544)

0.939 

(0.7566)

0.932

(0.7401)
(1.00,2.00) 0.945

(0.3620)

0.927

(0.3466)

0.944

(0.3573)

0.949 

(0.3594)

0.940

(0.3509)
(1.00,3.00) 0.958

(0.2698)

0.932 

(0.2539)

0.943 

(0.2643)

0.942 

(0.2674)

0.940

(0.2625)
(2.00,2.00) 0.950

(0.4429)

0.917 

(0.4390)

0.939 

(0.4391)

0.946 

(0.4352)

0.944

(0.4284)
2.00,3.00) 0.965

(0.2882)

0.937 

(0.2834)

0.955 

(0.2839)

0.958 

(0.2822)

0.959

(0.2789)
(3.00,3.00) 0.951

(0.2604)

0.916 

(0.2614)

0.942

(0.2562)

0.944 

(0.2526)

0.947

(0.2491)
(30,50) (0.25,0.25) 0.950

(0.6905)

0.932 

(0.6401)

0.941 

(0.6726)

0.941 

(0.6870)

0.940

(0.6682)
(0.25,0.50) 0.949

(0.3457)

0.934 

(0.3202)

0.944 

(0.3372)

0.948 

(0.3437)

0.946

(0.3343)
(0.25,1.00) 0.950

(0.1660)

0.936 

(0.1534)

0.946 

(0.1616)

0.951 

(0.1652)

0.945

(0.1605)
(0.25,2.00) 0.951

(0.0917)

0.938 

(0.0835)

0.949 

(0.0890)

0.945 

(0.0913)

0.954 

(0.0885)
(0.25,3.00) 0.954

(0.0743)

0.933 

(0.0669)

0.949 

(0.0718)

0.953 

(0.0741)

0.947

(0.0716)
(0.50,0.50) 0.939

(0.6989)

0.924 

(0.6470)

0.933 

(0.6822)

0.939 

(0.6945)

0.930

(0.6769)
(0.50,1.00) 0.943

(0.3346)

0.933 

(0.3096)

0.938 

(0.3257)

0.942 

(0.3335)

0.937

(0.3242)
(0.50,2.00) 0.947 

(0.1839)

0.937 

(0.1679)

0.947 

(0.1784)

0.945 

(0.1830)

0.949

(0.1778)
(0.50,3.00) 0.956 

(0.1496)

0.927

(0.1355)

0.949

(0.1450)

0.953

(0.1488)

0.946 

(0.1445)
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(1.00,1.00) 0.946

(0.5930)

0.926

(0.5615)

0.944

(0.5817)

0.946

(0.5891)

0.943

(0.5774)
(1.00,2.00) 0.949

(0.3128)

0.920

(0.2917)

0.946 

(0.3052)

0.948

(0.3100)

0.941

(0.3044)
(1.00,3.00) 0.951

(0.2516)

0.933

(0.2318)

0.948

(0.2444)

0.955

(0.2493)

0.945

(0.2446)
(2.00,2.00) 0.944

(0.3349)

0.919

(0.3261)

0.934

(0.3290)

0.946 

(0.3297)

0.937

(0.3262)
2.00,3.00) 0.950

(0.2466)

0.931

(0.2372)

0.945

(0.2416)

0.946

(0.2419)

0.942

(0.2398)
(3.00,3.00) 0.958

(0.1955)

0.940

(0.1927)

0.948

(0.1914)

0.948

(0.1900)

0.953

(0.1884)
(100,50) (0.25,0.25) 0.945

(0.4983)

0.933 

(0.4873)

0.936 

(0.4937)

0.941

(0.4958)

0.940

(0.4898)
(0.25,0.50) 0.934

(0.2460)

0.932

(0.2405)

0.935

(0.2446)

0.936

(0.2450)

0.929

(0.2418)
(0.25,1.00) 0.949

(0.1173)

0.934

(0.1152)

0.948

(0.1168)

0.949

(0.1168)

0.944

(0.1151)
(0.25,2.00) 0.950

(0.0548)

0.935

(0.0537)

0.947 

(0.0544)

0.951

(0.0546)

0.947

(0.0537)
(0.25,3.00) 0.951

(0.0410)

0.945 

(0.0399)

0.947 

(0.0407)

0.951

(0.0409)

0.943 

(0.0403)
(0.50,0.50) 0.944

(0.4999)

0.929

(0.4909)

0.935

(0.4972)

0.941

(0.4987)

0.943

(0.4923)
(0.50,1.00) 0.948

(0.2355)

0.931

(0.2311)

0.944

(0.2339)

0.944

(0.2344)

0.939

(0.2311)
(0.50,2.00) 0.939

(0.1120)

0.928

(0.1098)

0.935

(0.1113)

0.939 

(0.1113)

0.938 

(0.1097)
(0.50,3.00) 0.956

(0.0826)

0.944 

(0.0802)

0.951 

(0.0819)

0.955 

(0.0823)

0.951 

(0.0811)
(1.00,1.00) 0.953 

(0.4358)

0.943 

(0.4295)

0.949 

(0.4336)

0.953 

(0.4335)

0.952 

(0.4278)
(1.00,2.00) 0.954

(0.1988)

0.945

(0.1959)

0.949

(0.1979)

0.955

(0.1978)

0.952

(0.1951)
(1.00,3.00) 0.940

(0.1444)

0.931 

(0.1410)

0.937 

(0.1433)

0.938 

(0.1434)

0.933 

(0.1417)
(2.00,2.00) 0.949 

(0.2484)

0.940 

(0.2478)

0.949 

(0.2472)

0.948 

(0.2457)

0.945 

(0.2427)
2.00,3.00) 0.957 

(0.1573)

0.949 

(0.1566)

0.951 

(0.1562)

0.953 

(0.1557)

0.947 

(0.1542)
(3.00,3.00) 0.956 

(0.1431)

0.939 

(0.1433)

0.952 

(0.1419)

0.953 

(0.1409)

0.950 

(0.1394)
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The results for all scenarios of equal or unequal 
sample sizes were similar, and thus we can draw the 
following conclusions. When the sample sizes (n1, n2 )  
were small (e.g., (10,10)), BCI performed poorly since 
its coverage probabilities were much lower than the 
nominal level, and although its coverage probabilities 
were better when sample sizes (n1, n2 ) were increased, 
they were still lower than the nominal level. However, BCI 
obtained the shortest average lengths for all cases, albeit 
not by much. For all scenarios, the coverage probabilities 

of GCI, FGCI, BayCI, and the HPD interval were above 
or close to the nominal level and each other. However, 
the HPD interval outperformed the others as its average 
lengths were the shortest in most cases (except when (n1, 
n2 )= (10,20)) whereas those of GCI were the largest. In 
addition, when sample sizes (n1, n2 ) were increased, the 
average lengths of the five methods tended to decrease, 
and there was very little difference between them when 
sample sizes (n1, n2 ) were greater than 30.

FIGURE 1. Coverage probabilities of the methods: (A) equal sample sizes and 
(B) unequal sample sizes 

FIGURE 2.  Average lengths of the methods: (A) equal sample sizes and (B) 
unequal sample sizes

 

 

AN EMPIRICAL APPLICATION

The proposed methods and GCI were applied to real 
fatigue life datasets taken from Birnbaum and Saunders 
(1996b) for 6061-T6 aluminum coupons cut parallel 
to the direction of rolling and oscillated at 18 cycles 
per second. The corresponding maximum stresses per 
cycle for groups 1 and 2 were 31,000 and 21,000 psi, 

respectively. Table 3 provides the descriptive statistics of 
the data, including the central tendency statistic, standard 
deviation, and CV. Hence, the ratio of the CVs was 
0.5986. For BayCI, we chose r = 2 and hyperparameter 
values ai,1 = bi,1 = ai,2 = bi,2 < 10-3 for both datasets. The 
95% confidence intervals for the ratio of the CVs based 
on GCI, BCI, FGCI, BayCI, and the HPD interval are 
summarized in Table 4. 

TABLE 3. Summary statistics for the fatigue lifetime data of the 6061-T6 aluminum coupons

Sample n Min Median Mean Max. SD CV
Group 1 101 70 133 133.7327 212 22.3557 0.1672
Group 2 101 370 1416 1400.911 2440 391.3241 0.2793
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The results indicate that the average lengths for 
BCI were once again the shortest, followed by the 
HPD interval. Recall that in the simulation study, the 
coverage probabilities of BCI were lower than 0.95 
whereas those of GCI, FGCI, BayCI, and the HPD interval 
were higher than or close to 0.95. Therefore, when we 
consider the coverage probability and the average length 

simultaneously, the HPD interval can be recommended 
for constructing confidence intervals for the ratio of CVs 
of the BS distributions of these two datasets. From Table 
4, it can be seen that the lower and upper confidence levels 
do not include 1, and so the CVs of fatigue lifetime of 
6061-T6 aluminum coupons with maximum stresses per 
cycle 31,000 and 21,000 psi are different.

TABLE 4. The 95% confidence intervals and lengths using the five methods to construct confidence intervals for the ratio of the 
CVs of fatigue lifetime data of 6061-T6 aluminum coupons

Methods Interval Length

GCI 0.4448 - 0.6629 0.2181

BCI 0.4522 - 0.6590 0.2069

FGCI 0.4497 - 0.6661 0.2164

BayCI 0.4479 - 0.6624 0.2146

HPD 0.4428 - 0.6503 0.2075

CONCLUSIONS

In this study, BCI, FGCI, BayCI, and the HPD interval 
were used to construct confidence intervals for the ratio 
of the CVs of BS distributions. The performances of the 
proposed methods were compared with GCI through 
Monte Carlo simulations. In all of the test scenarios, 
the coverage probabilities of GCI, FGCI, BayCI, and 
the HPD interval were close to or above the nominal 
level whereas those of BCI were below, even though it 
obtained the shortest average lengths with HPD as the 
second-best. Therefore, when we consider the coverage 
probability and average length simultaneously, the HPD 
interval is recommended since its coverage probabilities 
were higher than or close to the nominal level in almost 
all cases and its average lengths were second-best. In 
addition, when sample sizes (n1, n2 ) were increased, the 
average lengths of GCI, FGCI, and BayCI were similar 
to the HPD interval, and so these three methods can be 
considered as alternatives under these circumstances.
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