
Sains Malaysiana 51(8)(2022): 2645-2654
http://doi.org/10.17576/jsm-2022-5108-23

Performance of Levenberg-Marquardt Neural Network Algorithm in Air Quality
Forecasting

(Prestasi Algoritma Rangkaian Neuron Levenberg-Marquardt dalam Ramalan Kualiti Udara)

CHO KAR MUN1, NUR HAIZUM ABD RAHMAN1,* & ISZUANIE SYAFIDZA CHE ILIAS2

1Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia

2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia

Received: 2 July 2021/Accepted: 30 January 2022

ABSTRACT

Levenberg-Marquardt algorithm and conjugate gradient method are frequently used for optimization in multi-layer
perceptron (MLP). However, both algorithms have mixed conclusions in optimizing MLP in time series forecasting. This
study uses autoregressive integrated moving average (ARIMA) and MLP with both Levenberg-Marquardt algorithm
and conjugate gradient method. These methods were used to predict the Air Pollutant Index (API) in Malaysia’s central
region where represent urban and residential areas. The performances were discussed and compared using the mean
square error (MSE) and mean absolute percentage error (MAPE). The result shows that MLP models have outperformed
ARIMA models where MLP with Levenberg-Marquardt algorithm outperformed the conjugate gradient method.
Keywords: Algorithm; ARIMA; artificial neural network; forecasting; multi-layer perceptron

ABSTRAK

Algoritma Levenberg-Marquardt dan kaedah kecerunan konjugat sering digunakan untuk pengoptimuman dalam
perceptron pelbagai lapisan (MLP). Walau bagaimanapun, kedua-dua algoritma mempunyai kesimpulan yang berbeza
dalam mengoptimumkan ramalan siri masa menggunakan MLP. Kajian ini menggunakan purata bergerak bersepadu
autoregresif (ARIMA) dan MLP dengan kedua-dua algoritma Levenberg-Marquardt dan kaedah kecerunan konjugat.
Kaedah ini digunakan untuk meramalkan Indeks Pencemaran Udara (IPU) di wilayah tengah Malaysia yang mewakili
kawasan bandar dan kediaman. Prestasi dibincang dan dibandingkan dengan menggunakan ralat kuasa dua min (MSE)
dan ralat peratusan mutlak (MAPE). Hasilnya menunjukkan bahawa model MLP telah mengatasi model ARIMA dengan
MLP dan algoritma Levenberg-Marquardt mengatasi kaedah kecerunan konjugat.
Kata kunci: Algoritma; ARIMA; perceptron pelbagai lapisan; ramalan; rangkaian neuron tiruan

INTRODUCTION

Artificial Neural Networks (ANN) can be defined as
artificial adaptive systems modelled after the human
brain’s cerebral cortex’s functioning processes. ANN
learns the behaviour from past data, generates a learnt
pattern (synaptic weight), and solves the problem using
the taught pattern (Saratha et al. 2020). ANN is formed
from numerous processing elements known as nodes or

neurons connected to coefficients or weights (De Cosmi et
al. 2020). In each processing element, the arriving signals’
inputs are multiplied by the connection weights and
summed. It is then passed through a transfer or activation
function which is the weighed sum of the neuron’s inputs.
The transfer function that is often used is the sigmoid
function because the sigmoid function enables a smooth
transition between input and output (Chen et al. 2006).
Finally, an output is produced.

2646

In ANN, the network architectures are determined by
the type of connections between the neurons, and there
are two main categories: feed forward neural network and
recurrent neural network (Zhu et al. 2020). A feed forward
neural network does not receive feedback from the
outputs of the neurons to the input neurons. It is a static
system as only a set of output values are generated, and
it does not have memory since the response of the input
is independent of the initial network condition (Jain et al.
1996). In contrast, a recurrent neural network, a dynamic
system, receives feedback or a connection from the output
to input neurons. The inputs are further adjusted as there
are feedbacks, and the network is directed to a new state.
Many of the exceedingly tough difficulties presented by
water sciences and hydrology have been addressed with
ANN (Mahmoud et al. 2016). Besides, ANNs are widely
utilized in a variety of areas such as business, industry,
science and further used as a forecasting tool. Forecasting
is reliable and effective in control measures, and thus, it
can be suggested as a preventive and evasive action on
what regulations are to be enforced (Nurulilyana et al.
2011). It is due to ANNs properties which are data-driven
self-adaptive methods, as they can learn from examples
and recognize some functional relationships among the
data (Zhang et al. 1998). Besides, generalization can be
made through ANNs after the data have been trained and
correctly generalized to brand-new data.

The ANN must undergo a learning process in
which the network architecture and connection weights
are constantly updated for the network to operate a
particular task efficiently. Among the learning paradigms
are supervised and unsupervised learning. Supervised
learning involves both inputs and correct outputs, while
unsupervised learning does not involve output with every
input provided. An example of a supervised learning
model is the feed-forward or Multi-Layer Perceptron
model, whereas unsupervised learning is Self-organizing
neural networks (Sathya & Abraham 2013).

In supervised learning, it is necessary to estimate
the loss and compare the prediction result concerning
the correct result provided and measured. Therefore, the
backpropagation learning rule is frequently used to train
the network as the loss is propagated backward throughout
the network’s layers and the weights are continuously
adjusted until good prediction results are attained (Sheela
et al. 2013). The backpropagation training algorithms aim
to minimize the loss to zero as close as possible. Some
instances of the training algorithms used are Gradient
Descent, Conjugate Gradient, Quasi-Newton, Resilient
Backpropagation, and Levenberg-Marquardt algorithms
(Zafer & Adnan Fatih 2017).

Multi-Layer Perceptron (MLP) is one of the most
potential models that has been proposed in time series
forecasting. MLP is comprised of several layers of
nodes; input layer, hidden layer, and output layer. Past
observations of the time series will enter the input layer,
and future values will be yielded by the output layer (An
& Anh 2015). A supervised learning MLP model will be
developed in this study as its structure is well known for
forecasting purposes. The MLP will be trained with the
Levenberg-Marquardt algorithm and conjugate gradient
descent. Within the MLP, the number of hidden layers
to be used as the neural network with one hidden layer
can yield an arbitrarily close approximation to any
continuous nonlinear mapping as presented by literature
in Kavzoglu (1999).

MATERIALS AND METHODS

THE MONITORING STATION

The air quality data from the Putrajaya monitoring
station in 2015 was used. The data was divided into two
data sets; a training data set from January to December
2015 to identify the API model and a testing data set in
January 2016 to check the model performance. The air
quality data set from this study was obtained from the
Department of Environment (DoE), Malaysia. Putrajaya
is one of the three federal territories in Malaysia. It is a
planned city and the federal administrative center of the
Malaysian capital starting in 1999 due to overcrowding
and congestion in city center Kuala Lumpur and
classified as an urban area located in the central region
of Malaysia.

ARIMA

Box-Jenkins’s methodology is a three-step iterative
approach in building an autoregressive integrated
moving average (ARIMA) model, which includes model
identification, parameter estimation, and diagnostic
checking. For a given time series, it is crucial to develop
a best-fitted model and, at the same time to consider
the principle of parsimony. The parsimonious model is
often the model with the smallest possible number of
parameters that can preserve an adequate and accurate
representation of the time-series data. The Bayesian
Information Criterion (BIC) is used as a measure of model
identification. BIC proposed a penalty term for the number
of parameters to overcome overfitting due to increased
likelihood when the parameter rises (Evans 2019). The
definition of BIC is given as follows:

(1)

where n is the number of observations; p is the number
of parameters in the model and �̂�𝜎𝑒𝑒2 is the sum of squared
residuals. The optimal model order is selected based on
the number of parameters that give the minimum BIC.
The lower the value of BIC, the more likely the model
is the true model.

ARIMA model is a generalization of autoregressive
moving average (ARMA) models of non-stationary
time series. The application of ARMA models to non-
stationary time series in practice is often unsatisfactory.
ARIMA models make use of the differencing procedure
to make the time series stationary. The differencing
value is the difference between the current and the
previous time. ARIMA (p,d,q) model consists of several
components, which include AR (p), I (d), and MA (q). The

ARIMA model can be written in backshift notation as:

(2)

where B is the backshift operator; ϕ(B) = 1 - ϕ1 B
1 - ϕ2

B2 - ⋯ - ϕp B
p, and θ(B) = 1- θ1 B

1 - θ2 B
2 - ⋯ - θq B

q.

NEURAL NETWORK

In artificial neural networks, data set are divided into
three sets named training, testing, and validation sets.
The training set in which the neural network will learn
the patterns displayed in the data. The testing set has
a range of 10% to 30% of the training set (Sulafa Hag
2014). The purpose of the testing set is to assess a
trained network on its ability to generalize. From here,
the neural network(s) with the best performance on the
testing set will be chosen. Finally, the validation set is
used to verify the trained network’s performance.

𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) = 𝑛𝑛 ln 𝑛𝑛 (�̂�𝜎𝑒𝑒2

𝑛𝑛) + 𝑝𝑝 + 𝑝𝑝 ln 𝑛𝑛 (1)

 𝜙𝜙(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑐𝑐 + 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 (2)

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 (3)

𝑌𝑌 = 𝑓𝑓 {𝑤𝑤𝑐𝑐𝑐𝑐 +∑𝑤𝑤ℎ𝑐𝑐𝑓𝑓 (𝑤𝑤𝑐𝑐ℎ +∑𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡−𝑗𝑗
𝑖𝑖

)
ℎ

} (4)

FIGURE 1. Structure of a multi-layer perceptron

Figure 1 shows the structure of a MLP, which
consists of three layers. The first layer of the neural
network is the input layer, where the past observations of
the time series are passed through. It communicates with
the external environment, and a pattern is introduced to
the neural network. The hidden layer is the intermediate
layer that separates the input layer and the output
layer. One hidden layer in the neural network with an
adequate number of hidden neurons is competent for
ANNs to generalize any continuous function (Dong et

al. 2013). In increasing the number of hidden layers, the
neural network will risk overfitting where each point is
memorized instead of learning the general patterns. The
time required for computations will also be longer. The
output layer of the neural network will yield a future value
to a time series problem.

A transfer function is a mathematical formula
such the output of the processing neuron is calculated
(Kaastra & Boyd 1996). It is put into use to avoid outputs
from getting larger as the neural network can paralyze.

2648

Therefore, the training is obstructed. The sigmoid
function is the regular transfer function used for data
involving time series, considering it is nonlinear and
continuously differentiable for network learning. The
sigmoid function is as follows:

(3)

The MLP model with a set of P input variables can be
expressed through the formula:

(4)

where wch is the weights for constant input and hidden
neurons; wco is the weights of constant input and output;
wih is the weights between inputs and hidden neurons;
who is the weights between hidden neurons and output;
and f is the activation function. The stopping criteria can
be divided into two, late stopping and early stopping. The
idea of late stopping is that the neural network is trained
as far as a particular error is attained (Dong et al. 2013).
However, late stopping can lead to overfitting. Early
stopping is effective in preventing overfitting, and it has
been reported to be easily understood and is excellent in
regularization (Lodwich et al. 2009).

LEVENBERG-MARQUARDT ALGORITHM

The Levenberg-Marquardt algorithm combines the
gradient descent algorithm and Gauss-Newton method
and serves as an intermediate optimization algorithm
in neural network training (Kermani et al. 2005).
The gradient descent algorithm applies the first-order
derivative of the total error function to obtain the
minimum in the error space. The gradient, 𝑔𝑔 can be
defined as:

(5)

where E(x,w) is the sum of square error function and is
computed by:

(6)

where x is the input vector; w is the weight vector; and
ep,m is the training error at output m (from 1 to M) when
applying pattern p (from 1 to P) and is defined as:

(7)

where d is the desired output vector; and o is the actual
output vector. The parameter update rule of the gradient
descent is performed using:

(8)

where k is the index of iterations; and α is the learning
constant known as step size. Newton’s method involves
an expansion of the gradient using a Taylor series which
results to an equation in matrix form as below:

(9)

Gauss-Newton’s algorithm proposed the Jacobian matrix
to simplify the analysis as follows:

(10)

The gradient vector, 𝑔𝑔 can also be written in terms of
Jacobian matrix, J.

(11)

where e is the error vector. Thus, the Gauss-Newton
algorithm’s parameter update rule is proposed as:

(12)

As a result, the parameter update rule of the Levenberg-
Marquardt algorithm is given by:

(13)

where μ is known as the combination coefficient and
I is the identity matrix. The algorithm will employ

𝜙𝜙(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑐𝑐 + 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 (2)

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 (3)

𝑌𝑌 = 𝑓𝑓 {𝑤𝑤𝑐𝑐𝑐𝑐 +∑𝑤𝑤ℎ𝑐𝑐𝑓𝑓 (𝑤𝑤𝑐𝑐ℎ +∑𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡−𝑗𝑗
𝑖𝑖

)
ℎ

} (4)

𝜙𝜙(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑐𝑐 + 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 (2)

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 (3)

𝑌𝑌 = 𝑓𝑓 {𝑤𝑤𝑐𝑐𝑐𝑐 +∑𝑤𝑤ℎ𝑐𝑐𝑓𝑓 (𝑤𝑤𝑐𝑐ℎ +∑𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡−𝑗𝑗
𝑖𝑖

)
ℎ

} (4)

𝑔𝑔 = 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑤𝑤)
𝜕𝜕𝑤𝑤 = [𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

 ⋯ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑁𝑁

]
𝑇𝑇
 (5)

𝜕𝜕(𝑥𝑥, 𝑤𝑤) = 1
2 ∑ ∑ 𝑒𝑒𝑝𝑝,𝑚𝑚

2
𝑀𝑀

𝑚𝑚=1

𝑃𝑃

𝑝𝑝=1
 (6)

𝑒𝑒𝑝𝑝,𝑚𝑚 = 𝑑𝑑𝑝𝑝,𝑚𝑚 − 𝑜𝑜𝑝𝑝,𝑚𝑚 (7)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼𝑔𝑔𝑘𝑘 (8)

𝑔𝑔 = 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑤𝑤)
𝜕𝜕𝑤𝑤 = [𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

 ⋯ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑁𝑁

]
𝑇𝑇
 (5)

𝜕𝜕(𝑥𝑥, 𝑤𝑤) = 1
2 ∑ ∑ 𝑒𝑒𝑝𝑝,𝑚𝑚

2
𝑀𝑀

𝑚𝑚=1

𝑃𝑃

𝑝𝑝=1
 (6)

𝑒𝑒𝑝𝑝,𝑚𝑚 = 𝑑𝑑𝑝𝑝,𝑚𝑚 − 𝑜𝑜𝑝𝑝,𝑚𝑚 (7)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼𝑔𝑔𝑘𝑘 (8)

𝑔𝑔 = 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑤𝑤)
𝜕𝜕𝑤𝑤 = [𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

 ⋯ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑁𝑁

]
𝑇𝑇
 (5)

𝜕𝜕(𝑥𝑥, 𝑤𝑤) = 1
2 ∑ ∑ 𝑒𝑒𝑝𝑝,𝑚𝑚

2
𝑀𝑀

𝑚𝑚=1

𝑃𝑃

𝑝𝑝=1
 (6)

𝑒𝑒𝑝𝑝,𝑚𝑚 = 𝑑𝑑𝑝𝑝,𝑚𝑚 − 𝑜𝑜𝑝𝑝,𝑚𝑚 (7)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼𝑔𝑔𝑘𝑘 (8)

𝑔𝑔 = 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑤𝑤)
𝜕𝜕𝑤𝑤 = [𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

 ⋯ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑁𝑁

]
𝑇𝑇
 (5)

𝜕𝜕(𝑥𝑥, 𝑤𝑤) = 1
2 ∑ ∑ 𝑒𝑒𝑝𝑝,𝑚𝑚

2
𝑀𝑀

𝑚𝑚=1

𝑃𝑃

𝑝𝑝=1
 (6)

𝑒𝑒𝑝𝑝,𝑚𝑚 = 𝑑𝑑𝑝𝑝,𝑚𝑚 − 𝑜𝑜𝑝𝑝,𝑚𝑚 (7)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼𝑔𝑔𝑘𝑘 (8)

[
−𝑔𝑔1
−𝑔𝑔2

⋮
−𝑔𝑔𝑁𝑁

] =

[

 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕1

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2
⋮

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁]

=

[

 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕1
2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕1𝜕𝜕𝜕𝜕2

⋯ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕1𝜕𝜕𝜕𝜕𝑁𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕𝑁𝑁𝜕𝜕𝜕𝜕𝑁𝑁

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁𝜕𝜕𝜕𝜕2

⋯ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁𝜕𝜕𝜕𝜕𝑁𝑁]

× [
∆𝜕𝜕1
∆𝜕𝜕2

⋮
∆𝜕𝜕𝑁𝑁

] (9)

𝐽𝐽 =

[

 𝜕𝜕𝑒𝑒1,1

𝜕𝜕𝑤𝑤1

𝜕𝜕𝑒𝑒1,1
𝜕𝜕𝑤𝑤2

⋯ 𝜕𝜕𝑒𝑒1,1
𝜕𝜕𝑤𝑤𝑁𝑁

𝜕𝜕𝑒𝑒1,2
𝜕𝜕𝑤𝑤1

⋮
𝜕𝜕𝑒𝑒1,𝑀𝑀
𝜕𝜕𝑤𝑤1

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,1
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑒𝑒𝑝𝑝,2
𝜕𝜕𝑤𝑤1

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,𝑀𝑀
𝜕𝜕𝑤𝑤1

𝜕𝜕𝑒𝑒1,2
𝜕𝜕𝑤𝑤2

⋮
𝜕𝜕𝑒𝑒1,𝑀𝑀
𝜕𝜕𝑤𝑤2

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,1
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑒𝑒𝑝𝑝,2
𝜕𝜕𝑤𝑤2

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,𝑀𝑀
𝜕𝜕𝑤𝑤2

⋱

𝜕𝜕𝑒𝑒1,2
𝜕𝜕𝑤𝑤𝑁𝑁

⋮
𝜕𝜕𝑒𝑒1,𝑀𝑀
𝜕𝜕𝑤𝑤𝑁𝑁

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,1
𝜕𝜕𝑤𝑤𝑁𝑁
𝜕𝜕𝑒𝑒𝑝𝑝,2
𝜕𝜕𝑤𝑤𝑁𝑁

⋮
𝜕𝜕𝑒𝑒,𝑀𝑀
𝜕𝜕𝑤𝑤𝑁𝑁]

 (10)

𝑔𝑔 = 𝐽𝐽𝐽𝐽 (11)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘)−1𝐽𝐽𝑘𝑘𝐽𝐽𝑘𝑘 (12)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜇𝜇𝜇𝜇)−1𝐽𝐽𝑘𝑘𝐽𝐽𝑘𝑘 (13)

𝑔𝑔 = 𝐽𝐽𝐽𝐽 (11)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘)−1𝐽𝐽𝑘𝑘𝐽𝐽𝑘𝑘 (12)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜇𝜇𝜇𝜇)−1𝐽𝐽𝑘𝑘𝐽𝐽𝑘𝑘 (13)

𝑔𝑔 = 𝐽𝐽𝐽𝐽 (11)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘)−1𝐽𝐽𝑘𝑘𝐽𝐽𝑘𝑘 (12)

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜇𝜇𝜇𝜇)−1𝐽𝐽𝑘𝑘𝐽𝐽𝑘𝑘 (13)

Gauss-Newton algorithm when μ is very small or nearly
zero and will approximate to gradient descent method
when μ is very large with α = 1⁄μ. Thus, throughout the
training process, the Levenberg-Marquardt algorithm
switches between gradient descent and Gauss-Newton’s
algorithms.

CONJUGATE GRADIENT METHOD

The conjugate gradient method is derived intermediately
from gradient descent and Newton’s method. Given
gradient descent algorithm, the step size is determined via
the exact line search procedure, which can significantly
be slow in most real-world problems, although it is
best known as the simplest gradient method (Mina &
Mohammad-Mehdi 2018). The conjugate gradient method
is faster in convergence, and it is simple as well as less
complex. The derivation is presented below.

(14)

where x has size n and 𝑄𝑄 is symmetric, positive definite
and has size n × n. At the point of zero gradients, the
minimum of f(x) is computed as:

(15)

Let d0, d0, …, d0 be a finite set of vectors, and it is 𝑄𝑄
-orthogonal to each other if di

T 𝑄𝑄 dj = 0 for all i ≠ j. They
are also linearly independent. Given a starting point x0
and a Q-orthogonal set, the vector representing a move
from x0 to x* is presented by:

(16)

where α0, α1, …,αn-1 are scalars. The equation (16) is
multiplied by di

T 𝑄𝑄 and with b = 𝑄𝑄 x will result in:

(17)

Since the set of vectors di is Q-orthogonal,

(18)

while ∇ f (xk) is denoted as 𝑔𝑔 k and 𝑔𝑔 k = b-𝑄𝑄 xk, it can be
shown that:

(19)

If xk is defined as:

(20)

then an iterative expression for x is

(21)

Setting initial direction vector d0 equals to the negative
gradient at the initial point, d0 = -𝑔𝑔 0. The successive
directions, dk+1 are a linear combination of the current
gradient and the previous direction, and is given by:

(22)

The successive directions, dk+1 are Q-orthogonal, thus:

(23)

As a result,

(24)

The summary of Conjugate Gradient Method is as
follows: 1. At k = 1, the initial point x0 is selected. 2.
𝑔𝑔 0 = ∇ f (x0) if 𝑔𝑔 0 = 0, stop. Else set d0 = -𝑔𝑔 0. 3. αk = -

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
 (24)

The summary of Conjugate Gradient Method is as follows: 1. At 𝑘𝑘 = 1, the initial point 𝑥𝑥0 is

selected. 2. 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0), if 𝑔𝑔0 = 0, stop. Else set 𝑑𝑑0 = −𝑔𝑔0. 3. 𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 4.

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘. 5. 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1), if 𝑔𝑔𝑘𝑘+1 = 0, stop. 6. 𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 7.

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘. 8. If 𝑘𝑘 = 𝑛𝑛 − 1, stop else 𝑘𝑘 = 𝑘𝑘 − 1, go to step 3.

 4. xk+1 = xk + ak dk. 5. 𝑔𝑔 k+1 = ∇ f (xk+1), if 𝑔𝑔

k+1 = 0, stop. 6. βk =

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
 (24)

The summary of Conjugate Gradient Method is as follows: 1. At 𝑘𝑘 = 1, the initial point 𝑥𝑥0 is

selected. 2. 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0), if 𝑔𝑔0 = 0, stop. Else set 𝑑𝑑0 = −𝑔𝑔0. 3. 𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 4.

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘. 5. 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1), if 𝑔𝑔𝑘𝑘+1 = 0, stop. 6. 𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 7.

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘. 8. If 𝑘𝑘 = 𝑛𝑛 − 1, stop else 𝑘𝑘 = 𝑘𝑘 − 1, go to step 3.

 7. dk+1 = 𝑔𝑔 k+1+ βk
dk. 8. If k = n-1, stop else k = k-1, go to step 3.

PERFORMANCE EVALUATION

The error function standard for minimization in neural
networks is the sum of squared error. Considering that the
appropriate error measures for forecasting has not reached
a consensus as reported by Zhang (2012), the mean
squared error, MSE, and the mean absolute percentage
error, MAPE, are recommended as the most appropriate
measures for forecasting.

(25)

(26)

where Yt is the observation at time t and

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡)

2
𝑛𝑛

𝑡𝑡=1
 (25)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑

|𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡|
𝑌𝑌𝑡𝑡

𝑛𝑛

𝑡𝑡=1
× 100%, 𝑌𝑌𝑡𝑡 ≠ 0 (26)

where 𝑌𝑌𝑡𝑡 is the observation at time 𝑡𝑡 and �̂�𝑌𝑡𝑡 is the predicted values.

 is the predicted
values.

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14)

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15)

𝑥𝑥∗ − 𝑥𝑥0 = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0
 (16)

𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0) = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄
𝑛𝑛−1

𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17)

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14)

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15)

𝑥𝑥∗ − 𝑥𝑥0 = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0
 (16)

𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0) = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄
𝑛𝑛−1

𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17)

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14)

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15)

𝑥𝑥∗ − 𝑥𝑥0 = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0
 (16)

𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0) = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄
𝑛𝑛−1

𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17)

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14)

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15)

𝑥𝑥∗ − 𝑥𝑥0 = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0
 (16)

𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0) = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄
𝑛𝑛−1

𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17)

𝛼𝛼𝑗𝑗 =
𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0)

𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄𝑑𝑑𝑗𝑗
 (18)

𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
𝑑𝑑𝑘𝑘𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘

 (19)

𝑥𝑥𝑘𝑘 = 𝑥𝑥0 +∑𝛼𝛼𝑗𝑗𝑑𝑑𝑗𝑗
𝑘𝑘−1

𝑗𝑗=0
 (20)

𝛼𝛼𝑗𝑗 =
𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0)

𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄𝑑𝑑𝑗𝑗
 (18)

𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
𝑑𝑑𝑘𝑘𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘

 (19)

𝑥𝑥𝑘𝑘 = 𝑥𝑥0 +∑𝛼𝛼𝑗𝑗𝑑𝑑𝑗𝑗
𝑘𝑘−1

𝑗𝑗=0
 (20)

𝛼𝛼𝑗𝑗 =
𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0)

𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄𝑑𝑑𝑗𝑗
 (18)

𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
𝑑𝑑𝑘𝑘𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘

 (19)

𝑥𝑥𝑘𝑘 = 𝑥𝑥0 +∑𝛼𝛼𝑗𝑗𝑑𝑑𝑗𝑗
𝑘𝑘−1

𝑗𝑗=0
 (20)

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘 (21)

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 (22)

𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 = [−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘]𝑇𝑇𝑄𝑄𝑑𝑑𝑖𝑖 = 0 (23)

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘 (21)

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 (22)

𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 = [−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘]𝑇𝑇𝑄𝑄𝑑𝑑𝑖𝑖 = 0 (23)

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘 (21)

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 (22)

𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 = [−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘]𝑇𝑇𝑄𝑄𝑑𝑑𝑖𝑖 = 0 (23)

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
 (24)

The summary of Conjugate Gradient Method is as follows: 1. At 𝑘𝑘 = 1, the initial point 𝑥𝑥0 is

selected. 2. 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0), if 𝑔𝑔0 = 0, stop. Else set 𝑑𝑑0 = −𝑔𝑔0. 3. 𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 4.

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘. 5. 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1), if 𝑔𝑔𝑘𝑘+1 = 0, stop. 6. 𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 7.

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘. 8. If 𝑘𝑘 = 𝑛𝑛 − 1, stop else 𝑘𝑘 = 𝑘𝑘 − 1, go to step 3.

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡)

2
𝑛𝑛

𝑡𝑡=1
 (25)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑

|𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡|
𝑌𝑌𝑡𝑡

𝑛𝑛

𝑡𝑡=1
× 100%, 𝑌𝑌𝑡𝑡 ≠ 0 (26)

where 𝑌𝑌𝑡𝑡 is the observation at time 𝑡𝑡 and �̂�𝑌𝑡𝑡 is the predicted values.

2650

RESULTS AND DISCUSSION

Among 11 air pollutants recorded from the continuous
monitoring station, carbon monoxide (CO), ozone (O3),
particulate matter diameter 10 (PM10) and Air Pollutant
Index (API) were used in this study. CO, O3 and PM10
were the three main pollutants that affecting Malaysia’s
air quality status. Meanwhile, the API was chosen in this
study since the index is a simple and generalized method
to assess the impact of air quality status on human health.

Figure 2(a) shows that the CO ACF dies down slowly
as there were significantly large ACF values as the lag
increases. A similar ACF pattern is found in Figure 2(c)
for the PM10 pollutant. Thus, the result indicates both
data were non-stationary. On the other hand, O3 was
stationary since, in Figure 2(b), the ACF dies down
quickly as the lag increases. To model the data, stationary
is required. Thus, the first level of differencing was used.
The sample ACF and sample PACF of CO and PM10 after
first differencing were shown in Figure 3.

FIGURE 2. ACF and PACF for CO, O3 and PM10

(a) Carbon Monoxide (CO)

(b) Ozone (O3)

(c) Particulate Matter diameter 10 (PM10)

The values of p and q are limited up to order six
as higher order models lead to higher values of BIC
and restricted to the principle of parsimony; the smaller
number of parameters is the best model. The best fitted
model for CO was ARIMA (1,1,1), with the smallest
BIC value of -121.45. For O3, ARIMA (1,0,1) has the
smallest value of BIC of -2582.72, and that makes the
best fitted model for O3 time series. Meanwhile, for PM10,
the best fitted model obtained is ARIMA (2,1,2) with BIC
of 3382.4. Thus, all the three models can be written as
follows:
i) CO

COt = 1.6928COt-1 - 0.6928COt-2 - 0.9468εt-1 + εt

ii) O3

O3𝑡𝑡 = 0.8663O3t-1 - 0.5404εt-1 + εt

iii) PM10

PM𝑃𝑃𝑃𝑃10𝑡𝑡 t = 0.7992PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-1 + 0.7057PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-2 - 0.5049PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-3+
0.0482εt-1 - 0.8765εt-1 + εt

The API in Malaysia was developed based on
the API introduced by the United States Environmental
Protection Agency (USEPA) and is determined by the
calculation of sub-indexes of five main pollutants, namely

PM10, O3, CO, sulfur dioxide (SO2), and nitrogen dioxide
(NO2). Since PM10, O3 and CO had a tremendous effect
on the API readings, these pollutants are also used in
modelling API as the input in MLP. Figure 4(a) indicates
that the API data was non-stationary since the ACF dies
down slowly. Thus, first differencing was computed and

the new ACF and PACF were given in Figure 4(b). Based
on Figure 4(b), the best model for API is ARIMA (1,1,1)
which gives the smallest BIC value of 2916.98. Therefore,
the model can be written as follow:

APIt = 1.6682APIt-1 - 0.6682APIt-2 - 0.9188εt-1 + εt

FIGURE 3. ACF and PACF for CO and PM10 after first differencing

(a) Carbon Monoxide (CO)

(b) Particulate Matter diameter 10 (PM10)

(a) Before differencing

(b) After Differencing

FIGURE 4. ACF and PACF for API before and after first differencing

2652

TABLE 1. MLP inputs based on ARIMA modelling

Type Variables Lagged variables

Explanatory variables CO COt, COt-1

O3 O3𝑡𝑡 t, O3𝑡𝑡

PM10 PM𝑃𝑃𝑃𝑃10𝑡𝑡 t, PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-1, PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-2

Response variables API APIt

t-1

The MLP models was programmed in MATLAB
Software. The selected input is based on ARIMA
modelling given in Table 1. Data pre-processing was also
carried out to describe the important relationships and
to set up more uniform data in neural network training.
All the data will undergo pre-processing by z-score
normalization, where it uses the mean and standard
deviation to transform each feature to have zero mean
and unit variance. The advantage of z-score normalization
is the effects of outliers in the data does not diminish. The
data from January 2015 to Dec 2015 was split into 70%
training, 15% validation, and 15% testing. On the other

hand, the data in January 2016 was used to evaluate the
ability of the model to forecast future values.

Seven lagged variables of CO, O3 and PM10 which
include COt, COt-1, O3𝑡𝑡 t, O3𝑡𝑡 t-1, PM𝑃𝑃𝑃𝑃10𝑡𝑡 t, PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-1, and PM𝑃𝑃𝑃𝑃10𝑡𝑡 t-2
were selected as MLP inputs while APIt served as MLP
target. Seven inputs were used with different architectures
under the two training algorithms: Levenberg-Marquardt
and the conjugate gradient method. A single hidden layer
with hidden neurons used was between two and ten. All
the models were repeated 50 times with different initial
values of weights, and the best model with the lowest
value of MSE was taken. The result is shown in Table 2.

TABLE 2. Comparison of MLP models with different architecture

Algorithm Model Architecture
Performance

MSE MAPE

Levenberg-Marquardt

1 [7-2-1] 18.3174 4.4262
2 [7-4-1] 16.4634 4.2534
3 [7-6-1] 16.5208 4.1746
4 [7-8-1] 18.4410 4.4784
5 [7-10-1] 19.1623 4.2680

Conjugate gradient

6 [7-2-1] 18.9717 4.5014
7 [7-4-1] 16.7298 4.6122
8 [7-6-1] 18.4864 5.1317
9 [7-8-1] 17.7246 4.9169
10 [7-10-1] 17.6003 4.4648

TABLE 3. API forecasting performance

Model MSE MAPE
ARIMA 96.7395 23.4375
MLP

- LevenbergMarquardt 19.4273 8.5688
- Conjugate Gradient 19.6007 8.8220

 Based on Table 2, the Levenberg-Marquardt
performed well under [7-4-1] architecture as it had
the lowest MSE value of 16.4634 compared to other
models. Similarly, the conjugate gradient method had
its best performance under [7-4-1] architecture with

MSE of 16.7298. The lowest MAPE value for Levenberg-
Marquardt and the conjugate gradient method was
4.2534 and 4.6122, respectively. Since the consistency of
the result obtained in [7-4-1] architecture, the developed
models are then further used in forecasting, where the
forecasting result is shown in Table 3.

FIGURE 5. Actual and forecast by Levenberg-Marquardt and conjugate gradient

(a) Levenberg-Marquardt

(b) Conjugate Gradient

(a) Levenberg-Marquardt

(b) Conjugate Gradient

(a) Levenberg-Marquardt

(b) Conjugate Gradient

Based on Table 3, modelling the API data with
ARIMA (1,1,1) model has relatively high MSE and
MAPE value for forecast error even though it is the
best fitted model. The forecast error based on MAPE
value indicates that the forecast is off by 23.4375%.
For MLP modelling, it was found out that the well-
performed model using the Levenberg-Marquardt
algorithm compared to the conjugate gradient method
with its MSE value slightly lower. Similarly, in MAPE
result. The forecast error was 8.5688% which mean as
a highly accurate forecast, given that the MAPE is less
than 10%. This is because the Levenberg-Marquardt is
competent in training small and medium-sized networks
(Yu & Wilamowski 2011). The actual values and forecast
values from both Levenberg-Marquardt and the conjugate
gradient method model were plotted, respectively, as
shown in Figure 5.

CONCLUSION

The air quality data from Putrajaya monitoring station
in the year 2015 was used to forecast API using ARIMA

and MLP models. Using classical Box-Jenkins
methodology, the best parsimonious model suggested for
predicting API future values was ARIMA (1,1,1) given its
lowest BIC value. The classical ARIMA and MLP models
were also compared to investigate their performance in
prediction. MLP models were recommended over ARIMA
models for forecasting as the results confirmed that
forecast values by MLP models close to the actual values.

On the other hand, various architectures of the
MLP in terms of number of inputs, number of hidden
neurons and training algorithm were used for fitting
of the data as well as forecasting. It is essential to
consider different MLP models such as the architectures,
activation function, and initial weights to obtain a good
fitting model that will converge and produce sensible
predictions. When two inputs were used in MLP, the
Levenberg-Marquardt algorithm had better performance
than the conjugate gradient method. Levenberg-
Marquardt model was more suitable to build the forecast
model with its small MSE and MAPE values. The MLP
models were also fitted by using seven inputs. It is shown

2654

that the training algorithm that best minimizes the error
was the Levenberg-Marquardt algorithm.

There is plenty of scopes that can be conducted by
using ANN or MLP. One of the recommendations for
future work is to study on other configuration parameters
of the algorithms concerning the forecast accuracy.
The choices of MLP architectures, training algorithms,
activation function and appropriate configuration
parameters must be selected carefully and greatly to
produce the best fit model.

ACKNOWLEDGEMENTS

The authors would like to express our gratitude to the
editor and referees for their valuable comments and to
the Department of Environment (DOE) Malaysia for
providing the pollutants data.

REFERENCES
An, N.H. & Anh, D.T. 2015. Comparison of strategies for multi-

step-ahead prediction of time series using neural network.
2015 International Conference on Advanced Computing
and Applications (ACOMP). pp. 142-149.

Chen, X., Wang, G., Zhou, W., Chang, S. & Sun, S. 2006.
Efficient Sigmoid function for neural networks based FPGA
design. International Conference on Intelligent Computing.
pp. 672-677.

De Cosmi, V., Mazzocchi, A., Milani, G.P., Calderini, E.,
Scaglioni, S., Bettocchi, S., D’Oria, V., Langer, T.,
Spolidoro, G.C.I., Leone, L., Battezzati, A., Bertoli, S.,
Leone, A., De Amicis, R.S., Foppiani, A., Agostoni, C. &
Grossi, E. 2020. Prediction of resting energy expenditure
in children: May artificial neural networks improve our
accuracy? Journal of Clinical Medicine 9(4): 1026.

Dong, G., Fataliyev, K. & Wang, L. 2013. One-Step and
multi-step ahead stock prediction using backpropagation
neural networks. 2013 9th International Conference on
Information, Communications & Signal Processing. pp.
1-5.

Evans, N.J. 2019. Assessing the practical differences between
model selection methods in inferences about choice
response time tasks. Psychonomic Bulletin & Review 26(4):
1070-1098.

Jain, A.K., Mao, J. & Mohiuddin, K.M. 1996. Artificial Neural
Networks: A tutorial. Computer 29(3): 31-44.

Kaastra, I. & Boyd, M. 1996. Designing a Neural Network
for forecasting financial and economic time series.
Neurocomputing 10(3): 215-236.

Kavzoglu, T. 1999. Determining optimum structure for
Artificial Neural Networks. Proceedings of the 25th Annual
Technical Conference and Exhibition of the Remote Sensing
Society, Cardiff, UK. 8-10 September. pp. 675-682.

Kermani, B.G., Schiffman, S.S. & Nagle, H.T. 2005.
Performance of the Levenberg–Marquardt neural network
training method in electronic nose applications. Sensors
and Actuators B: Chemical 110(1): 13-22.

Mahmoud Khaki, Ismail Yusoff, Nur Fadilah Islami & Nur
Hayati Hussin. 2016. Artificial Neural network technique for
modeling of groundwater level in Langat Basin, Malaysia.
Sains Malaysiana 45(1): 19-28.

Lodwich, A., Rangoni, Y. & Breuel, T. 2009. Evaluation
of robustness and performance of early stopping rules
with multi layer perceptrons. 2009 International Joint
Conference on Neural Networks. pp. 1877-1884.

Nurulilyana Sansuddin, Nor Azam Ramli, Ahmad Shukri
Yahaya, Noor Faizah Fitri Md Yusof, Nurul Adyani Ghazali
& Wesam Ahmed Al Madhoun. 2011. Statistical analysis
of PM10 concentrations at different locations in Malaysia.
Environmental Monitoring and Assessment 180(1-4): 573-
588.

Saratha Sathasivam, Mohd. Asyraf Mansor, Ahmad Ismail, Siti
Jamaludin, Mohd Kasihmuddin, & Mustafa Mamat. 2020.
Novel random k satisfiability for k ≤ 2 in Hopfield neural
network. Sains Malaysiana 49(11): 2847-2857.

Sathya, R. & Annamma Abraham. 2013. Comparison of
supervised and unsupervised learning algorithms for
pattern classification. International Journal of Advanced
Research in Artificial Intelligence 2 (February). https://
dx.doi.org/10.14569/IJARAI.2013.020206

Sulafa Hag Elsafi. 2014. Artificial Neural Networks (ANNs)
for flood forecasting at Dongola Station in the River Nile,
Sudan. Alexandria Engineering Journal 53(3): 655-662.

Sheela Tiwari, Ram Naresh & Rahul Jha. 2013. Comparative
study of backpropagation algorithms in neural network
based identification of power system. International
Journal of Computer Science and Information Technology
5(August): 93-107.

Mina Torabi & Mohammad-Mehdi Hosseini. 2018. A new
descent algorithm using the three-step discretization
method for solving unconstrained optimization problems.
Mathematics 6 (April): 63.

Yu, H. & Wilamowski, B.M. 2011. Lavenberg-Marquardt
Training. In The Industrial Electronics Handbook:
Intelligent Systems, 2nd ed. Chapter 12, edited by
Wilamowski, B.M. & Irwin, J.D. Boca Raton: CRC Press.
pp. 12-1 to 12-15.

Zafer Cömert & Adnan Fatih Kocamaz. 2017. A Study
of artificial neural network training algorithms for
classification of cardiotocography signals. Bitlis Eren
University Journal of Science and Technology 7(2): 93-
103.

Zhang, G.P. 2012. Neural networks for time-series forecasting
BT. In Handbook of Natural Computing, edited by
Rozenberg, G., Bäck, T. & Kok, J.N. Berlin, Heidelberg:
Springer Berlin Heidelberg. pp. 461-477.

Zhang, G., Eddy Patuwo, B. & Hu. M.Y. 1998. Forecasting
with artificial neural networks: The state of the art.
International Journal of Forecasting 14(1): 35-62.

Zhu, L., Lim, C. & Zhang, J. 2020. Prediction of risk:
Decoding the serial dependence of stock return volatility
with Copula. Journal of Hospitality & Tourism Research
45(1): 6-27.

*Corresponding author; email: nurhaizum_ar@upm.edu.my

