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ABSTRACT

Levenberg-Marquardt algorithm and conjugate gradient method are frequently used for optimization in multi-layer 
perceptron (MLP). However, both algorithms have mixed conclusions in optimizing MLP in time series forecasting. This 
study uses autoregressive integrated moving average (ARIMA) and MLP with both Levenberg-Marquardt algorithm 
and conjugate gradient method. These methods were used to predict the Air Pollutant Index (API) in Malaysia’s central 
region where represent urban and residential areas. The performances were discussed and compared using the mean 
square error (MSE) and mean absolute percentage error (MAPE). The result shows that MLP models have outperformed 
ARIMA models where MLP with Levenberg-Marquardt algorithm outperformed the conjugate gradient method. 
Keywords: Algorithm; ARIMA; artificial neural network; forecasting; multi-layer perceptron

ABSTRAK

Algoritma Levenberg-Marquardt dan kaedah kecerunan konjugat sering digunakan untuk pengoptimuman dalam 
perceptron pelbagai lapisan (MLP). Walau bagaimanapun, kedua-dua algoritma mempunyai kesimpulan yang berbeza 
dalam mengoptimumkan ramalan siri masa menggunakan MLP. Kajian ini menggunakan purata bergerak bersepadu 
autoregresif (ARIMA) dan MLP dengan kedua-dua algoritma Levenberg-Marquardt dan kaedah kecerunan konjugat. 
Kaedah ini digunakan untuk meramalkan Indeks Pencemaran Udara (IPU) di wilayah tengah Malaysia yang mewakili 
kawasan bandar dan kediaman. Prestasi dibincang dan dibandingkan dengan menggunakan ralat kuasa dua min (MSE) 
dan ralat peratusan mutlak (MAPE). Hasilnya menunjukkan bahawa model MLP telah mengatasi model ARIMA dengan 
MLP dan algoritma Levenberg-Marquardt mengatasi kaedah kecerunan konjugat.
Kata kunci: Algoritma; ARIMA; perceptron pelbagai lapisan; ramalan; rangkaian neuron tiruan 

INTRODUCTION

Artificial Neural Networks (ANN) can be defined as 
artificial adaptive systems modelled after the human 
brain’s cerebral cortex’s functioning processes. ANN 
learns the behaviour from past data, generates a learnt 
pattern (synaptic weight), and solves the problem using 
the taught pattern (Saratha et al. 2020). ANN is formed 
from numerous processing elements known as nodes or 

neurons connected to coefficients or weights (De Cosmi et 
al. 2020). In each processing element, the arriving signals’ 
inputs are multiplied by the connection weights and 
summed. It is then passed through a transfer or activation 
function which is the weighed sum of the neuron’s inputs. 
The transfer function that is often used is the sigmoid 
function because the sigmoid function enables a smooth 
transition between input and output (Chen et al. 2006). 
Finally, an output is produced.
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In ANN, the network architectures are determined by 
the type of connections between the neurons, and there 
are two main categories: feed forward neural network and 
recurrent neural network (Zhu et al. 2020). A feed forward 
neural network does not receive feedback from the 
outputs of the neurons to the input neurons. It is a static 
system as only a set of output values are generated, and 
it does not have memory since the response of the input 
is independent of the initial network condition (Jain et al. 
1996). In contrast, a recurrent neural network, a dynamic 
system, receives feedback or a connection from the output 
to input neurons. The inputs are further adjusted as there 
are feedbacks, and the network is directed to a new state.
Many of the exceedingly tough difficulties presented by 
water sciences and hydrology have been addressed with 
ANN (Mahmoud et al. 2016). Besides, ANNs are widely 
utilized in a variety of areas such as business, industry, 
science and further used as a forecasting tool. Forecasting 
is reliable and effective in control measures, and thus, it 
can be suggested as a preventive and evasive action on 
what regulations are to be enforced (Nurulilyana et al. 
2011). It is due to ANNs properties which are data-driven 
self-adaptive methods, as they can learn from examples 
and recognize some functional relationships among the 
data (Zhang et al. 1998). Besides, generalization can be 
made through ANNs after the data have been trained and 
correctly generalized to brand-new data. 

The ANN must undergo a learning process in 
which the network architecture and connection weights 
are constantly updated for the network to operate a 
particular task efficiently. Among the learning paradigms 
are supervised and unsupervised learning. Supervised 
learning involves both inputs and correct outputs, while 
unsupervised learning does not involve output with every 
input provided. An example of a supervised learning 
model is the feed-forward or Multi-Layer Perceptron 
model, whereas unsupervised learning is Self-organizing 
neural networks (Sathya & Abraham 2013).

In supervised learning, it is necessary to estimate 
the loss and compare the prediction result concerning 
the correct result provided and measured. Therefore, the 
backpropagation learning rule is frequently used to train 
the network as the loss is propagated backward throughout 
the network’s layers and the weights are continuously 
adjusted until good prediction results are attained (Sheela 
et al. 2013). The backpropagation training algorithms aim 
to minimize the loss to zero as close as possible. Some 
instances of the training algorithms used are Gradient 
Descent, Conjugate Gradient, Quasi-Newton, Resilient 
Backpropagation, and Levenberg-Marquardt algorithms 
(Zafer & Adnan Fatih 2017).

Multi-Layer Perceptron (MLP) is one of the most 
potential models that has been proposed in time series 
forecasting. MLP is comprised of several layers of 
nodes; input layer, hidden layer, and output layer. Past 
observations of the time series will enter the input layer, 
and future values will be yielded by the output layer (An 
& Anh 2015). A supervised learning MLP model will be 
developed in this study as its structure is well known for 
forecasting purposes. The MLP will be trained with the 
Levenberg-Marquardt algorithm and conjugate gradient 
descent. Within the MLP, the number of hidden layers 
to be used as the neural network with one hidden layer 
can yield an arbitrarily close approximation to any 
continuous nonlinear mapping as presented by literature 
in Kavzoglu (1999).

MATERIALS AND METHODS

THE MONITORING STATION

The air quality data from the Putrajaya monitoring 
station in 2015 was used. The data was divided into two 
data sets; a training data set from January to December 
2015 to identify the API model and a testing data set in 
January 2016 to check the model performance. The air 
quality data set from this study was obtained from the 
Department of Environment (DoE), Malaysia. Putrajaya 
is one of the three federal territories in Malaysia. It is a 
planned city and the federal administrative center of the 
Malaysian capital starting in 1999 due to overcrowding 
and congestion in city center Kuala Lumpur and 
classified as an urban area located in the central region 
of Malaysia.

ARIMA

Box-Jenkins’s methodology is a three-step iterative 
approach in building an autoregressive integrated 
moving average (ARIMA) model, which includes model 
identification, parameter estimation, and diagnostic 
checking. For a given time series, it is crucial to develop 
a best-fitted model and, at the same time to consider 
the principle of parsimony. The parsimonious model is 
often the model with the smallest possible number of 
parameters that can preserve an adequate and accurate 
representation of the time-series data. The Bayesian 
Information Criterion (BIC) is used as a measure of model 
identification. BIC proposed a penalty term for the number 
of parameters to overcome overfitting due to increased 
likelihood when the parameter rises (Evans 2019). The 
definition of BIC is given as follows:



(1)

where n is the number of observations; p is the number 
of parameters in the model and �̂�𝜎𝑒𝑒2  is the sum of squared 
residuals. The optimal model order is selected based on 
the number of parameters that give the minimum BIC. 
The lower the value of BIC, the more likely the model 
is the true model.

ARIMA model is a generalization of autoregressive 
moving average (ARMA) models of non-stationary 
time series. The application of ARMA models to non-
stationary time series in practice is often unsatisfactory. 
ARIMA models make use of the differencing procedure 
to make the time series stationary. The differencing 
value is the difference between the current and the 
previous time. ARIMA (p,d,q) model consists of several 
components, which include AR (p), I (d), and MA (q). The 

ARIMA model can be written in backshift notation as:

(2)

where B is the backshift operator; ϕ(B) = 1 - ϕ1 B
1 - ϕ2 

B2 - ⋯ - ϕp B
p, and θ(B) = 1- θ1 B

1 - θ2 B
2 - ⋯ - θq B

q.

NEURAL NETWORK

In artificial neural networks, data set are divided into 
three sets named training, testing, and validation sets. 
The training set in which the neural network will learn 
the patterns displayed in the data. The testing set has 
a range of 10% to 30% of the training set (Sulafa Hag 
2014).  The purpose of the testing set is to assess a 
trained network on its ability to generalize. From here, 
the neural network(s) with the best performance on the 
testing set will be chosen. Finally, the validation set is 
used to verify the trained network’s performance.

 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) = 𝑛𝑛 ln 𝑛𝑛 (�̂�𝜎𝑒𝑒2

𝑛𝑛 ) + 𝑝𝑝 + 𝑝𝑝 ln 𝑛𝑛 (1) 

  𝜙𝜙(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑐𝑐 + 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 (2) 

  

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 (3) 

  

𝑌𝑌 = 𝑓𝑓 {𝑤𝑤𝑐𝑐𝑐𝑐 +∑𝑤𝑤ℎ𝑐𝑐𝑓𝑓 (𝑤𝑤𝑐𝑐ℎ +∑𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡−𝑗𝑗
𝑖𝑖

)
ℎ

} (4) 

 

FIGURE 1. Structure of a multi-layer perceptron

Figure 1 shows the structure of a MLP, which 
consists of three layers. The first layer of the neural 
network is the input layer, where the past observations of 
the time series are passed through. It communicates with 
the external environment, and a pattern is introduced to 
the neural network. The hidden layer is the intermediate 
layer that separates the input layer and the output 
layer. One hidden layer in the neural network with an 
adequate number of hidden neurons is competent for 
ANNs to generalize any continuous function (Dong et 

al. 2013). In increasing the number of hidden layers, the 
neural network will risk overfitting where each point is 
memorized instead of learning the general patterns. The 
time required for computations will also be longer. The 
output layer of the neural network will yield a future value 
to a time series problem.

A transfer function is a mathematical formula 
such the output of the processing neuron is calculated 
(Kaastra & Boyd 1996). It is put into use to avoid outputs 
from getting larger as the neural network can paralyze. 
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Therefore, the training is obstructed. The sigmoid 
function is the regular transfer function used for data 
involving time series, considering it is nonlinear and 
continuously differentiable for network learning. The 
sigmoid function is as follows:

(3)

The MLP model with a set of P input variables can be 
expressed through the formula:

(4)

where  wch is the weights for constant input and hidden 
neurons; wco is the weights of constant input and output; 
wih is the weights between inputs and hidden neurons; 
who  is the weights between hidden neurons and output; 
and f is the activation function. The stopping criteria can 
be divided into two, late stopping and early stopping. The 
idea of late stopping is that the neural network is trained 
as far as a particular error is attained (Dong et al. 2013). 
However, late stopping can lead to overfitting. Early 
stopping is effective in preventing overfitting, and it has 
been reported to be easily understood and is excellent in 
regularization (Lodwich et al. 2009).

LEVENBERG-MARQUARDT ALGORITHM

The Levenberg-Marquardt algorithm combines the 
gradient descent algorithm and Gauss-Newton method 
and serves as an intermediate optimization algorithm 
in neural network training (Kermani et al. 2005). 
The gradient descent algorithm applies the first-order 
derivative of the total error function to obtain the 
minimum in the error space. The gradient, 𝑔𝑔 can be 
defined as:

(5)

where E(x,w) is the sum of square error function and is 
computed by:

(6)

where x is the input vector; w is the weight vector; and 
ep,m is the training error at output m (from 1 to M) when 
applying pattern p (from 1 to P) and is defined as:

(7)

where d is the desired output vector; and o is the actual 
output vector. The parameter update rule of the gradient 
descent is performed using:

(8)

where k is the index of iterations; and α is the learning 
constant known as step size. Newton’s method involves 
an expansion of the gradient using a Taylor series which 
results to an equation in matrix form as below:

(9)

Gauss-Newton’s algorithm proposed the Jacobian matrix 
to simplify the analysis as follows:

(10)

The gradient vector, 𝑔𝑔 can also be written in terms of 
Jacobian matrix, J.

(11)

where e is the error vector. Thus, the Gauss-Newton 
algorithm’s parameter update rule is proposed as:

(12)

As a result, the parameter update rule of the Levenberg-
Marquardt algorithm is given by:

(13)

where μ is known as the combination coefficient and 
I is the identity matrix. The algorithm will employ 
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)
ℎ

} (4) 
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𝜕𝜕𝑤𝑤 = [ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

 ⋯ 𝜕𝜕𝜕𝜕
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]
𝑇𝑇
 (5) 
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[
−𝑔𝑔1
−𝑔𝑔2

⋮
−𝑔𝑔𝑁𝑁

] =

[
 
 
 
 
 
 
 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕1

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2
⋮

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁]

 
 
 
 
 
 
 

=

[
 
 
 
 
 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕1
2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕1𝜕𝜕𝜕𝜕2

⋯ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕1𝜕𝜕𝜕𝜕𝑁𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕𝑁𝑁𝜕𝜕𝜕𝜕𝑁𝑁

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁𝜕𝜕𝜕𝜕2

⋯ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝑁𝑁𝜕𝜕𝜕𝜕𝑁𝑁]
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∆𝜕𝜕2
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 𝜕𝜕𝑒𝑒1,1

𝜕𝜕𝑤𝑤1

𝜕𝜕𝑒𝑒1,1
𝜕𝜕𝑤𝑤2

⋯ 𝜕𝜕𝑒𝑒1,1
𝜕𝜕𝑤𝑤𝑁𝑁

𝜕𝜕𝑒𝑒1,2
𝜕𝜕𝑤𝑤1

⋮
𝜕𝜕𝑒𝑒1,𝑀𝑀
𝜕𝜕𝑤𝑤1

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,1
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑒𝑒𝑝𝑝,2
𝜕𝜕𝑤𝑤1

⋮
𝜕𝜕𝑒𝑒𝑝𝑝,𝑀𝑀
𝜕𝜕𝑤𝑤1
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𝜕𝜕𝑤𝑤2
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𝜕𝜕𝑤𝑤2
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𝜕𝜕𝑤𝑤2
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𝜕𝜕𝑒𝑒𝑝𝑝,𝑀𝑀
𝜕𝜕𝑤𝑤2

⋱

𝜕𝜕𝑒𝑒1,2
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𝜕𝜕𝑤𝑤𝑁𝑁
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⋮
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𝜕𝜕𝑤𝑤𝑁𝑁 ]
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Gauss-Newton algorithm when μ is very small or nearly 
zero and will approximate to gradient descent method 
when μ is very large with α = 1⁄μ. Thus, throughout the 
training process, the Levenberg-Marquardt algorithm 
switches between gradient descent and Gauss-Newton’s 
algorithms.

CONJUGATE GRADIENT METHOD

The conjugate gradient method is derived intermediately 
from gradient descent and Newton’s method. Given 
gradient descent algorithm, the step size is determined via 
the exact line search procedure, which can significantly 
be slow in most real-world problems, although it is 
best known as the simplest gradient method (Mina & 
Mohammad-Mehdi 2018). The conjugate gradient method 
is faster in convergence, and it is simple as well as less 
complex. The derivation is presented below.

(14)

where x has size n and 𝑄𝑄  is symmetric, positive definite 
and has size n × n. At the point of zero gradients, the 
minimum of f(x) is computed as:

(15)

Let d0, d0, …, d0 be a finite set of vectors, and it is 𝑄𝑄 
-orthogonal to each other if di

T 𝑄𝑄 dj = 0 for all i ≠ j. They 
are also linearly independent. Given a starting point x0 
and a Q-orthogonal set, the vector representing a move 
from x0 to x* is presented  by:

(16)

where α0, α1, …,αn-1 are scalars. The equation (16) is 
multiplied by di

T 𝑄𝑄  and with b = 𝑄𝑄 x will result in:

(17)

Since the set of vectors di is Q-orthogonal,

(18)

while ∇ f (xk) is denoted as 𝑔𝑔 k and 𝑔𝑔 k = b-𝑄𝑄 xk, it can be 
shown that:

(19)

If xk is defined as:

(20)

then an iterative expression for x is

(21)

Setting initial direction vector d0 equals to the negative 
gradient at the initial point, d0 = -𝑔𝑔 0. The successive 
directions, dk+1 are a linear combination of the current 
gradient and the previous direction, and is given by:

(22)

The successive directions, dk+1 are Q-orthogonal, thus:

(23)

As a result,

(24)

The summary of Conjugate Gradient Method is as 
follows: 1. At k = 1, the initial point x0 is selected. 2. 
𝑔𝑔 0 = ∇ f (x0) if 𝑔𝑔 0 = 0, stop. Else set d0 = -𝑔𝑔 0. 3. αk = -

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
 (24) 

The summary of Conjugate Gradient Method is as follows: 1. At 𝑘𝑘 = 1, the initial point 𝑥𝑥0 is 

selected. 2. 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0), if 𝑔𝑔0 = 0, stop. Else set 𝑑𝑑0 = −𝑔𝑔0. 3. 𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 4. 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘. 5. 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1), if 𝑔𝑔𝑘𝑘+1 = 0, stop. 6. 𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 7. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘. 8. If 𝑘𝑘 = 𝑛𝑛 − 1, stop else 𝑘𝑘 = 𝑘𝑘 − 1, go to step 3. 

 

 4. xk+1 = xk + ak dk. 5. 𝑔𝑔 k+1 = ∇ f (xk+1), if 𝑔𝑔 

k+1 = 0, stop. 6. βk = 

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
 (24) 

The summary of Conjugate Gradient Method is as follows: 1. At 𝑘𝑘 = 1, the initial point 𝑥𝑥0 is 

selected. 2. 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0), if 𝑔𝑔0 = 0, stop. Else set 𝑑𝑑0 = −𝑔𝑔0. 3. 𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 4. 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘. 5. 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1), if 𝑔𝑔𝑘𝑘+1 = 0, stop. 6. 𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 7. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘. 8. If 𝑘𝑘 = 𝑛𝑛 − 1, stop else 𝑘𝑘 = 𝑘𝑘 − 1, go to step 3. 

 

 7. dk+1 = 𝑔𝑔 k+1+ βk 
dk. 8. If k = n-1, stop else k = k-1, go to step 3.

PERFORMANCE EVALUATION

The error function standard for minimization in neural 
networks is the sum of squared error. Considering that the 
appropriate error measures for forecasting has not reached 
a consensus as reported by Zhang (2012), the mean 
squared error, MSE, and the mean absolute percentage 
error, MAPE, are recommended as the most appropriate 
measures for forecasting.

(25)

(26)

where Yt is the observation at time t and 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡)

2
𝑛𝑛

𝑡𝑡=1
 (25) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑

|𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡|
𝑌𝑌𝑡𝑡

𝑛𝑛

𝑡𝑡=1
× 100%, 𝑌𝑌𝑡𝑡 ≠ 0 (26) 

where 𝑌𝑌𝑡𝑡 is the observation at time 𝑡𝑡 and �̂�𝑌𝑡𝑡 is the predicted values. 

 

 is the predicted 
values.

 

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14) 

 

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15) 

 

𝑥𝑥∗ − 𝑥𝑥0 = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0
 (16) 

 

𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0) = ∑𝛼𝛼𝑖𝑖𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄
𝑛𝑛−1

𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17) 

 

 

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14) 

 

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15) 
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𝑛𝑛−1

𝑖𝑖=0
 (16) 
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𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17) 

 

 

𝑓𝑓(𝑥𝑥) = 1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14) 
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𝑖𝑖=0
𝑑𝑑𝑖𝑖 (17) 
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2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥 (14) 

 

∇𝑓𝑓(𝑥𝑥) = 𝑄𝑄𝑥𝑥 − 𝑏𝑏 = 0, 𝑄𝑄𝑥𝑥∗ = b (15) 
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𝑖𝑖=0
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𝑖𝑖=0
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𝛼𝛼𝑗𝑗 =
𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0)

𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄𝑑𝑑𝑗𝑗
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𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
𝑑𝑑𝑘𝑘𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
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𝑘𝑘−1

𝑗𝑗=0
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𝛼𝛼𝑗𝑗 =
𝑑𝑑𝑗𝑗𝑇𝑇(𝑏𝑏 − 𝑄𝑄𝑥𝑥0)

𝑑𝑑𝑗𝑗𝑇𝑇𝑄𝑄𝑑𝑑𝑗𝑗
 (18) 

 

𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
𝑑𝑑𝑘𝑘𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘

 (19) 
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 (19) 
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𝑘𝑘−1

𝑗𝑗=0
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𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘 (21) 

 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 (22) 

 

𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 = [−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘]𝑇𝑇𝑄𝑄𝑑𝑑𝑖𝑖 = 0 (23) 
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𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 = [−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘]𝑇𝑇𝑄𝑄𝑑𝑑𝑖𝑖 = 0 (23) 

 

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘
 (24) 

The summary of Conjugate Gradient Method is as follows: 1. At 𝑘𝑘 = 1, the initial point 𝑥𝑥0 is 

selected. 2. 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0), if 𝑔𝑔0 = 0, stop. Else set 𝑑𝑑0 = −𝑔𝑔0. 3. 𝛼𝛼𝑘𝑘 = − 𝑑𝑑𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 4. 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘. 5. 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1), if 𝑔𝑔𝑘𝑘+1 = 0, stop. 6. 𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑄𝑄𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘

𝑇𝑇𝑄𝑄𝑑𝑑𝑘𝑘⁄ . 7. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘. 8. If 𝑘𝑘 = 𝑛𝑛 − 1, stop else 𝑘𝑘 = 𝑘𝑘 − 1, go to step 3. 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡)

2
𝑛𝑛

𝑡𝑡=1
 (25) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑

|𝑌𝑌𝑡𝑡 − �̂�𝑌𝑡𝑡|
𝑌𝑌𝑡𝑡

𝑛𝑛

𝑡𝑡=1
× 100%, 𝑌𝑌𝑡𝑡 ≠ 0 (26) 

where 𝑌𝑌𝑡𝑡 is the observation at time 𝑡𝑡 and �̂�𝑌𝑡𝑡 is the predicted values. 
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RESULTS AND DISCUSSION

Among 11 air pollutants recorded from the continuous 
monitoring station, carbon monoxide (CO), ozone (O3), 
particulate matter diameter 10 (PM10) and Air Pollutant 
Index (API) were used in this study.  CO, O3 and PM10 
were the three main pollutants that affecting Malaysia’s 
air quality status. Meanwhile, the API was chosen in this 
study since the index is a simple and generalized method 
to assess the impact of air quality status on human health.

Figure 2(a) shows that the CO ACF dies down slowly 
as there were significantly large ACF values as the lag 
increases.  A similar ACF pattern is found in Figure 2(c) 
for the PM10 pollutant. Thus, the result indicates both 
data were non-stationary. On the other hand, O3 was 
stationary since, in Figure 2(b), the ACF dies down 
quickly as the lag increases. To model the data, stationary 
is required. Thus, the first level of differencing was used. 
The sample ACF and sample PACF of CO and PM10 after 
first differencing were shown in Figure 3.

FIGURE 2. ACF and PACF for CO, O3 and PM10

  
(a) Carbon Monoxide (CO) 

  
(b) Ozone (O3) 

  
(c) Particulate Matter diameter 10 (PM10) 

 

The values of p and q are limited up to order six 
as higher order models lead to higher values of BIC 
and restricted to the principle of parsimony; the smaller 
number of parameters is the best model. The best fitted 
model for CO was ARIMA (1,1,1), with the smallest 
BIC value of -121.45. For O3, ARIMA (1,0,1) has the 
smallest value of BIC of -2582.72, and that makes the 
best fitted model for O3 time series. Meanwhile, for PM10, 
the best fitted model obtained is ARIMA (2,1,2) with BIC 
of 3382.4. Thus, all the three models can be written as 
follows: 
i) CO

COt = 1.6928COt-1 - 0.6928COt-2 - 0.9468εt-1 + εt

ii) O3

O3𝑡𝑡  = 0.8663O3t-1 - 0.5404εt-1 + εt

iii) PM10

PM𝑃𝑃𝑃𝑃10𝑡𝑡  t  = 0.7992PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-1 + 0.7057PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-2 - 0.5049PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-3+ 
0.0482εt-1 - 0.8765εt-1 + εt

The API in Malaysia was developed based on 
the API introduced by the United States Environmental 
Protection Agency (USEPA) and is determined by the 
calculation of sub-indexes of five main pollutants, namely 



PM10, O3, CO, sulfur dioxide (SO2), and nitrogen dioxide 
(NO2). Since PM10, O3 and CO had a tremendous effect 
on the API readings, these pollutants are also used in 
modelling API as the input in MLP. Figure 4(a) indicates 
that the API data was non-stationary since the ACF dies 
down slowly. Thus, first differencing was computed and 

the new ACF and PACF were given in Figure 4(b). Based 
on Figure 4(b), the best model for API is ARIMA (1,1,1) 
which gives the smallest BIC value of 2916.98. Therefore, 
the model can be written as follow:

APIt = 1.6682APIt-1 - 0.6682APIt-2 - 0.9188εt-1 + εt

FIGURE 3. ACF and PACF for CO and PM10 after first differencing

  

(a) Carbon Monoxide (CO) 

  

(b) Particulate Matter diameter 10 (PM10) 

 

  
(a) Before differencing 

  
(b) After Differencing 

 

FIGURE 4. ACF and PACF for API before and after first differencing
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TABLE 1. MLP inputs based on ARIMA modelling

Type Variables Lagged variables

Explanatory variables CO COt, COt-1

O3 O3𝑡𝑡  t, O3𝑡𝑡  

PM10 PM𝑃𝑃𝑃𝑃10𝑡𝑡  t, PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-1, PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-2

Response variables API APIt

t-1

The MLP models was programmed in MATLAB 
Software. The selected input is based on ARIMA 
modelling given in Table 1. Data pre-processing was also 
carried out to describe the important relationships and 
to set up more uniform data in neural network training. 
All the data will undergo pre-processing by z-score 
normalization, where it uses the mean and standard 
deviation to transform each feature to have zero mean 
and unit variance. The advantage of z-score normalization 
is the effects of outliers in the data does not diminish. The 
data from January 2015 to Dec 2015 was split into 70% 
training, 15% validation, and 15% testing. On the other 

hand, the data in January 2016 was used to evaluate the 
ability of the model to forecast future values.

Seven lagged variables of CO, O3 and PM10 which 
include COt, COt-1, O3𝑡𝑡  t, O3𝑡𝑡  t-1, PM𝑃𝑃𝑃𝑃10𝑡𝑡  t, PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-1, and PM𝑃𝑃𝑃𝑃10𝑡𝑡  t-2 
were selected as MLP inputs while APIt served as MLP 
target. Seven inputs were used with different architectures 
under the two training algorithms: Levenberg-Marquardt 
and the conjugate gradient method. A single hidden layer 
with hidden neurons used was between two and ten. All 
the models were repeated 50 times with different initial 
values of weights, and the best model with the lowest 
value of MSE was taken. The result is shown in Table 2.

TABLE 2. Comparison of MLP models with different architecture

Algorithm Model Architecture
Performance

MSE MAPE

Levenberg-Marquardt

1 [7-2-1] 18.3174 4.4262
2 [7-4-1] 16.4634 4.2534
3 [7-6-1] 16.5208 4.1746
4 [7-8-1] 18.4410 4.4784
5 [7-10-1] 19.1623 4.2680

Conjugate gradient

6 [7-2-1] 18.9717 4.5014
7 [7-4-1] 16.7298 4.6122
8 [7-6-1] 18.4864 5.1317
9 [7-8-1] 17.7246 4.9169
10 [7-10-1] 17.6003 4.4648

TABLE 3. API forecasting performance

Model MSE MAPE
ARIMA 96.7395 23.4375
MLP

- LevenbergMarquardt 19.4273 8.5688
- Conjugate Gradient 19.6007 8.8220



 Based on Table 2, the Levenberg-Marquardt 
performed well under [7-4-1] architecture as it had 
the lowest MSE value of 16.4634 compared to other 
models. Similarly, the conjugate gradient method had 
its best performance under [7-4-1] architecture with 

MSE of 16.7298. The lowest MAPE value for Levenberg-
Marquardt and the conjugate gradient method was 
4.2534 and 4.6122, respectively. Since the consistency of 
the result obtained in [7-4-1] architecture, the developed 
models are then further used in forecasting, where the 
forecasting result is shown in Table 3.

FIGURE 5. Actual and forecast by Levenberg-Marquardt and conjugate gradient

 

(a) Levenberg-Marquardt 

 

(b) Conjugate Gradient 

 

 

(a) Levenberg-Marquardt 

 

(b) Conjugate Gradient 

 

 

(a) Levenberg-Marquardt 

 

(b) Conjugate Gradient 

 

Based on Table 3, modelling the API data with 
ARIMA (1,1,1) model has relatively high MSE and 
MAPE value for forecast error even though it is the 
best fitted model. The forecast error based on MAPE 
value indicates that the forecast is off by 23.4375%. 
For MLP modelling, it was found out that the well-
performed model using the Levenberg-Marquardt 
algorithm compared to the conjugate gradient method 
with its MSE value slightly lower. Similarly, in MAPE 
result. The forecast error was 8.5688% which mean as 
a highly accurate forecast, given that the MAPE is less 
than 10%. This is because the Levenberg-Marquardt is 
competent in training small and medium-sized networks 
(Yu & Wilamowski 2011). The actual values and forecast 
values from both Levenberg-Marquardt and the conjugate 
gradient method model were plotted, respectively, as 
shown in Figure 5. 

CONCLUSION

The air quality data from Putrajaya monitoring station 
in the year 2015 was used to forecast API using ARIMA 

and MLP models.  Using classical  Box-Jenkins 
methodology, the best parsimonious model suggested for 
predicting API future values was ARIMA (1,1,1) given its 
lowest BIC value. The classical ARIMA and MLP models 
were also compared to investigate their performance in 
prediction. MLP models were recommended over ARIMA 
models for forecasting as the results confirmed that 
forecast values by MLP models close to the actual values. 

On the other hand, various architectures of the 
MLP in terms of number of inputs, number of hidden 
neurons and training algorithm were used for fitting 
of the data as well as forecasting. It is essential to 
consider different MLP models such as the architectures, 
activation function, and initial weights to obtain a good 
fitting model that will converge and produce sensible 
predictions. When two inputs were used in MLP, the 
Levenberg-Marquardt algorithm had better performance 
than the conjugate gradient method.  Levenberg- 
Marquardt model was more suitable to build the forecast 
model with its small MSE and MAPE values. The MLP 
models were also fitted by using seven inputs. It is shown 
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that the training algorithm that best minimizes the error 
was the Levenberg-Marquardt algorithm. 

There is plenty of scopes that can be conducted by 
using ANN or MLP. One of the recommendations for 
future work is to study on other configuration parameters 
of the algorithms concerning the forecast accuracy. 
The choices of MLP architectures, training algorithms, 
activation function and appropriate configuration 
parameters must be selected carefully and greatly to 
produce the best fit model.
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