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ABSTRACT

In Thailand, flooding often occurs during the summer monsoon when many tropical storms affect the country. The 
motivation of this study was to plan for and mitigate the damage caused by flooding in the future. The confidence 
interval (CI) for the percentile of a precipitation dataset can be used to estimate the intensity of rainfall in a particular 
area whereas the CI for the difference between the percentiles of two datasets can be used to compare the rainfall 
intensities in two areas. To this end, the performances of several approaches to estimate the CI for the percentile and 
difference between the percentiles of delta-lognormal distributions were constructed and compared. These estimates 
were constructed based on the Bayesian (BS) and parametric bootstrap (PB) approaches, as well as two fiducial 
generalized confidence interval (FGCI) approaches. The performances of the methods were evaluated using Monte 
Carlo simulation, the results of which indicate that the PB approach for both CIs performed the best in all scenarios 
tested. Its suitability was confirmed via two illustrative examples using daily rainfall datasets for Chiang Mai and 
Lampang provinces in Thailand.
Keywords: Bayesian; delta-lognormal; fiducial generalized confidence interval; parametric bootstrap; rainfall

ABSTRAK

Di Thailand, banjir sering berlaku semasa monsun musim panas apabila banyak ribut tropika menjejaskan negara. 
Motivasi kajian ini adalah untuk merancang dan mengurangkan kerosakan akibat banjir pada masa hadapan. Selang 
keyakinan (CI) untuk persentil set data titisan boleh digunakan untuk menganggarkan keamatan curahan hujan di 
kawasan tertentu manakala CI untuk perbezaan antara persentil dua set data boleh digunakan untuk membandingkan 
keamatan curahan hujan di dua kawasan. Untuk tujuan ini, prestasi beberapa pendekatan untuk menganggarkan 
CI bagi persentil dan perbezaan antara persentil taburan delta-lognormal telah dibina dan dibandingkan. Anggaran 
ini telah dibina berdasarkan pendekatan Bayesian (BS) dan parametrik butstrap (PB) serta dua pendekatan selang 
keyakinan teritlak fidusial (FGCI). Prestasi kaedah telah dinilai menggunakan simulasi Monte Carlo yang hasilnya 
menunjukkan bahawa pendekatan PB untuk kedua-dua CI menunjukkan prestasi terbaik dalam semua senario yang 
diuji. Kesesuaiannya disahkan melalui dua contoh ilustrasi menggunakan set data curahan hujan harian untuk wilayah 
Chiang Mai dan Lampang di Thailand.
Kata kunci: Bayesian; curahan hujan; delta-lognormal; parametrik butstrap; selang keyakinan teritlak fidusial

INTRODUCTION

One of the major occupations in Thailand is farming, 
and the primary source of water for agricultural production 
is rainfall. As it is the most important factor influencing 

crop growth, lack of sufficient rainfall is a major limiting 
factor for agricultural output. On the contrary, in the 
middle of the rainy season in Thailand from May until 
October, heavy rain in northern Thailand (the largest 
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agricultural area in the country) can cause flooding 
and devastation. Thus, estimating rainfall dispersion in 
northern Thailand is important for water management 
in a sustainable manner. Daily rainfall data throughout 
the year in northern Thailand often contain a significant 
number of zero observations that follow a binomial 
distribution. Moreover, the remaining non-zero values 
are all positive and follow a lognormal distribution. Thus, 
by combining the two distributions, the daily rainfall data 
can be said to follow the delta-lognormal distribution 
first introduced by Aitchison and Brown (1966). The 
delta-lognormal distribution has been used to study 
rainfall dispersion by many researchers (Yosboonruang, 
Niwitpong & Niwitpong 2020, 2019; Maneerat, Nakjai 
& Niwitpong 2022; Maneerat, Niwitpong & Niwitpong 
2021; Thangjai, Niwitpong & Niwitpong 2022).

Estimating the parameters of a delta-lognormal 
distribution is an interesting problem, and both point and 
interval estimation have been applied to its parameters. 
For instance, Maneerat, Niwitpong and Niwitpong 
(2021) presented Bayesian (BS) estimates of the CIs for 
the mean and the difference between the means of delta-
lognormal distributions. Yosboonruang, Niwitpong and 
Niwitpong (2019) studied the dispersion of rainfall in 
Thailand by using BS methods to estimate the CI for the 
coefficient of variation of a delta-lognormal distribution. 
Yosboonruang and Niwitpong (2020) provided statistical 
inference based on the ratio of coefficients of variation 
of delta-lognormal distributions. To study rainfall 
dispersion in several areas in Thailand, Yosboonruang, 
Niwitpong and Niwitpong (2020) proposed BS 
methodology to estimate the CI for the difference 
between the coefficients of variation of delta-lognormal 
distributions and later used BS credible interval 
estimation for the common coefficient of variation of 
several delta-lognormal distributions (Yosboonruang, 
Niwitpong & Niwitpong 2022).
Although the mean and variance of a population are 
arguably the most important statistics, the percentile or 
quantile of the population can be more appropriate than 
either in some situations such as lifetime distributions 
because it is related to reliability functions. Thus, the 
2.5th and 97.5th percentiles of a distribution can be 
useful tools in this endeavor. For example, in medicine, 
the percentile can be used to explain the majority 
response, which is more important than the average 
response in some situations. Furthermore, the percentile 
can be used to compare a new drug with a standard 
drug or predecessor. In addition, in meteorology, the 
difference between two percentiles can be used to 
study the dispersion of rainfall in two different areas or 

during two different time intervals. Several statisticians 
have constructed estimates for the CI of the population 
percentile or population quantile. For instance, Reiss and 
Ruschendorf (1976) introduced the distribution-free 
outer CI for the quantile. Smith and Sedransk (1983) 
presented the lower bounds for confidence coefficients 
for the CI of a finite population quantile. Md et al. (1988) 
provided an estimate and tested hypotheses concerning 
the quantile function of a normal distribution. Padgett 
and Tomlinson (2003) estimated the lower confidence 
bounds for the percentiles of Weibull and Birnbaum-
Saunders distributions based on parametric bootstrap 
(PB) methods. Chakraborti and Li (2007) estimated the 
CI of the percentile of a normal distribution. Hasan and 
Krishnamoorthy (2018) proposed CI estimates for the 
mean and the percentile of zero-inflated lognormal data.

CI estimation for the difference between the 
percentiles of two or more populations has been provided 
by several researchers. For example, Mandel and 
Betensky (2008) proposed simultaneous CIs based on the 
percentile bootstrap approach. Hayter (2014) presented 
simultaneous CIs for several specified quantiles of an 
unknown distribution using their probabilities from a 
multinomial distribution. Balakrishnan et al. (2015) 
constructed CI estimates for the quantiles of a two-
parameter exponential distribution under progressive 
type-II censoring. Malekzadeh and Jafari. (2018) 
tested the equality of the quantiles of two-parameter 
exponential distributions under progressive type-II 
censoring. Navruz and Özdemir (2018) presented a 
quantile estimation method to compare two independent 
groups based on the percentile bootstrap approach. 
Jaithun, Niwitpong and Niwitpong (2018) estimated 
the difference in the percentiles of two delta-lognormal 
independent populations. Malekzadeh and Kharrati-
Kopaei (2020) constructed the simultaneous CIs for 
the differences between the quantiles of several two-
parameter exponential distributions under a progressive 
type-II censoring scheme. Moreover, several researchers 
have used the percentile or quantile to provide statistical 
inference when studying rainfall data (Chen et al. 2016; 
Lu et al. 2013; Reis & Stedinger 2005; Serinaldi 2009; 
Thangjai, Niwitpong & Niwitpong 2022).

In the present study, the CIs for the percentile 
and the difference between the percentiles of delta-
lognormal distributions are estimated using BS, PB, 
and two fiducial generalized confidence interval (FGCI) 
approaches. The BS approach is based on the prior 
distribution, the PB is based on the sampling distribution, 
and the FGCI approaches are based on the fiducial 
generalized pivotal quantities (FGPQs) of the parameter. 
The estimation methods for the CIs for the percentile 
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and difference between percentiles of delta-lognormal 
distributions were applied to study rainfall data from 
Chiang Mai and Lampang provinces, Thailand.

CI ESTIMATION FOR THE PERCENTILE

In statistical application, the true zero value and the 
positive value can be observed. The data containing 
true zero and positive values are the delta-lognormal 
distribution. For true zero value, the number of true zero 
observed value defined by (0)n  has a binomial distribution 
with the probability of zero observation 1′δ = − δ . For 
positive value, the number of positive observed value 
defined by (1)n  has a log-normal distribution with the 
probability of positive observation δ . The sample of 
size is defined by (0) (1)n n n= + . Let 1 2 nX (X ,X ,...,X )=  
be a non-negative random sample drawn from the delta-
lognormal distribution with parameters mean µ, variance 

2σ , and probability of obtaining the positive observation 
δ. Moreover, let 1 2 nx (x , x ,..., x )=  be the observed value 
of 1 2 nX (X ,X ,...,X )= . The distribution function of delta-
lognormal distribution is denoted by

                                                                              
,                                                	 (1)

where 2
jF(x ; , )µ σ  is  the log-normal cumulative 

distribution function and j 1, 2,..., n= . 
Let Y ln(X)= be independent log-transformed 

l o g n o r m a l  r a n d o m  v a r i a b l e s .  A s s u m e  t h a t 
1 2 nY (Y ,Y ,...,Y )=  is the normal distribution with mean 

µ  and variance 2σ .  Let Y and 2S  be the estimators of 
mean and variance, respectively. Moreover, let (1)Y  and 

2
(1)S  be the estimators of mean and variance based on 

the log-transformed positive observations. Also, y , (1)y
, 2s , and 2

(1)s  are observed values of Y, 
(1)Y , 2S , and 2

(1)S
, respectively.

Let pq  be the p th quantile of the delta-lognormal 
distribution. From Equation (1), that is  2

pG(q ; , , ) pµ σ δ =
The quantile of the delta-lognormal distribution can be 
written as

                                             
(2)

where Φ  is the standard normal distribution function.

	 To simplify estimation, let 1
p

p
1

− ′− δ λ = µ +Φ σ ′− δ 
. 

The estimator of the quantile is defined by
	                                                  

(3)

FGCI approach for the percentile

The generalized confidence interval (GCI) approach uses 
the generalized pivotal quantity (GPQ) to construct the 
CI and to examine the hypothesis testing. Similarly, the 
FGCI approach uses the FGPQ to construct the CI and to 
examine the hypothesis testing. The FGPQ is subclass 
of the GPQ.
Definition Let 1 2 nY (Y ,Y ,...,Y )=  be the random variable 
with the probability density function 2f (y; , , )′µ σ δ  
where µ ,  2σ ,  and ′δ  are unknown parameters. 
Let  1 2 ny (y , y ,..., y )=  be the observed value of 

1 2 nY (Y ,Y ,...,Y )= .  In  other  words, 1 2 ny (y , y ,..., y )=  
is known after the data have been collected. The 
FGPQ is a function of Y, y, µ, 2σ , and ′δ , denoted 
by 2R(Y; y, , , )′µ σ δ .  I t  satisfies the following two 
conditions (Hannig et al. 2006):
1. The conditional distribution of 2R(Y; y, , , )′µ σ δ at 
Y y=  is free of the nuisance parameter. 
2. The value of 2R(Y; y, , , )′µ σ δ at Y y=  is the parameter 
of interest.

The 100(1 )%−α  CI for parameter of interest can 
be constructed using the quantile of 2R(Y; y, , , )′µ σ δ
Therefore, the 100(1 )%−α two-sided CI is [R( / 2),R(1 / 2)]α −α 

[R( / 2),R(1 / 2)]α −α ,where [R( / 2),R(1 / 2)]α −αand [R( / 2),R(1 / 2)]α −α  denote the 
[R( / 2),R(1 / 2)]α −α-th and [R( / 2),R(1 / 2)]α −α -th quantile of 2R(Y; y, , , )′µ σ δ , 

respectively.
In this paper, we proposed two FGCIs approaches 

based on the difference of FGPQs. First, the FGCI 
approach based on fiducial quantity, denoted by FGCI1 
approach, was presented. Second, the FGCI approach 
based on optimal generalized fiducial quantity, defined 
by FGCI2 approach, was showed. 
	 For FGCI1 approach, the FGPQ for pλ  is given by

                                                                       ,           (4)

where Z denotes the standard normal distribution; and 
(1)U  denotes the chi-squared distribution with (1)n 1−  

degrees of freedom (Appendix 1).
The 100(1 )%−α  two-sided CI for pλ based on the 

FGCI approach using fiducial quantity is

                                                                                ,  (5) 

j2
2j

j j

; x 0
G(x ; , , )

F(x ; , ); x 0
′δ =

µ σ δ =  ′δ + δ µ σ >
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,                                                        (2) 
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where 
p

R ( / 2)λ α  and 
p

R (1 / 2)λ −α  denote the 100( / 2)α
-th and 100( / 2)α -th percentiles of 

p
R ( / 2)λ α, respectively.

Therefore, the 100(1 )%−α  two-sided CI for the 
quantile based on the FGCI approach using fiducial 
quantity is

                                                                                 , (6)     

where .FGCI1Lλ  and .FGCI1Uλ
 are defined in Equation (5).

For FGCI2 approach, let 
p.m

Rλ be the FGPQ for pλ . 
Therefore, the FGPQ for pλ is given by
                                                     

  (7)

where Z denotes standard normal distribution, (1)U  
denotes chi-squared distribution with (1)n 1−  degrees of 
freedom (Appendix 2). 

The 100(1 )%−α two-sided CI for pλ based on the 
FGCI approach using the optimal generalized fiducial 
quantity is

                                                                                 ,  (8)     

where 
p.m

R ( / 2)λ α  and 
p.m

R (1 / 2)λ −α  denote the 100( / 2)α  
-th and 100( / 2)α  -th percentiles of 

p.m
Rλ , respectively.

Therefore, the 100(1 )%−α two-sided CI for the 
quantile based on the FGCI approach using the optimal 
generalized fiducial quantity is

, (9)     

where .FGCI2Lλ  and .FGCI2Uλ  are defined in Equation (8).

BS approach for the percentile
The BS approach uses the posterior distribution to 
construct the Bayesian confidence interval (BSCI). The 
posterior distribution for 2σ  and µ were used to estimate 
the posterior distribution for pλ . 

Let 1(Q )−
ηΦ  be the quatile function of the Qη  

and let (1)U  be the chi-squared distribution with (1)n 1−  
degrees of freedom. Also, let Z be the standard normal 
distribution. The posterior distribution of pλ  is defined by

                                                                     ,           (10)

where 2σ and µ  are 2 | yσ  and 2| , yµ σ , respectively 
(Appendix 3).

The 100(1 )%−α two-sided CI for pλ based on the 
BS approach is

                                                             ,                                                                                               (11)  
   
where .BSLλ  and .BSUλ  denote the lower and upper limits 
of the shortest 100(1 )%−α highest posterior density 
interval of pλ , respectively.

Therefore, the 100(1 )%−α two-sided CI for the 
quantile based on the BS approach is

                                                                               ,  (12)  

where .BSLλ and .BSUλ  are defined in Equation (11).

PB approach for the percentile
The PB approach uses the random sampling with 
replacement. Let * * * *

1 2 nX (X ,X ,...,X )=  be the sample 
with replacement from 1 2 nX (X ,X ,...,X )= . Moreover, 
let * * * *

1 2 nx (x , x ,..., x )=  be the observed values of 
* * * *

1 2 nX (X ,X ,...,X )= .  Suppose that *X and *s are the 
sample mean and sample standard deviation, respectively. 
Moreover, *x and *s are the observed values of *X
and *s , repectively. Let * *Y ln(X )=  be independent 
log-transformed lognormal random variables. Suppose 
that *

(1)Y  and *
(1)S  denote the estimators of mean and 

standard deviation based on the log-transformed positive 
observations. Moreover, *

(1)y  and *
(1)s  are observed values 

of *
(1)Y  and *

(1)S , respectively.
The parametric bootstrap confidence interval (PBCI) 

based on the fiducial quantity were constructed. Let 
1 *(Q )−

ηΦ  be the quatile function of *Qη . The estimator 
of *

pλ  is  
                
                                                                         ,                   (13)

(Appendix 4).
The sampling distribution is evaluated with m 

bootstrap statistics. Suppose that *
pλ̂  and *

p
ˆsd( )λ  denote 

the mean and standard deviation of *
pλ̂ , respectively. The 

lower and upper bounds for pλ are defined by

                                                                                     (14)

and

                                                                 
,               (15)

where 1 /2z −α  is the 100(1 / 2)−α -th percentile of the 
standard normal distribution.

The 100(1 )%−α two-sided CI for pλ based on the 
PB approach is

2
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 
 
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 
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,      

FGCI1 FGCI1 FGCI1 .FGCI1 .FGCI1CI [L , U ] [exp(L ),exp(U )]λ λ= =

p.m p.m.FGCI2 .FGCI2[L , U ] [R ( / 2),R (1 / 2)]λ λ λ λ= α −α

FGCI2 FGCI2 FGCI2 .FGCI2 .FGCI2CI [L , U ] [exp(L ),exp(U )]λ λ= =

12
(1)

p
(1) (1)

Z (Q ) n

n U

−


 +   = +
 
 

  

.BS .BS .BSCI [L , U ]λ λ λ=

BS BS BS .BS .BSCI [L , U ] [exp(L ),exp(U )]λ λ= =

( )* * 1 * *
p (1) (1)

ˆ Y Q S−
ηλ = +Φ

* *
.PB p 1 /2 p

ˆ ˆL z sd( )λ −α= λ − λ

* *
.PB p 1 /2 p

ˆ ˆU z sd( )λ −α= λ + λ
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                                                                  ,              (16) 

where .PBLλ  and .PBUλ  are defined in Equations (14) and 
(15), respectively.

Therefore, the 100(1 )%−α  two-sided CI for the 
quantile based on the PB approach is

                                                                             ,  (17) 
 
where .PBLλ nd .PBUλ  are defined in Equation (16).

CI ESTIMATION FOR THE DIFFERENCE BETWEEN THE 
PERCENTILES 

For two populations,  for  f irst  population,  let 
11 11 12 1nX (X ,X ,...,X )= be non-negative random sample 

of size 1n  from the delta-lognormal distribution with 
parameters mean 1µ , variance 2

1σ , and probability 
of obtaining the positive observation 

1δ , where 
1 1(0) 1(1)n n n= + ,  1(0)n  is the number of true zero 

observed value, and 1(1)n  is the number of positive 
observed value. Moreover, let 1 11′δ = − δ  be the 
probability of zero observation. For second population,  
let 

22 21 22 2nX (X ,X ,...,X )=  be non-negative random 
sample of size 2n  from  the delta-lognormal distribution 
with parameters mean 2µ , variance 2

2σ , and probability 
of obtaining the positive observation 2δ , where 

2 2(0) 2(1)n n n= + , 2(0)n  is the number of true zero 
observed value, and 2(1)n  is the number of positive 
observed value. Moreover, let 2 21′δ = − δ  be the 
probability of zero observation.

Let 1 1Y ln(X )=  and 2 2Y ln(X )=  be independent 
log-transformed lognormal random variables. Let 

1Y , 2Y , 2
1S , and 2

2S  be the estimators of mean and 
variance for population 1 and population 2, respectively. 
Moreover, let 1(1)Y , 2(1)Y , 2

1(1)S  and 2
2(1)S  be the estimators 

of mean and variance based on the log-transformed 
positive observations for population 1 and population 2, 
respectively. Also, 1y , 2y , 1(1)y , 2(1)y , 2

1(1)S , 2
2(1)S , 2

2(1)S2
1(1)s  and 

2
1(1)S2
2(1)s  are observed values of 1Y , 2Y , 1(1)Y , 2(1)Y , 2

1(1)S , 2
2(1)S , 2

1(1)S
and 2

2(1)S , respectively.
	 The estimator of the difference of quantiles is defined 
by

                       				     
,          (18)

where 

1 2 1 2p p p p
ˆ ˆ ˆˆ ˆq q exp( ) = − =  − ,                                                                        (18) 

where 
1

1 1 1
p 1(1) 1(1)

1

pˆ Y S
1

−  − 
 = +  −  

 and 
2

1 2 2
p 2(1) 2(1)

2

pˆ Y S
1

−  − 
 = +  −  

. 

 

FGCI approach for the difference between the percentiles 

Here, the FGCI approaches based on fiducial quantity and optimal generalized fiducial quantity 
were presented. For the FGCI approach based on fiducial quantity. The FGPQs for 

1p  and 

2p  are given by 

2
1 1

p 11

1
1 1(1)

1(1) 1(1)

R Z (Q ) n
R R

n U

−
 

 

 +
 = +
 
 

                                                        (19) 

and 

2
2 2

p 22

1
2 2(1)

2(1) 2(1)

R Z (Q ) n
R R

n U

−
 

 

 +
 = +
 
 

,                                                      (20) 

(Appendix 5). 

Therefore, the FGPQ for 
1 2p p −  is given by 

p p p1 2D.R R R  = − ,                                                                                             (21) 

where 
p1

R  and 
p2

R  are defined in Equations (19) and (20), respectively. 

The 100(1 )%−  two-sided CI for 
1 2p p −  based on the FGCI approach using fiducial 

quantity is 

p pD. .FGCI1 D. .FGCI1 D. D.[L , U ] [R ( / 2),R (1 / 2)]   =  − ,                                          (22)   

 

 and

FGCI approach for the difference between the percentiles

Here, the FGCI approaches based on fiducial quantity 
and optimal generalized fiducial quantity were presented. 
For the FGCI approach based on fiducial quantity. The 
FGPQs for 

1pλ  and 
2pλ  are given by

                                              
         

 (19)

and
                             
                                                                            ,    (20)
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(Appendix 6).
Therefore, the FGPQ for 

1 2p pλ −λ  is given by

                                                                
,                (26)

where 
p.m1

Rλ  and 
p.m 2

Rλ  are defined in Equations (24) and 
(25), respectively.

The 100(1 )%−α  two-sided CI for 1 2p pλ −λ based on 
the FGCI approach using the optimal generalized fiducial 
quantity is
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100( / 2)α -th and 100(1 / 2)−α -th percentiles of 
p.mD.R λ  

respectively.
Therefore, the 100(1 )%−α two-sided CI for the 

difference between quantiles based on the FGCI approach 
using the optimal generalized fiducial quantity is
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where D. .FGCI2L λ  and D. .FGCI2U λ  are defined in Equation 
(27).

BS approach for the difference between the percentiles
Let 
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2
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1
Qη  

and 
2

Qη . Moreover, let 1(1)U  and 2(1)U  be the chi-squared 
distributions with 1(1)n 1−  and 2(1)n 1−  degrees of 
freedom. Suppose that 1Z  and 2Z  denote the standard 
normal distributions. The posterior distributions of 

1pλ  
and 

2pλ  are defined by
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2µ  is 2
2 2 2| , yµ σ  (Appendix 7).

Therefore, the posterior distribution for 
1 2p pλ −λ

is given by
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where 
1 2p p pλ = λ −λ
 
and 

1 2p p pλ = λ −λ are defined in Equations (29) and (30), 
respectively.

The 100(1 )%−α two-sided CI for 
1 2p pλ −λ based 

on the BS approach is
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where D. .BSL λ  and D. .BSU λ  denote the lower and upper 
limits of the shortest 100(1 )%−α highest posterior 
density interval of pλ , respectively.

Therefore, the 100(1 )%−α two-sided CI for the 
difference between quantiles based on the BS approach 
is
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where D. .BSL λ  and D. .BSU λ  are defined in Equation (32).
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(Appendix 8).
Therefore, the estimator for 

1 2p pλ −λ  is given by

                                                            ,                    (36)

where 
1

*
pλ̂  and 

2

*
pλ̂  are defined in Equations (34) and 

(35), respectively.
Let *

pλ̂  and *
p

ˆsd( )λ be the mean and standard 
deviation of *

pλ̂ , respectively. The lower and upper 
bounds for 

1 2p p pλ = λ −λ  are defined by

                                                                                   (37)

and
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where 1 /2z −α  is the 100(1 / 2)−α -th percentile of the 
standard normal distribution.
The 100(1 )%−α  two-sided CI for 

1 2p pλ −λ  based on 
the PB approach is

                                                                      ,          (39) 

where D. .PBL λ  and D. .PBU λ are defined in Equations (37) 
and (38), respectively.

Therefore, the 100(1 )%−α  two-sided CI for the 
difference between quantiles based on the PB approach 
is

D.PB D.PB D.PB D. .PB D. .PBCI [L , U ] [exp(L ),exp(U )]λ λ= =

                                                                        ,        (40)     

where D. .PBL λ  and D. .PBU λ are defined in Equation (39).

RESULTS

The performances of all four approaches were examined 
via a Monte Carlo simulation study using the RStudio 
programming suite. The metrics used in the comparison 
were the coverage probability (CP) and average length 
(AL). In this study, the nominal confidence level was 
set as 0.95. Therefore, the one with the CP in the range 
[0.9440,0.9560] and with the shortest AL was selected as 
the most suitable. For each simulation, 3,000 runs were 
generated and 1,500 repetitions were carried out.

To test the confidence limit estimates for the 
percentile of a delta-lognormal distribution, data were 
generated with a sample size of 10, 30, 50, or 100; 
a population mean of 1.00; a population variance of 
0.10, 0.30, 0.50, 0.70, or 1.00; and the probability of 
obtaining positive observations as 0.10, 0.30, or 0.50. The 
performances were presented in Table 1 and displayed 
in Figures 1 - 3. Table 1 displays the ranks of ALs of the 
95% two-sided CIs for the percentile of delta-lognormal 
distribution from smallest to largest. From the simulation 
results, the PB approach produced satisfactory results 
in terms of the CP in all scenarios studied. Meanwhile, 
the CP results for the BS and two FGCI approaches were 
conservative because they were close to 1.00. Figures 1 - 3 
present the CPs and the ALs of the CIs for the percentiles, 
corresponding to various sample sizes, probabilities of 
non-zero values, and variances, respectively. Based on 
the simulation results presented in Figure 1, it can be 
observed that the CPs of all approaches were close to 
1.00 as the sample size increased. Furthermore, the ALs 
of all approaches decreased as the sample size increased. 
According to Figure 2, the CPs of all approaches were 
close to 1.00 as the probability of non-zero values 
increased. Additionally, the ALs of all approaches were 
greatest when the probability of a non-zero value was 
equal to 0.30, in comparison to the probabilities of 
non-zero values being equal to 0.10 and 0.50. Based on 
Figure 3, the CPs of all approaches were close to 1.00 
as the variance increased. Furthermore, the ALs of all 
approaches increased with the variance.

For the difference between the percentiles of two 
delta-lognormal distributions, the sample sizes were set 
as (10,10), (30,30), (10,30), (50,50), (30,50), (100,100), 
or (50,100); the population means were fixed as 
(1.00,1.00); and the population variances were assigned 
as (0.50,0.50), (0.50,1.00), (1.00,1.00), (1.00,2.00), or 
(2.00,2.00). The performances were showed in Table 2 
and displayed in Figures 4 - 6. Table 2 shows the ranks of 
ALs of the 95% two-sided CIs for the difference between 
the percentiles of delta-lognormal distributions from 
smallest to largest. From the simulation results, although 
the CPs of all four approaches were conservative, the PB 
approach performed better than the other approaches 
in terms of the shortest AL. Figures 4 - 6 present the 
CPs and the ALs of the CIs for the difference between 
the percentiles, corresponding to various sample 
sizes, probabilities of non-zero values, and variances, 
respectively. Based on Figure 4, it is evident that the 
CPs of all approaches were close to 1.00 as the sample 
sizes increased. Furthermore, the ALs of all approaches 
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were higher for the sample sizes (10,10) and (10,30) in 
comparison to the other sample sizes. According to Figure 
5, the CPs of all approaches were close to 1.00 as the 
probabilities of non-zero values increased. Additionally, 

the ALs of all approaches increased as the probabilities of 
non-zero values increased. From Figure 6, it is apparent 
that the CPs of all approaches were close to 1.00 as the 
variance increased. Moreover, the ALs of all approaches 
increased with the variances.

TABLE 1. The ranks of ALs of the 95% two-sided CIs for the percentile of delta-lognormal distribution

n µ δ
Rank

FGCI1CI FGCI2CI BSCI PBCI
10 1.00 0.10 0.10 3 4 2 1

0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.30 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.50 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

30 1.00 0.10 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.30 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.50 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

50 1.00 0.10 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.30 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.50 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

2σ
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n µ δ
Rank

FGCI1CI FGCI2CI BSCI PBCI
100 1.00 0.10 0.10 3 4 2 1

0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.30 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

0.50 0.10 3 4 2 1
0.30 3 4 2 1
0.50 3 4 2 1
0.70 3 4 2 1
1.00 3 4 2 1

TABLE 2. The ranks of ALs of the 95% two-sided CIs for the difference between the percentiles of delta-lognormal distributions

1 2(n , n ) 1 2( , )µ µ 1 2( , )δ δ 2 2
1 2( , )σ σ

Rank

D.FGCI1CI D.FGCI2CI D.BSCI D.PBCI
(10,10) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1

(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 1 2
(2.00,2.00) 2 3 1 4

(0.30,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 1 2
(2.00,2.00) 3 4 2 1

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

(30,30) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1
(0.50,1.00) 2 4 3 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 2 3 4 1
(2.00,2.00) 3 4 2 1

(0.30,0.50) (0.50,0.50) 2 4 3 1
(0.50,1.00) 3 2 4 1
(1.00,1.00) 2 4 3 1
(1.00,2.00) 3 1 4 2
(2.00,2.00) 2 4 3 1

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 2 4 3 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 2 4 3 1
(2.00,2.00) 3 4 2 1

(10,30) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
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1 2(n , n ) 1 2( , )µ µ 1 2( , )δ δ 2 2
1 2( , )σ σ

Rank

D.FGCI1CI D.FGCI2CI D.BSCI D.PBCI
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

(0.30,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 2 3 1 4

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

(50,50) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1
(0.50,1.00) 2 3 4 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 2 3 4 1
(2.00,2.00) 3 4 2 1

(0.30,0.50) (0.50,0.50) 4 2 3 1
(0.50,1.00) 3 1 4 2
(1.00,1.00) 4 2 3 1
(1.00,2.00) 3 1 4 2
(2.00,2.00) 3 2 4 1

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 2 4 3 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 2 3 3 1
(2.00,2.00) 3 4 2 1

(30,50) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

(0.30,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 4 2 3 1
(1.00,1.00) 4 3 2 1
(1.00,2.00) 4 2 3 1
(2.00,2.00) 3 4 2 1

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

(100,100) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 2 4 1
(2.00,2.00) 3 4 2 1

(0.30,0.50) (0.50,0.50) 4 2 3 1
(0.50,1.00) 3 1 4 2
(1.00,1.00) 4 1 3 2
(1.00,2.00) 2 1 4 3
(2.00,2.00) 4 1 3 2

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 2 4 3 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 2 4 1
(2.00,2.00) 3 4 2 1
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Rank

1 2(n , n ) 1 2( , )µ µ 1 2( , )δ δ 2 2
1 2( , )σ σ

(50,100) (1.00,1.00) (0.30,0.30) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

(0.30,0.50) (0.50,0.50) 4 3 2 1
(0.50,1.00) 4 2 3 1
(1.00,1.00) 4 3 2 1
(1.00,2.00) 4 1 3 2
(2.00,2.00) 4 2 3 1

(0.50,0.50) (0.50,0.50) 3 4 2 1
(0.50,1.00) 3 4 2 1
(1.00,1.00) 3 4 2 1
(1.00,2.00) 3 4 2 1
(2.00,2.00) 3 4 2 1

FIGURE 1. Comparison of the CPs and the ALs of the CIs for the percentile 
according to sample sizes

FIGURE 2. Comparison of the CPs and the ALs of the CIs for the percentile 
according to probabilities of non-zero values

D.FGCI1CI D.FGCI2CI D.BSCI D.PBCI
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FIGURE 3. Comparison of the CPs and the ALs of the CIs for the percentile 
according to variances

FIGURE 4. Comparison of the CPs and the ALs of the CIs for the difference 
between the percentiles according to sample sizes

FIGURE 5. Comparison of the CPs and the ALs of the CIs for the difference 
between the percentiles according to probabilities of non-zero values
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EMPIRICAL APPLICATION

The proposed approaches were applied to rainfall data 
reported by the Thai  Meteorological Department in 
Chiang Mai and Lampang provinces collected daily 
from 1-25 July 2022 (Table 3). The statistics for both 
datasets are reported in Table 4.

Although the rainfall data consists of both zero 
and positive observations, the normal, lognormal, 
gamma, and exponential distributions can be used 
to model the positive observations and the Akaike 
information criterion (AIC) can be used to test their 
suitability. For the non-zero rainfall observations for 
both Chiang Mai and Lampang provinces, the AIC 
values using the lognormal distribution were the lowest 
(Table 5), indicating that it is the most suitable. To 
verify this, the histograms and the QQ-plots of the log-
transformed rainfall datasets indicate that they follow 
normal distributions. Therefore, the delta-lognormal 
distribution is the most suitable for modeling the 
complete (zero and non-zero observations) rainfall 
datasets for Chiang Mai and Lampang provinces.

The 95% two-sided CI for the percentile of the 
rainfall data in Chiang Mai province was estimated by 
using the proposed approaches, which are as follows: 

FGCI1CI =  [9.2759,251.0364] with an interval length 
of 241.7605, FGCI2CI =  [10.0032,286.8422] with an 
interval length of 276.8390, BSCI =  [8.7965,216.0393] 
with an interval length of 207.2428, and PBCI =  
[8.0078,132.0641] with an interval length of 124.0563. 
The lower and upper limits of the 95% confidence 
interval are the 2.50-th and 97.50-th percentiles of 
the rainfall data distribution in Chiang Mai province.

Similar ly,  the  95% two-s ided CI  for  the 
percentile of the rainfall data from Lampang province 

was estimated by using the proposed approaches, 
which are as follows: FGCI1CI =  [7.3141,1208.6890] 
with an interval length of 1201.3749, FGCI2CI =  
[10.6687,1548.6930] with an interval length of 
1538.0243, BSCI =  [6.7923,553.5088] with an interval 
length of 546.7165, and PBCI =  [5.6766,266.0651] with 
an interval length of 260.3885. The lower and upper 
limits of the 95% confidence interval correspond to the 
2.50-th and 97.50-th percentiles of the distribution of 
rainfall data in Lampang province.

Finally, the 95% two-sided CI estimates for the 
difference between the percentiles of the two rainfall 
datasets by using the proposed methods are D.FGCI1CI = 
[0.0370,11.4392] with an interval length of 11.4022, 

D.FGCI2CI =  [0.0223,11.1240] with an interval length of 
11.1017, D.BSCI =  [0.0475,18.0370] with an interval 
length of 17.9895, and D.PBCI =  [0.0756,9.1350] with 
an interval length of 9.0594. The lower and upper limits 
of the 95% confidence interval correspond to the 2.50-th 
and 97.50-th percentiles of the rainfall data dispersion 
between Chiang Mai and Lampang provinces.

It can be seen that the ALs of the PB approach were 
the lowest, and thus the empirical application results 
are in accordance with the simulation study results.

DISCUSSION

The CIs for the percentile and the difference between 
the percentiles of delta-lognormal distributions were 
constructed using two FGCI approaches, as well as BS and 
PB approaches. Each has its advantages when deriving 
the CI for the parameter of interest of a distribution 
(the percentile of a delta-lognormal distribution in our 
case). Notably, as the two FGCI approaches are based 
on FGPQs, their performances were similar. Moreover, 

FIGURE 6.  Comparison of the CPs and the ALs of the CIs for the difference 
between the percentiles according to variances
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TABLE 3. The rainfall data of Chiang Mai and Lampang provinces

Province Rainfall data (mm)

Chiang Mai

2.0 14.2 2.6 0.3 13.3

0.2 1.6 0.5 0.0 45.7

0.0 10.9 18.6 0.0 7.1

0.0 1.7 16.8 4.6 0.0

7.7 0.5 2.0 0.3 0.8

Lampang

1.3 0.1 0.0 0.0 7.7

0.0 0.0 1.6 0.0 23.6

0.0 0.4 5.0 0.0 0.4

0.0 2.8 36.6 38.3 0.0

1.4 29.2 1.2 0.0 0.0

Source: Thai Meteorological Department (https://www.tmd.go.th/climate/climate.php)

TABLE 4. Sample statistics of Chiang Mai and Lampang provinces

Statistics Chiang Mai province Lampang province

in 25 25

i(1)n 20 14

i(0)n 5 11

i(1)y 1.02 1.11

2
i(1)s 2.57 3.50

             TABLE 5. The AIC values of Chiang Mai and Lampang provinces

Distribution Chiang Mai province Lampang province

Normal 154.9514 117.4884

Log-Normal 119.5096 91.3952

Gamma 121.1135 92.4712

Exponential 121.9677 95.3294



	 	 3287

the BS approach is based on the prior distribution while 
the PB approach is based on the sampling distribution.

From the simulation study and empirical application 
results, it can be concluded that the PB approach is the 
best method for estimating the CIs for the percentile of 
a single delta-lognormal distribution and the difference 
between the percentiles of two delta-lognormal 
distributions. This conclusion is similar to those reported 
by Dunn (2001), Thangjai and Niwitpong (2020), 
Thangjai and Niwitpong (2022), and Tian et al. (2022).

CONCLUSIONS

The CIs for the percentile of a single delta-lognormal 
distribution and the difference between the percentiles 
of two delta-lognormal distributions were estimated by 
using two FGCI approaches, as well as the BS and PB 
approaches. The results of both simulation and empirical 
studies indicate that the PB approach performed the 
best in terms of the AL for both CIs. Therefore, the PB 
approach can be recommended to estimate the CIs for 
the percentile and the difference between percentiles 
of delta-lognormal distributions. In the future, we will 
provide statistical inference by using the percentiles for 
other distributions.
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APPENDIX 1

For FGCI1 approach, Hasan and Krishnamoorthy 
(2018) proposed the FGPQ based on fiducial quantity. 
The FGPQs for µ, σ2, and δ' are used to estimate the FGPQ 
for λp. The FGPQ for µ as given by

                                                                       

,	
						       

where Z denotes standard normal distribution and (1)U  
denotes chi-squared distribution with (1)n 1−  degrees of 
freedom.

Moreover, the FGPQ for σ2 is defined by

                                                           ,			 
		                                        
where (1)U denotes chi-squared distribution with (1)n 1−  
degrees of freedom.

Suppose that 
(0) (1)n 0.5,n 0.5B + +  denotes the beta random 

variable with shape parameters (0)n 0.5+  and (1)n 0.5+ . 
Let R ′δ  be the probability distribution of the 

(0) (1)n 0.5,n 0.5B + +

random variable whose values are bounded above by p. 
Let V be the uniform distribution over the interval (0,1). 
Let p be the percentile. Let (0) (1)H(p;n 0.5,n 0.5)+ +  be the 
beta distribution function with shape parameters (0)n 0.5+
and (1)n 0.5+ . Suppose that

2
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denotes the quatile function for the beta distribution 
with (0) (1)VH(p;n 0.5,n 0.5)+ +  and (0) (1)n 0.5,n 0.5+ + . 
The FGPQ for δ' is given by

                                                                                       .                                   

Suppose that 1(Q )−
ηΦ  is the quatile function of the

Qη  which is defined by

                                                              .
                    
Therefore, the FGPQ for λp is given by

                                                                          

,                               
                               

where Z denotes the standard normal distribution and (1)U
denotes the chi-squared distribution with (1)n 1−

 
degrees 

of freedom.

APPENDIX 2

For FGCI2 approach, Zhang et al. (2022) presented the 
FGPQ based on the optimal generalized fiducial quantity. 
Let 

m
R ′δ  be the FGPQ for δ' which is given by

1
(0) (1) (0) (1)H (VH(p;n 0.5,n 0.5), n 0.5,n 0.5)− + + + +

2

p

1
(1)

(1) (1)

R Z (Q ) n
R R

n U

−
ησ

λ µ

 +Φ
 = +
 
 

1
(0) (1) (0) (1)R H (VH(p;n 0.5,n 0.5), n 0.5,n 0.5)−

′δ = + + + +

1 1 p R(Q )
1 R

− − ′δ
η

′δ

 −
Φ = Φ  − 
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m

1
(0) (1) (0) (1)H (VH(p;n , n 1), n 1,n )

R
2

−

′δ

+ +
= ,                                                          

where V denotes the uniform distribution over the 
interval (0,1).

Suppose that 1(R )−
ηΦ  is the quatile function of the 

Rη which is defined by

                                                                

.	       	
		                                       

Let 
p.m

Rλ  be the FGPQ for λp. Therefore, the FGPQ 
for λp is given by

                                                                              
                                                                              

,                                                

           

where Z denotes standard normal distribution, (1)U  
denotes chi-squared distribution with (1)n 1−  degrees 
of freedom. 

APPENDIX 3

Following Thangjai, Niwitpong and Niwitpong (2020), 
the posterior distribution for σ2 is the inverse gamma 
distribution which is defined by

                                                                      

.                                      

                                 
The conditional posterior distribution for µ is the normal 
distribution which is defined by

                                                             
,		

		                                           
where (1)ˆ yµ =  and σ2  is σ2 | y.

In this paper, the BSCI based on the fiducial 
quantity were estimated. Again, let

(0) (1)n 0.5,n 0.5B + +  
b e  t h e  b e t a  r a n d o m  v a r i a b l e  w i t h  s h a p e 
parameters  (0)n 0.5+ and (1)n 0.5+ .  Suppose  tha t 

1
(0) (1) (0) (1)Q H (VH(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + +  
is the probability distribution of the 

(0) (1)n 0.5,n 0.5B + +  
random variable, where V  is the uniform distribution 
over the interval (0,1) and (0) (1)H(p;n 0.5,n 0.5)+ +  
denotes the beta distribution function with shape 
parameters (0)n 0.5+ and (1)n 0.5+ . Define

                                                         
                                                       
                                                      

.  	       	
	

Let 1(Q )−
ηΦ  be the quatile function of the Qη

and let (1)U be the chi-squared distribution with (1)n 1−  
degrees of freedom. Also, let Z be the standard normal 
distribution. The posterior distribution of pλ is defined by

                                                                        

,	

		     	                        
where σ2  and µ  are 2 | yσ  and 2| , yµ σ , respectively.

APPENDIX 4

Let 
(0) (1)n 0.5,n 0.5B + +  

be the beta random variable with 
shape parameters (0)n 0.5+ and (1)n 0.5+ . Suppose that

* 1
(0) (1) (0) (1)Q H (WH(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + +  
denotes the probability distribution of the 

(0) (1)n 0.5,n 0.5B + +  
random variable, where W is the uniform distribution 
over the interval (0,1) and (0) (1)H(p;n 0.5,n 0.5)+ +  
denotes the beta distribution function with shape 
parameters (0)n 0.5+ and (1)n 0.5+ . Define

                                                     .  	

Let 1 *(Q )−
ηΦ  be the quatile function of *Qη . The estimator of 

*
pλ  is  

                                                               
.	                                                                                    

APPENDIX 5

For the FGCI approach based on fiducial quantity. The 
FGPQs for µ1 and µ2 are given by

 					                

and 

                                                                         

,                                                              

    
where Z1 and Z2 denote the standard normal distributions 
and 1(1)U  and 2(1)U  denote the chi-squared distributions 
with 1(1)n 1−  and 2(1)n 1−  degrees of freedom, respectively.
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Moreover, the FGPQs for σ and 2
2σ  are defined by

 	
			              	            
and 

                                                              
.		

	
Suppose that 

1(0) 1(1)n 0.5,n 0.5B + + denotes the beta random 
variable with shape parameters 1(0)n 0.5+  and 1(1)n 0.5+ . 
Let 

1
R ′δ  be the probability distribution of the

1(0) 1(1)n 0.5,n 0.5B + +

random variable whose values are bounded above by p. 
Let V1 be the uniform distribution over the interval (0,1). 
Let p be the percentile. Let 1(0) 1(1)H(p;n 0.5,n 0.5)+ +  be 
the beta distribution function with shape parameters 

1(0)n 0.5+ and 1(1)n 0.5+ . 
Suppose that 1

1 1(0) 1(1) 1(0) 1(1)H (V H(p;n 0.5,n 0.5), n 0.5,n 0.5)− + + + +
1

1 1(0) 1(1) 1(0) 1(1)H (V H(p;n 0.5,n 0.5), n 0.5,n 0.5)− + + + +  denotes the quatile function for 
the beta distribution with 1 1(0) 1(1)V H(p;n 0.5,n 0.5)+ +  and 

1(0) 1(1)n 0.5,n 0.5+ + . The FGPQ for 1′δ  is given by 

1

1
1 1(0) 1(1) 1(0) 1(1)R H (V H(p;n 0.5,n 0.5), n 0.5,n 0.5)−

′δ = + + + + .                             

Similarly, let 
2(0) 2(1)n 0.5,n 0.5B + + be the beta random 

variable with shape parameters 2(0)n 0.5+  and 2(1)n 0.5+  
Suppose that 

2
R ′δ  denotes the probability distribution 

of the 
1(0) 1(1)n 0.5,n 0.5B + + random variable whose values are 

bounded above by p. Let V2 be the uniform distribution 
over the interval (0,1). Let 2(0) 2(1)H(p;n 0.5,n 0.5)+ +  
be the beta distribution function with shape parameters 

2(0)n 0.5+  and 2(1)n 0.5+ . 
Suppose that 1

2 2(0) 2(1) 2(0) 2(1)H (V H(p;n 0.5,n 0.5), n 0.5,n 0.5)− + + + +
1

2 2(0) 2(1) 2(0) 2(1)H (V H(p;n 0.5,n 0.5), n 0.5,n 0.5)− + + + +  denotes the quatile function for the 
beta distribution with 2 2(0) 2(1)V H(p;n 0.5,n 0.5)+ +  and 

2(0) 2(1)n 0.5,n 0.5+ + . The FGPQ for 2′δ  is given by

                                                       .                          

Suppose that 
1

1(Q )−
ηΦ  and 

2

1(Q )−
ηΦ  are the quatile 

functions which are defined by

 	
		             
and	 

                                                               

.	   
         	                                                       

The FGPQs for 
1pλ  and 

2pλ  are given by

                                                        

and

                                                                           .                                                      

APPENDIX 6

Let 
m1

R ′δ  and 
m2

R ′δ  be the FGPQs for 1′δ  and 2′δ  which are 
given by

				                
and

                                                                                 
,                                                    

where V1 and V2 denote the uniform distributions over 
the interval (0,1).

Suppose that 
m1

1(R )−
ηΦ  and 

m 2

1(R )−
ηΦ  are the quatile 

functions of 
1

Rη  and 
2

Rη  which are defined by

	       			                                     

and

                                                                   .			
			              

Suppose that 
p.m1

Rλ  and 
p.m 2

Rλ  denote the FGPQs 
for 

1pλ  and 
2pλ , respectively. Therefore, the FGPQs for 

1pλ  and 
2pλ  

are given by

                                                      
and

                                                                              

.                                                  
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APPENDIX 7

According to Thangjai, Niwitpong and Niwitpong 
(2020), the posterior distributions for 2

1σ  and 2
2σ  are the 

inverse gamma distributions which are defined by

                                                                     
and

                                                                       .		
			              

The conditional posterior distributions for u1 and u2 
are the normal distributions which are defined by

	
			                                                   
and

                                                               
,			 

	                                                  

where 1 1(1)ˆ yµ = ,  2 2(1)ˆ yµ = ,  2
1σ  is 2

1 1| yσ ,  and 2
2σ  is 

2
2 2| yσ .

The BSCI for the difference of quantiles based on 
the fiducial quantity were constructed. Suppose that 

1(0) 1(1)n 0.5,n 0.5B + +  denotes the beta random variable with 
shape parameters 1(0)n 0.5+  and 1(1)n 0.5+ . Let 

1

1
1 1(0) 1(1) 1(0) 1(1)Q H (V H(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + +

1

1
1 1(0) 1(1) 1(0) 1(1)Q H (V H(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + +  be the 
probability distribution of the 

1(0) 1(1)n 0.5,n 0.5B + +  
random 

variable, where V1 is the uniform distribution over the 
interval (0,1) and 1(0) 1(1)H(p;n 0.5,n 0.5)+ +  is the beta 
distribution function with shape parameters 1(0)n 0.5+  
and 1(1)n 0.5+ . Define

                                                        .  
	       		 				                           

Similarly, let 
2(0) 2(1)n 0.5,n 0.5B + +  be the beta random 

variable with shape parameters 2(0)n 0.5+  and 2(1)n 0.5+  
and let 

 

be the probability distribution of the 
2(0) 2(1)n 0.5,n 0.5B + +  

random 
variable, where V2 is the uniform distribution over the 
interval (0,1) and 2(0) 2(1)H(p;n 0.5,n 0.5)+ +  is the beta 
distribution function with shape parameters 2(0)n 0.5+  
and 2(1)n 0.5+ . Define

                                                          
					      

.  	       		
				                           

Let 
1

1(Q )−
ηΦ  and 

2

1(Q )−
ηΦ  be the quatile functions 

of 
1

Qη  and 
2

Qη . Moreover, let 1(1)U  and 2(1)U  be the chi-
squared distributions with 1(1)n 1−  and 2(1)n 1−  degrees 
of freedom. Suppose that Z1 and Z2 denote the standard 
normal distributions. The posterior distributions of 

1pλ  
and 

2pλ  are defined by

			      	                        

and

                                                                           

,	 	
	                        

where 2
1σ  is 2

1 1| yσ , 2
2σ  is 2

2 2| yσ , 1µ  is 2
1 1 1| , yµ σ , and 2µ  

is 2
2 2 2| , yµ σ .

APPENDIX 8

Let 
1(0) 1(1)n 0.5,n 0.5B + +  

be the beta random variable with 
shape parameters 1(0)n 0.5+

 
and 1(1)n 0.5+ .. Suppose that 

1

* 1
1 1(0) 1(1) 1(0) 1(1)Q H (W H(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + +  
denotes the probability distribution of the

1(0) 1(1)n 0.5,n 0.5B + +  
random variable, where W1 is the uniform distribution 
over the interval (0,1) and 1(0) 1(1)H(p;n 0.5,n 0.5)+ +  
denotes the beta distribution function with shape 
parameters 1(0)n 0.5+

 
and 1(1)n 0.5+ . Define

                                                         .  	       		
				                           

Moreover, let 
2(0) 2(1)n 0.5,n 0.5B + +  be the beta random 

variable with shape parameters 2(0)n 0.5+  and 2(1)n 0.5+ 	
	 Suppose that

2

* 1
2 2(0) 2(1) 2(0) 2(1)Q H (W H(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + + 

2

* 1
2 2(0) 2(1) 2(0) 2(1)Q H (W H(p;n 0.5,n 0.5);n 0.5,n 0.5)−

′δ = + + + +  denotes the probability distribution 
of the 

2(0) 2(1)n 0.5,n 0.5B + +  random variable, where W2 is 
the uniform distribution over the interval (0,1) and 

2(0) 2(1)H(p;n 0.5,n 0.5)+ +  denotes the beta distribution 
function with shape parameters 2(0)n 0.5+ and 2(1)n 0.5+ . 
Define

                                                         .  	       		
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Let 
1

1 *(Q )−
ηΦ  and 

2

1 *(Q )−
ηΦ  be the quatile functions 

of 
1

*Qη  and 
2

*Qη . The estimators of 
1pλ  and 

2pλ  are  

	                    
                                                    
and

                                                               .	                                                                        

( )1 1

* * 1 * *
p 1(1) 1(1)

ˆ Y Q S−
ηλ = +Φ

( )2 2

* * 1 * *
p 2(1) 2(1)

ˆ Y Q S−
ηλ = +Φ


