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ABSTRACT
Although several antidiabetic agents are currently available, they commonly have undesirable effects and are not 
fully effective in reducing blood glucose. Therefore, since a long time ago, some Indonesians have preferred herbal 
medicine to cure and prevent diseases such as Lagerstroemia speciosa (L.) Pers. and Cinnamomum burmanni. (Nees 
& T.Nees) Blume, plants from Indonesia, are believed to be able to treat type 2 diabetes mellitus (T2DM). Both 
herbs are present in DLBS3233 bioactive fraction, a standardized herbal extract that acts as an insulin sensitizer like 
thiazolidinediones (TZDs). However, the molecular mechanisms, the bioactive compounds, and the target proteins 
involved remain unclear. To understand more about the potential molecular mechanism of DLBS3233 in treating 
T2DM, this network pharmacology study is conducted for the first time. Quercetin, kaempferol, and ellagic acid were 
discovered to have antidiabetic effects in this study as selected compounds of DLBS3233, p rimarily o n e ight c ore 
target proteins, including AKT1, EGFR, GSK3B, IL6, PTK2, RELA, SRC, and VEGFA. We also found that they exhibited 
ligand-receptor binding activity comparable to pioglitazone in the molecular docking study. Concisely, as a reference 
for furthering the development of this bioactive fraction, this study provides novel information on DLBS3233 in T2DM 
treatment that was not shown in prior studies.
Keywords:  Cinnamomum  burmanni. Blume;  DLBS3233;  Lagerstroemia  speciosa;  network  pharmacology; t ype 2 
diabetes mellitus

ABSTRAK

Walaupun beberapa agen antidiabetik kini tersedia, agen tersebut biasanya mempunyai kesan yang tidak diingini 
dan tidak berkesan sepenuhnya dalam mengurangkan glukosa darah. Oleh itu, sejak dahulu lagi, sebilangan masyarakat 
Indonesia lebih menggemari jamu bagi mengubati dan mencegah penyakit seperti Lagerstroemia speciosa (L.) Pers. 
dan Cinnamomum burmanni. (Nees & T.Nees) Blume, tumbuhan dari Indonesia, dipercayai mampu merawat diabetes 
mellitus jenis 2 (DMJ2). Kedua-dua herba hadir dalam pecahan bioaktif DLBS3233, ekstrak herba piawai yang 
bertindak sebagai pemeka insulin seperti thiazolidinediones (TZDs). Walau bagaimanapun, mekanisme molekul, 
sebatian bioaktif dan protein sasaran yang terlibat masih tidak jelas. Untuk memahami lebih lanjut mengenai potensi 
mekanisme molekul DLBS3233 dalam merawat DMJ2, kajian farmakologi rangkaian ini dijalankan buat kali 
pertama. Kuersetin, kaempferol dan asid elagik didapati mempunyai kesan antidiabetis dalam kajian ini sebagai 
sebatian terpilih DLBS3233, terutamanya pada lapan protein sasaran teras, termasuk AKT1, EGFR, GSK3B, IL6, 
PTK2, RELA, SRC, dan VEGFA. Kami juga mendapati bahawa mereka menunjukkan aktiviti mengikat reseptor ligan 
yang setanding dengan pioglitazone dalam kajian dok molekul. Secara ringkas, sebagai rujukan untuk melanjutkan 
pembangunan pecahan bioaktif ini, kajian ini menyediakan maklumat baru mengenai DLBS3233 dalam rawatan DMJ2 
yang tidak didedahkan dalam kajian terdahulu.
Kata kunci:  Cinnamomum burmanni. Blume; diabetes mellitus jenis 2; DLBS3233; farmakologi rangkaian; 
Lagerstroemia speciosa 
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INTRODUCTION

Metabolic syndrome (MetS) is a syndrome marked by 
the presence of a group of factors, such as high blood 
pressure and high levels of blood sugar, that are strongly 
associated with an increased risk of cardiovascular 
disease and type 2 diabetes mellitus (T2DM) (Kassi et 
al. 2011). The International Diabetes Federation (IDF) 
reported that the prevalence of T2DM worldwide will 
increase from 415 million in 2015 to 642 million by 
2040 (Nurcahyanti et al. 2018). Indonesia is 4th the rank 
country with the highest prevalence of DM (Priyadi et 
al. 2021). T2DM management has focused on applying 
lifestyle modification and antidiabetic agents. Some 
antidiabetic agents are known to have various adverse 
effects and are not fully effective in reducing blood 
glucose (Ko et al. 2017; Perkumpulan Endokrinologi 
Indonesia 2021; Serbis et al. 2021).

To avoid side effects,  Indonesians prefer 
herbal medicine to cure and prevent T2DM, such as 
Lagerstroemia speciosa (L.) Pers. and Cinnamomum 
burmanni (Nees & T.Nees) Blume. Previous studies 
have shown that both herbs in DLBS3233 bioactive 
fraction are safe and effective in decreasing blood 
glucose levels (Manaf, Tjandrawinata & Malinda 2016; 
Wiweko & Susanto 2017). DLBS3233, a standardized 
herbal extract, acts as an insulin sensitizer via modulation 
of peroxisome proliferator-activated receptor gamma 
(PPARγ) (Tandrasasmita et al. 2011). However, the 
molecular mechanisms, the bioactive compounds, and 
the target proteins involved remain unclear. Hence, this 
study was conducted using a network pharmacology 
approach to predict their bioactive compounds and target 
proteins to investigate the potential molecular mechanism 
of DLBS3233 in T2DM treatment and provide a new 
reference for drug discovery and clinical application.

MATERIALS AND METHODS

This study used a notebook with system model 
specifications: Dell with Intel(R) Core(TM) i5-10210U 
CPU @ 1.60GHz 2.11GHz processor; Random Access 
Memory (RAM) 8 gigabyte, Windows 10. We conducted 
this study in three stages. The first stage was pre-
processing, including data collection and screening. All 
data in this research was collected from May until June 
2022. The second stage was network analysis. In this 
step, we constructed networks and then analyzed them. 
Furthermore, we carried out molecular docking validation 
in the post-analysis stage. The workflow of this study 
(Tjandrawinata et al. 2022) is shown in Figure 1.

PRE-PROCESSING STAGE
Compounds data collection
Data on the compounds of DLBS3233 were primarily 
collected from three natural product databases, including 
the KNApSAcK Core System (http://www.knapsackfamily. 
com/knapsack_core/top.php) (Afendi et al. 2012), 
Chemical Entities of Biological Interest (ChEBI, https://
www.ebi.ac.uk/chebi/) (Hastings et al. 2016), and Indian 
Medicinal Plants, Phytochemistry and Therapeutics 
(IMPPAT, https://cb.imsc.res.in/imppat/) (Mohanraj et al. 
2018). Additionally, we collected data from the literature 
of the previous study on L. speciosa and C. burmanni 
phytochemicals (Li et al. 2019).

Bioactive compounds selection
The bioactive compounds of DLBS3233 were selected 
in two steps. First, we chose based on water solubility 
properties since DLBS3233 is a bioactive fraction in the 
water phase. We employed a simple method for estimating 
the aqueous solubility (ESOL – Estimated SOLubility) of 
a compound directly from its structure (Delaney 2004). In 
this study, we merely selected the compounds that have 
characteristics of highly soluble, very soluble, or soluble 
in water according to their information from SwissADME 
(http://www.swissadme.ch/index.php) (Daina, Michielin 
& Zoete 2017).

Once the water-soluble compounds had been 
selected, we filtered them again based on their 
pharmacokinetic properties. In this step, we used two 
ways from different databases. We screened by two 
important parameters, including oral bioavailability (OB) 
≥30% and drug-likeness (DL) ≥0.18 in the Traditional 
Chinese Medicine Systems Pharmacology Database 
and Analysis Platform (TCMSP, https://tcmsp-e.com/
tcmsp.php). OB, which measures the proportion of an 
oral dose that enters the body unchanged, is a crucial 
pharmacokinetic parameter in the screening of active 
substances for medications that are taken orally. DL 
is associated with elements that affect the absorption, 
distribution, metabolism, and excretion of compounds, 
as well as their pharmacodynamics and pharmacokinetics 
(Feng et al. 2018; Jia et al. 2021; Zhang et al. 2019; Zhou 
et al. 2022).

For the compounds data that are not available 
in TCMSP, we used SwissADME to assess the drug-
likeness using each canonical Simplified Molecular 
Input Line Entry System (canonical SMILES) obtained 
from PubChem (https://pubchem.ncbi.nlm.nih.gov/). 
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For the compounds that passed Lipinski’s rule of five, 
we determined them as bioactive compounds. A high 
probability of being an oral drug (or the drug-likeness) 
is indicated by molecular weight (MW) <500 Da, MLOGP 
≤4.15, number of H-bond acceptors ≤10, and number 
of H-bond donors ≤5 (Daina, Michielin & Zoete 2017; 
Lipinski et al. 2001; Ranjith & Ravikumar 2019).

DLBS3233-related target proteins prediction
The SwissTargetPrediction platform (http://www.
swisstargetprediction.ch/) (Daina, Michielin & Zoete 
2019) and Similarity Ensemble Approach (SEA, https://
sea.bkslab.org/) (Keiser et al. 2007) were used to predict 
target proteins associated with DLBS3233 using input 
canonical SMILES that were collected from PubChem for 
each bioactive compound of L. speciosa and C. burmanni. 
The parameters we used to screen target proteins were 

Homo sapiens (human) and Tanimoto Coefficient (TC), 
or the probability of drug similarity is more than or equal 
to 0.5 (Rahman et al. 2022). A similarity threshold for TC 
is different in several studies. However, the typical range 
used is 0.5-0.85. As a note, the higher the threshold, the 
fewer predicted target proteins are (Gottlieb et al. 2012). 
Target proteins were predicted from both databases 
and both bioactive compounds were merged. Then, we 
removed duplicate targets. The UniProt database (https://
beta.uniprot.org/) should be used to standardize those 
target protein names (The UniProt Consortium 2021).

T2DM-related target proteins collection and screening
Target proteins associated with T2DM were obtained 
from the GeneCards database (https://www.genecards.
org) (Stelzer et al. 2016) and the National Center for 
Biotechnology Information Gene (NCBI Gene, https://
www.ncbi.nlm.nih.gov/gene/) (Li et al. 2019; Zhou et al. 

FIGURE 1. The workflow of this study
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2022) using the keyword of ‘type 2 diabetes mellitus’. 
Since the target protein search results were too many, 
the results obtained from GeneCards were limited to 
targets with a relevance value of more than or equal 
to 10.00 (Jia et al. 2021). Target proteins were merged 
from both databases, duplicate targets were eliminated, 
and the names of the remaining target proteins were then 
standardized using the UniProt database.

NETWORK ANALYSIS STAGE

Component-target network and common-target network 
construction
A component-target network was constructed using 
Cytoscape v3.9.1 software (https://cytoscape.org/) 
(Shannon et al. 2003) employing DLBS3233-related target 
proteins and the bioactive compounds of DLBS3233. 
Target proteins associated with DLBS3233 and the 
bioactive compounds of DLBS3233 were shown as nodes, 
and their interactions were shown as edges.

Using Cytoscape v3.9.1, a common-target network 
was created using the intersection of DLBS3233-related 
target proteins and T2DM-related target proteins. The key 
proteins, or the nodes with degrees greater than or equal 
to the median degree, could be identified by analyzing 
this common-target network. A compound is crucial if it 
targets more key target proteins (Li et al. 2019).

Protein-protein interaction (PPI) network construction 
and cluster analysis
Utilizing the stringApp, a Cytoscape plug-in, PPI 
networks of DLBS3233-related target proteins and T2DM-
related target proteins were constructed. As a limitation, 
the parameters of Homo sapiens (human) organisms 
with a medium confidence level of 0.400 were chosen 

(Zhang et al. 2019). The intersection was created by 
merging both PPI networks in Cytoscape. The important 
proteins were then identified by analyzing the merging 
intersection using a Cytoscape plug-in, CytoNCA. 
When the screening criteria of degree centrality (DC), 
eigenvector centrality (EC), betweenness centrality (BC), 
and closeness centrality (CC) are greater than or equal to 
their median were not met, those target proteins should 
be omitted. The rest of the target proteins were established 
as the candidate target proteins (Li et al. 2019).

In this study for cluster analysis, we used a Cytoscape 
plug-in, molecular complex detection (MCODE). This 
clustering algorithm can detect regions with a high degree 
of connectivity in networks of large protein-protein 

interactions that may represent molecular complexes 
(Ahmed, Bhattacharyya & Kalita 2015; Bader & Hogue 
2003). This cluster analysis could determine the core 
targets or essential proteins (Li et al. 2019).

Enrichment analysis
DLBS3233 and T2DM-related essential proteins were 
subsequently investigated to obtain information on 
biological processes, molecular functions, cellular 
components, and signaling pathways regarding potential 
antidiabetic activity using Enrichr (https://amp.pharm.
mssm.edu/Enrichr/) (Chen et al. 2013) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) PATHWAY 
Database (https://www.genome.jp/kegg/pathway.html) 
(Kanehisa 2000) with P-value ≤0.05 (Jia et al. 2021; Li 
et al. 2019; Shahid et al. 2021; Zhang et al. 2019).

POST-ANALYSIS STAGE

This molecular docking approach was designed to 
confirm the network pharmacology study. The selected 
compounds discovered by network pharmacology 
were employed as small molecule ligands to carry out 
molecular docking with potential target proteins. We 
downloaded the 2D structure of the ligand in SDF format 
from the PubChem database. To download the PDB 
format, the 3D structure of receptor protein was searched 
in the UniProt database, which was linked directly 
to the RCSB Protein Data Bank (PDB, https://www.
rcsb.org/) (Berman et al 2000; Rahardjo, Ramdani & 
Tjandrawinata 2020; Ramdani, Yanuar & Tjandrawinata 
2019). Eventually, we acquired the receptor protein 
structure after eliminating the original ligands and water 
molecules using UCSF Chimera v.1.16 software (https://
www.cgl.ucsf.edu/chimera/download.html) (Pettersen 
et al 2004).

We utilized the server CB-Dock (http://clab.labshare.
cn/cb-dock/php/) to predict potential target protein 
binding regions and calculate the centers and sizes to 
attain the best pose with the lowest binding energy. CB-
Dock displayed an interactive 3D visualization of the 
binding modes and ordered the binding modes based 
on the Vina score (Liu et al. 2020). According to the 
molecular docking principle, the most stable ligand 
structure is represented by the energy value with the 
lowest Vina score (Abbas et al. 2018). It could be assumed 
that there is a high ligand-receptor binding activity if 
the minimum binding energy is less than −5.0 (Lin et al. 
2021; Zhou et al. 2022).
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RESULTS

PRE-PROCESSING STAGE

DLBS3233 is a bioactive fraction of two herbs including 
L. speciosa and C. burmanii. We collected a total
of 63 and 121 compounds for L. speciosa and C.
burmanni, respectively (Tables S1 & S2), from
prior phytochemical studies and three natural product
databases, including IMPPAT, KNApSAcK Core System,
and ChEBI.

Following the filtration of the water-soluble 
compounds with ‘OB ≥30% and DL ≥0.18’ criteria 
from TCMSP or the parameter of Lipinski’s rule of 
five from SwissADME, a total of 28 and 80 bioactive 
compounds of L. speciosa and C. burmanni were selected, 
respectively (Tables S3 & S4). Rutin (Al-Dhubiab 2012; 
Rao & Gan 2014), 2,3-(S)-hexahydroxydiphenoyl-
alpha/beta-D-glucose (Bai et al. 2008), procyanidin 
B1 and B2, (-)-epicatechin (Arozal, Louisa & Soetikno 

2020), proanthocyanidin (Verdini et al.  2020), 
o-methoxycinnamaldehyde, 2-hydroxycinnamaldehyde,
cinnamaldehyde, and cis-cinnamaldehyde (Tisnadjaja
et al. 2020), were included together since they are reported
to have potential as antidiabetic agents in several prior
studies though they did not meet the inclusion criteria.

NETWORK ANALYSIS STAGE

Component-target network and common-target network 
construction
From 28 bioactive compounds of L. speciosa, we 
collected 442 target proteins (Table S5). Meanwhile, 
we obtained 493 target proteins from 80 bioactive 
compounds of C. burmanni (Table S6). After merging all 
target proteins related to L. speciosa and C. burmanni, 
and removing duplicates, we had 229 DLBS3233-related 
target proteins (Table S7). A DLBS3233 component-
target network containing 286 nodes and 935 edges 
was subsequently constructed using Cytoscape v3.9.1 
(Figure 2(a)).

(a) 

(b) (c) 

FIGURE 2. (a) DLBS3233 component-target network; containing 286 nodes and 935 edges; target proteins 
are represented as green nodes; bioactive compounds of L. speciosa, C. burmanni, and their intersection 

are represented as blue, pink, and purple nodes, respectively; (b) venn diagram, including 182 target 
proteins associated with DLBS3233 and T2DM; (c) the common target network, containing 239 nodes 
and 649 edges; target proteins are represented as purple nodes; bioactive compounds of L. speciosa, C. 

burmanni, and their intersection are represented as yellow, blue, and green nodes, respectively
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The visualized component-target  network 
demonstrated that 229 potential target proteins were 
associated with 23 (of 28) and 37 (of 80) bioactive 
compounds of L. speciosa and C. burmanni, respectively. 
Moreover, this network showed that there were three 
bioactive compounds as the result of the intersection 
between L. speciosa and C. burmanni, including rutin 
(PubChem ID 5280805), quercetin (PubChem ID 
5280343), and kaempferol (PubChem ID 5280863).

In this study, we collected a total of 4,838 target 
proteins related to T2DM from two human genomic 
databases after deleting duplicates (Table S8). After the 
screening, we obtained 900 targets from NCBI genes 
and 4,756 (of 13,395) targets from GeneCards. A total 
of 182 from 4,838 target proteins were associated with 
229 DLBS3233-related target proteins (Table S9; Figure 
2(b)). The interaction between 182 target proteins and 
bioactive compounds of DLBS3233 is shown in Table 
S10 and visualized in Figure 2(c).

Subsequently, we used the degree centrality (DC) 
measure to analyze the common-target network (Table 
S11). The importance of nodes is reflected in the degree 
of centrality. The more connections a molecule has, the 
more significant it is, as indicated by a higher DC. By 
the requirement that the DC be greater than or equal to 
14, we established quercetin (PubChem ID 5280343), 
kaempferol (PubChem ID 5280863), and ellagic acid 
(PubChem ID 5281855) as selected compounds of 
DLBS3233.

Protein-protein interaction (PPI) network and cluster 
analysis
All target proteins resulting from merging the DLBS3233-
T2DM PPI network are shown in Table S12. The 

visualized PPI networks can be seen in Figure 3. A total 
of 182 target proteins associated with DLBS3233 and 
T2DM were further analyzed using CytoNCA, resulting 
in 65 candidate target proteins (Table S13). Furthermore, 
we conducted clustering, which resulted in four clusters 
that were then analyzed. We eventually obtained 44 core 
target proteins (Tables S14 & S15).

Enrichment analysis
A total of 44 core target proteins were obtained after 
analyzing the clusters of the core-target PPI network 
using MCODE. All core target proteins were subsequently 
input into Enrichr for enrichment analysis. We merely 
selected biological processes (BPs), molecular functions 
(MFs), cellular components (CCs), and signaling 
pathways having P-value ≤0.05. Eventually, we chose 
1,112 BPs, 128 MFs, 46 CCs, and 148 KEGG pathways, 
as shown in Tables S16, S17, S18, and S19, respectively. 
The top ten BPs, MFs, CCs, and signaling pathways were 
ordered based on P-value (from the smallest to the 
largest), which can be seen in Table S20.

POST-ANALYSIS STAGE
We analyzed 44 core target proteins based on the amount 
of involvement in biological processes and signaling 
pathways associated with T2DM. Core target proteins 
with an amount of involvement more than or equal to their 
average could be assumed as the most potential target 
proteins. We selected eight target proteins (Table S21) 
to perform molecular docking to validate the network 
pharmacology study. The top five poses for each potential 
target protein and selected compound of DLBS3233 or 
pioglitazone using CB-Dock based on the Vina score can 
be seen in Tables S22 and S23, respectively. The best 
docking models are shown in Table 1 and Table S24.

FIGURE 3. (a) DLBS3233-related targets PPI network (229 nodes and 1,922 edges); (b) 
T2DM-related targets PPI network (4,809 nodes and 216,186 edges); (c) the merging 

intersection of the PPI network (182 nodes and 1,671 edges); (d) the core PPI network was 
obtained by the screening parameter of DC ≥14.0, EC ≥0.038753505, BC ≥52.9146275, and 

CC ≥0.23598436 (65 nodes and 819 edges); (e) clusters of core-target PPI network using 
MCODE; cluster I (28 nodes and 310 edges); cluster II (10 nodes and 15 edges); cluster III (3 

nodes and 3 edges); and cluster IV (3 nodes and 3 edges) 



TABLE 1. The best docking model for each potential target protein and selected compound of DLBS3233 or pioglitazone using 
CB-Dock

Compound
Target 
protein

Docking model
Vina 
score

Compound
Target 
protein

Docking model
Vina 
score

Quercetin AKT1 -6 Ellagic acid AKT1 -6.3

Quercetin EGFR -7.9 Ellagic acid EGFR -8

Quercetin GSK3B -8.4 Ellagic acid GSK3B -8.4

Quercetin IL6 -6.5 Ellagic acid IL6 -7.1

Quercetin PTK2 -5.9 Ellagic acid PTK2 -5.9

Quercetin RELA -9.2 Ellagic acid RELA -8.4

Quercetin SRC -8.1 Ellagic acid SRC -7.8

Quercetin VEGFA -7.4 Ellagic acid VEGFA -6.7

Kaempferol AKT1 -6.2 Pioglitazone AKT1 -6.2

Kaempferol EGFR -7.6 Pioglitazone EGFR -7.5

Kaempferol GSK3B -8.5 Pioglitazone GSK3B -8.6

Compound
Target 

protein

Docking 

model

Vina 

score
Compound

Target 

protein

Docking 

model

Vina 

score

Quercetin AKT1 -6 Ellagic acid AKT1 -6.3

Quercetin EGFR -7.9 Ellagic acid EGFR -8

Quercetin GSK3B -8.4 Ellagic acid GSK3B -8.4

Quercetin IL6 -6.5 Ellagic acid IL6 -7.1

Quercetin PTK2 -5.9 Ellagic acid PTK2 -5.9

Quercetin RELA -9.2 Ellagic acid RELA -8.4

Quercetin SRC -8.1 Ellagic acid SRC -7.8

Quercetin VEGFA -7.4 Ellagic acid VEGFA -6.7

Kaempferol AKT1 -6.2 Pioglitazone AKT1 -6.2

Kaempferol EGFR -7.6 Pioglitazone EGFR -7.5

Kaempferol GSK3B -8.5 Pioglitazone GSK3B -8.6

Compound
Target 

protein

Docking 

model

Vina 

score
Compound

Target 

protein

Docking 

model

Vina 

score

Quercetin AKT1 -6 Ellagic acid AKT1 -6.3

Quercetin EGFR -7.9 Ellagic acid EGFR -8

Quercetin GSK3B -8.4 Ellagic acid GSK3B -8.4

Quercetin IL6 -6.5 Ellagic acid IL6 -7.1

Quercetin PTK2 -5.9 Ellagic acid PTK2 -5.9

Quercetin RELA -9.2 Ellagic acid RELA -8.4

Quercetin SRC -8.1 Ellagic acid SRC -7.8

Quercetin VEGFA -7.4 Ellagic acid VEGFA -6.7

Kaempferol AKT1 -6.2 Pioglitazone AKT1 -6.2

Kaempferol EGFR -7.6 Pioglitazone EGFR -7.5

Kaempferol GSK3B -8.5 Pioglitazone GSK3B -8.6

3503
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Kaempferol IL6 -6.3 Pioglitazone IL6 -6.3

Kaempferol PTK2 -5.9 Pioglitazone PTK2 -6.6

Kaempferol RELA -9.1 Pioglitazone RELA -9.2

Kaempferol SRC -7.8 Pioglitazone SRC -7.8

Kaempferol VEGFA -7.3 Pioglitazone VEGFA -6.9

Kaempferol IL6 -6.3 Pioglitazone IL6 -6.3

Kaempferol PTK2 -5.9 Pioglitazone PTK2 -6.6

Kaempferol RELA -9.1 Pioglitazone RELA -9.2

Kaempferol SRC -7.8 Pioglitazone SRC -7.8

Kaempferol VEGFA -7.3 Pioglitazone VEGFA -6.9

Kaempferol IL6 -6.3 Pioglitazone IL6 -6.3

Kaempferol PTK2 -5.9 Pioglitazone PTK2 -6.6

Kaempferol RELA -9.1 Pioglitazone RELA -9.2

Kaempferol SRC -7.8 Pioglitazone SRC -7.8

Kaempferol VEGFA -7.3 Pioglitazone VEGFA -6.9

DISCUSSION

Previous studies found that DLBS3233 has a mode of 
action like thiazolidinediones (TZDs) in reducing insulin 
resistance and improving insulin signaling and sensitivity. 
Hence, the study conducted by Nailufar, Tandrasasmita 
and Tjandrawinata (2011) and Tandrasasmita et al.  
(2011) concluded that DLBS3233 possibly contains the 
bioactive compound(s) that may act as a direct ligand 
for peroxisome proliferator-activated receptor gamma 
(PPARγ) and delta (PPARδ). Their study also demonstrated 
genes involved in insulin signal transduction, such as 
PI3 kinase, Akt, PPARγ, PPARδ, GLUT4, adiponectin, 
and resistin. Although the DLBS3233 mechanism of 
action in T2DM treatment has been known, the bioactive 
compounds responsible for the antidiabetic activity and 
how they regulate the expression of genes involved in 
insulin signal transduction are not yet known.

This study is the first to investigate the molecular 
mechanism of DLBS3233 for T2DM using a network 
pharmacology approach. We successfully predicted 
the selected compounds of DLBS3233 bioactive 
fraction of L. speciosa and C. burmanni, namely 
quercetin, kaempferol, and ellagic acid. Moreover, this 
research found that eight target proteins play a key 

role in antidiabetic activity, including AKT1, EGFR, 
GSK3B, IL6, PTK2, RELA, SRC, and VEGFA. Based on 
the prior study results and the guidelines for T2DM 
management, we used the primary mechanism of action 
of TZDs as a classification to facilitate the explanation 
of the DLBS3233 molecular mechanism (Table 2) (Haq 
et al. 2021; Ko et al. 2017; Nurcahyanti et al. 2018; 
Perkumpulan Endokrinologi Indonesia 2021; Serbis et 
al. 2021).

Interestingly, the finding of this study did not show 
that DLBS3233 bioactive compounds have PPARγ and 
PPARδ target proteins. However, they are involved in 
the signaling pathway associated with T2DM through 
PPARγ and PPARδ (KEGG:05200). Therefore, it suggests 
that DLBS3233 indirectly increases the genetic expression 
of PPARs, resulting in the synthesis of new glucose 
transporter type 4 (GLUT-4) (Wiweko & Susanto 
2017). PPARγ regulates the PI3 kinase enzyme which is 
vital in mediating insulin’s biological actions through 
insulin receptor substrate (IRS) 1 and 2. According to 
Nailufar, Tandrasasmita and Tjandrawinata (2011) and 
Tandrasasmita et al. (2011), DLBS3233 increased PI3 
kinase expression even more than pioglitazone. This 
finding was confirmed by an increase in Akt, a PI3 kinase 
downstream effector.
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TABLE 2. The main mechanisms of action of DLBS3233 which are similar to TZDs

Antidiabetic activity

Increased insulin sensitivity Decreased insulin resistance
Decreased hepatic glucose production 

(gluconeogenesis)

a. The activation of

phosphatidylinositol-3 kinase

(PI3K) as a broad activator of

insulin action

b. The activation of Akt effector

of PI3K

c. The modulation of PPARγ and

PPARδ

a. Increased GLUT4 as glucose-

transport protein to increase

glucose uptake into cells

a. The upregulation of  adiponectin

b. The downregulation of resistin

When insulin is bound to the receptor, the receptor 
phosphorylates and activates IRS-1, which enables IRS-
1 to activate several signaling pathways, including the 
PI3K pathway (Figure 4). PI3K enzyme catalyzes the 
conversion of phosphatidylinositol (4,5)-bisphosphate 
(PI (4 ,5 )P2  o r  PIP2)  to  phospha t idy l inos i to l 
(3,4,5)-trisphosphate (PI(3,4,5)P3 or PIP3). PIP3 is 
subsequently bound to Akt, signaling for PDK1 to 
phosphorylate Akt (protein kinase B or PKB). Once 
phosphorylated, Akt becomes active and phosphorylates 
other targets that stimulate GLUT4 translocation from 
the cytoplasm into the membrane (Permadi et al. 2021; 
Pessin & Saltiel 2000).

In this study, those mechanisms were demonstrated 
in the mTOR signaling pathway (KEGG:04150), PIK3-
AKT signaling pathway (KEGG:04151), insulin signaling 
pathway (KEGG:04910), thyroid hormone signaling 
pathway (KEGG:04919), insulin resistance (KEGG:04931; 
Figure 4), and diabetic cardiomyopathy (KEGG:05415). 
Those pathways indicate that DLBS3233 is a glucose 
transport stimulant since it upregulates GLUT4 expression, 
resulting in an enhancement of glucose uptake by cells 
in the insulin-resistant 3T3-Swiss-Albino adipocytes, 
as shown in the prior study (Tjandrawinata, Suastika & 
Nofiarny 2012).

PPARγ also regulates adiponectin, a protein hormone 
almost exclusively produced in adipocytes, that may act 

as an insulin-secretion enhancer and insulin sensitizer 
(Fasshauer & Paschke 2003; Jonas et al. 2017; Permadi 
et al. 2021). Adiponectin enhances insulin inhibition of 
hepatic gluconeogenesis (KEGG:04068); thus, its levels 
are reduced in patients with obese insulin resistance 
and T2DM (Nailufar, Tandrasasmita & Tjandrawinata 
2011). Adiponectin modulates insulin sensitivity by 
stimulating glucose utilization and fatty acid oxidation 
via phosphorylation and activation of AMPK in muscle 
and liver (KEGG:04152) (Okamoto et al. 2006).

While resistin, a peptide with an opposite 
mechanism to adiponectin in regulating glucose and 
lipid metabolism, was elevated in obese patients. Because 
of its pro-inflammatory properties, high serum resistin 
levels have been linked to the development of insulin 
resistance and T2DM, atherosclerosis, and cardiovascular 
diseases (Fasshauer & Paschke 2003; Jonas et al. 2017; 
Permadi et al. 2021). In previous studies, DLBS3233 
showed upregulating adiponectin and downregulating 
resistin (Nailufar, Tandrasasmita & Tjandrawinata 
2011). But whether it acts directly or indirectly on the 
gene encoding for the hormones adiponectin (ADIPOQ) 
and resistin (RETN) is unknown. From this network 
pharmacology study, we found that DLBS3233 is involved 
in the adipocytokine signaling pathway (KEGG:04920) 
through genes of AKT1, PPARA, and RELA. Thus, it 
suggests that DLBS3233 may affect adiponectin and 
resistin protein levels indirectly.
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PPARδ was known to regulate aspects of lipid 
homeostasis by modulating cholesterol metabolism. As 
mentioned before, DLBS3233 affects PPARδ. Thus, it 
could be said that DLBS3233 modifies lipid metabolism 
via PPARδ. The statement was in line with this study 
that showed DLBS3233-related target proteins involved 
in the signaling pathway regarding the regulation of 
lipolysis in adipocytes (KEGG:04923) and nonalcoholic 
fatty liver disease (KEGG:04932). Elevated high-
density lipoprotein cholesterol (HDL-C) levels and 
reduced triglyceride levels were correlated with higher 
adiponectin levels. Conversely, elevated triglycerides and 
serum apolipoprotein B (Apo B) levels were related to 

higher plasma resistin levels (Maximus et al. 2020). In 
brief, DLBS3233 may improve lipid profiles and regulate 
blood glucose and insulin levels (Tjokroprawiro, Murtiwi 
& Tjandrawinata 2016). 

The molecular docking study has validated 
the results of this network pharmacology study. We 
discovered that all potential target proteins have high 
binding activities with all selected compounds of 
DLBS3233. It was apparent from their Vina score of less 
than -5. Moreover, we found that the binding energy 
of selected compounds of DLBS3233 was as low as 
pioglitazone. It suggests that quercetin, kaempferol, 
and ellagic acid might have stable ligand structures to 

FIGURE 4. The signaling pathways of PIK3-AKT and insulin resistance; red stars indicate 
DLBS3233-related target proteins involved in those pathways
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T2DM-related potential target proteins and be comparable 
to pioglitazone. The mechanism of action of DLBS3233 
found in this network pharmacology study is in line 
with previous in vitro and in vivo tests. In addition, the 
results of this study showed the bioactive compound 
of DLBS3233 and their potentially promising target 
proteins for the prevention and treatment of T2DM, as 
well as explained the molecular mechanisms, which are 
unknown yet.

CONCLUSIONS

Quercetin, kaempferol, and ellagic acid have been 
successfully identified as selected compounds of 
DLBS3233 with antidiabetic activity, notably on eight 
core target proteins, including AKT1, EGFR, GSK3B, IL6, 
PTK2, RELA, SRC, and VEGFA. We also found that they 
exhibited ligand-receptor binding activity comparable 
to pioglitazone in the molecular docking study. Briefly, 
as a reference for furthering the development of 
DLBS3233 bioactive fraction, this developed network 
pharmacology study provides novel information on 
DLBS3233 in T2DM treatment that was not revealed in 
prior studies.
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