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ABSTRACT 
In order to estimate the unknown size of the population that is difficult or hidden to enumerate, the capture-recapture 
method is widely used for this purpose. We propose the one-inflated, zero-truncated geometric (OIZTG) model to 
deal with three important characteristics of some capture–recapture data: zero-truncation, one-inflation, and observed 
heterogeneity. The OIZTG model is generated by two distinct processes, one from a zero-truncated geometric (ZTG) 
process, and the other one-count producing process. To explain heterogeneity at an individual level, the OIZTG 
model provides a simple way to link the covariate information. The new estimator was proposed based on the OIZTG 
distributions through the modified Horvitz-Thomson approach, and the parameters of the OIZTG distributions are 
estimated by using a maximum likelihood estimator (MLE). With regard to making inferences about the unknown size 
of the population, confidence interval estimations are proposed where variance estimate of population size estimator 
is achieved by using conditional expectation technique. All of these are assessed through simulation studies. The real 
data sets are provided for understanding the methodologies. 
Keywords: Capture-recapture; geometric regression; observed heterogeneity

ABSTRAK 
Dalam proses untuk menganggarkan saiz populasi yang sukar atau tersembunyi untuk dihitung, kaedah tangkap-
tangkap semula digunakan secara meluas untuk tujuan ini. Kami mencadangkan model geometrik satu-lambung, 
geometrik sifar-pemangkasan (OIZTG) untuk menangani tiga ciri penting bagi beberapa data tangkap-tangkap semula: 
sifar-pemangkasan, satu-inflasi dan heterogeniti yang diperhatikan. Model OIZTG dijana oleh dua proses yang berbeza, 
satu daripada proses geometri terpangkas sifar (ZTG) dan satu lagi proses menghasilkan satu kiraan. Untuk menerangkan 
heterogeniti pada peringkat individu, model OIZTG menyediakan cara mudah untuk memautkan maklumat kovariat. 
Penganggar baharu telah dicadangkan berdasarkan taburan OIZTG melalui pendekatan Horvitz-Thomson yang 
diubah suai dan parameter taburan OIZTG dianggarkan dengan menggunakan penganggar kemungkinan maksimum 
(MLE). Berkenaan dengan membuat inferens tentang saiz populasi yang tidak diketahui, anggaran selang keyakinan 
dicadangkan dengan anggaran varians penganggar saiz populasi dicapai dengan menggunakan teknik jangkaan 
bersyarat. Kesemua ini dinilai melalui kajian simulasi. Set data sebenar disediakan untuk memahami metodologi.
Kata kunci: Kepelbagaian yang diperhatikan; regresi geometri; tangkap-tangkap semula

INTRODUCTION

Capture-recapture techniques are widely used to estimate 
the size of hidden population. This population might be 
a wildlife population or a population of drug addicts. 
Traditionally, capture-recapture methods are used in 
the field of wildlife biology/ecology (estimating the 

number of female grizzly bears (Chao & Huggins 2006). 
Currently, the methods are applied in a variety of area 
including social science (estimating the number of 
illicit drug users (McDonald et al. 2014), public health 
and epidemiology (investigating the completeness of 
contact tracing for COVID-19 (Lerdsuwansri et al. 2022)) 
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as well as quantitative criminology (estimating the 
hidden population size of criminals (Tajuddin, Ismail 
& Ibrahim 2022)). A closed population (with no birth, 
death, or migration) of N units is assumed meaning that 
the population size remains constant during the study 
period and n distinct units are identified through some 
mechanisms (traps, lists, & registers). The number of 
units identified exactly y times is denoted by fy. However, 
the number of unobserved units, f0, remains unknown 
as some units are not observed at all. The total number of 
observed units is n = f1 + f2 + f3 + ⋯ + fm where m is the 
largest counts. Since the unknown size of population N 
= n + f0, estimating f0 is necessary to estimate N. 
 A common estimation approach is to model the 
number of times a unit has been identified through a 
counting distribution (Poisson, negative binomial, & 
geometric). Under homogeneity model, probability of 
each unit being identified exactly y times is an equal 
chance (Bunge & Fitzpatrick 1993; Good 1953). 
However, the homogeneous assumption is unrealistic as 
individual characteristics (gender, age, social status, & 
behavior) can lead to variations in capture probabilities 
known as heterogeneity (Chao 1987; Niwitpong et al. 
2013; Zelterman 1988), whether observed or unobserved. 
Ignoring heterogeneity can lead to an underestimation 
of the true population size. To get accurate estimates N 
, covariate information may be used to account for the 
population heterogeneity.
 Before we go on, we illustrate the situation at hand 
with a real data example. Provided in Table 1 is the 
frequency distribution of the number of times that a 
heroin user contacted a hospital and a health treatment 
center in Chiang Mai, Thailand, from 2013 to 2018. 
Additionally, individual information such as gender 
is also collected. A total of 843 observed heroin users 
consisted of 754 men and 89 women. Among these, 537 
had treatment once with 482 men and 55 women. Of the 
152 users with treatment twice, 134 were males and 18 

were females. Clearly, f0, the number of hidden heroin 
users is unobserved and there is a large number of f1. More 
details of the data source are provided in Panyalert and 
Lanamtaeng (2020).
 In certain capture-recapture studies, one-inflation 
in the count distribution can be observed due to 
difficulties in recapturing individuals and behavioral 
responses. Ignoring one-inflation may lead to significant 
overestimation of the population size. Several estimators 
have been developed to address this issue. Godwin and 
Böhning (2017) added an excess probability of observing 
one counts in the positive Poisson (PP) distribution 
and propose the one-inflated positive Poisson (OIPP) 
distribution. Godwin (2017) proposed the one-inflated, 
zero-truncated negative binomial (OIZTNB) model to 
estimate population size. What they have in common 
are one-inflation parameter and covariate information 
incorporating into truncated regression model. Although 
covariates can help to improve the fit of the model, 
OIZTNB model have the boundary problem. Böhning, 
Kaskasamkul and van der Heijden (2019) suggested 
modification of Chao's lower bound estimator (Chao 
1987) to avoid overestimation caused by one-inflation, 
but it does not account for heterogeneity. Böhning and 
Friedl (2021) proposed a population size estimation for 
sparse count data using a zero-truncated, one-inflated 
model, but it does not consider observed heterogeneity.
 In this study, we are interested in estimating 
population size using zero-truncated, one-inflated 
capture-recapture count data with observed heterogeneity. 
We propose the one-inflated, zero-truncated geometric 
(OIZTG) model for the Horvitz-Thompson estimator 
(Horvitz & Thompson 1952) �̂�𝑁 of the population size. 
Additionally, confidence interval estimations for the 
unknown population size N are provided using the 
conditional expectation technique. Simulation studies 
and real datasets are utilized to assess the effectiveness 
of these methods and enhance their understanding.

TABLE 1. Frequency distribution of heroin user contacts in Chiang Mai, Thailand, from 2013 to 2018

Gender f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 n

Male - 482 134 73 30 13 7 5 7 0 1 1 0 0 1 754

Female - 55 18 7 4 2 1 1 1 0 0 0 0 0 0 89

Total - 537 152 80 34 15 8 6 8 0 1 1 0 0 1 843
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MATERIALS AND METHODS 

THE ONE-INFLATED, ZERO-TRUNCATED GEOMETRIC 
MODEL

The one-inflated, zero-truncated geometric (OIZTG) 
model employs two components that correspond to 
two generating processes. The first process is from the 
zero-truncated geometric (ZTG) model that generates 
counts, some of which may be one. The probability mass 
function for a random variable Y that follows a ZTG 
distribution is

where θ is the geometric parameter, 0 < θ < 1. The second 
process is from one-count producing that generates 
structural ones. The combination of these two processes 
is called the OIZTG distribution which can be expressed 
as:

where  is the one-inflation parameter, or the additional 
probability of a 1 count occurring, 0 ≤ w ≤ 1. The mean 
of the OIZTG distribution is 

𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍(𝑌𝑌 = 𝑦𝑦) = (1 − 𝜃𝜃)𝑦𝑦−1𝜃𝜃       ; 𝑦𝑦 = 1,2, …, 

where 𝜃𝜃 is the geometric parameter, 0 < 𝜃𝜃 < 1. The second process is from one-count producing that 

generates structural ones. The combination of these two processes is called the OIZTG distribution 

which can be expressed as: 

𝑃𝑃𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍(𝑌𝑌 = 𝑦𝑦) = {
𝑤𝑤 + (1 − 𝑤𝑤)𝜃𝜃              ; 𝑦𝑦 = 1

(1 − 𝑤𝑤)(1 − 𝜃𝜃)𝑦𝑦−1𝜃𝜃           ; 𝑦𝑦 = 2,3, …, 

where 𝑤𝑤 is the one-inflation parameter, or the additional probability of a 1 count occurring,  0 ≤ 𝑤𝑤 ≤

1. The mean of the OIZTG distribution is  𝑤𝑤 + (1 − 𝑤𝑤) (1
𝜃𝜃).  

 

   

INCORPORATING COVARIATES IN THE OIZTG MODEL

In standard models, covariate affecting the mean of the 
distribution can be incorporated into the model by using 
reparameterization. For the case of OIZTG distribution, 
there is no simple way to directly express the mean as 
a function of covariates. In the cases of OIPP model 
(Godwin & Böhning 2017) and OIZTNB model (Godwin 
2017), it has been usual to include covariates into the 
models in the same way as they are included in their 
equivalent untruncated models. This approach assumes 
that the effects of covariates are on the conditional 
distribution and the inflation parameter are the same for 
both truncated and untruncated models. The OIZTG 
model follows this groundwork as well. 
 In the original geometric model, the mean is μ = 1θ. 
Alternatively, we can use this relationship to express θ 
in terms of μ:
   

(1)

To explain heterogeneity at an individual level, a 
reparameterization is necessary to link the mean of the 

distribution to covariates. Using the natural logarithm link 
function, we have 𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) = 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖   and we get  𝜇𝜇𝑖𝑖 = 𝑒𝑒𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖. and we get𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) = 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖   and we get  𝜇𝜇𝑖𝑖 = 𝑒𝑒𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖. 
Substituting the re-parameterized value of μi into the 
equation (1), we obtain

where β is a vector of coefficients; β = (β0, β1, …, βp)
T; p; is the number of covariates; and xi is a vector 
of covariate values for subject i or xi = (1, xi1,…, xip)
T. Therefore, the OIZTG distribution can be rewritten as 
follows:

where θi = exp (-βT xi). Additionally, we can use a logit 
link function for the one-inflation parameter assuming 
that equally across subject for all subject i in the 
population as 𝑤𝑤 = 1

1 + 𝑒𝑒−𝜑𝜑  where φ may be estimated 

without limited range, ensuring that 0 ≤ w ≤ 1.

MAXIMUM LIKELIHOOD ESTIMATION OF THE OIZTG 
MODEL

Let Yi  be the count variable that represents the number of 
times a ith unit was identified during the study period. 
The log-likelihood function for independent sampling 
from the OIZTG distribution can be written as: 

                                                                                   

where Iy=1 = 1 if yi = 1 and Iy=1 = 0 if yi > 1. Noted that the 
estimated value of β is required for the estimation of 
θi. The first derivatives of the log-likelihood are given by

Due to the fact that we do not have any closed 
form expressions for 

𝑙𝑙(𝑤𝑤, 𝛽𝛽) = ∑ {𝐼𝐼𝑦𝑦=1𝑙𝑙𝑙𝑙𝑙𝑙[𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)] + (1 − 𝐼𝐼𝑦𝑦=1)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑤𝑤) + (𝑦𝑦𝑖𝑖 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖]}𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1

1−𝑤𝑤]}𝑛𝑛
𝑖𝑖=1 , 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑟𝑟

= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the  and 

𝑙𝑙(𝑤𝑤, 𝛽𝛽) = ∑ {𝐼𝐼𝑦𝑦=1𝑙𝑙𝑙𝑙𝑙𝑙[𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)] + (1 − 𝐼𝐼𝑦𝑦=1)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑤𝑤) + (𝑦𝑦𝑖𝑖 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖]}𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1

1−𝑤𝑤]}𝑛𝑛
𝑖𝑖=1 , 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑟𝑟

= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the  and the complexity of 

𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍(𝑌𝑌 = 𝑦𝑦) = (1 − 𝜃𝜃)𝑦𝑦−1𝜃𝜃       ; 𝑦𝑦 = 1,2, …, 

where 𝜃𝜃 is the geometric parameter, 0 < 𝜃𝜃 < 1. The second process is from one-count producing that 

generates structural ones. The combination of these two processes is called the OIZTG distribution 

which can be expressed as: 

𝑃𝑃𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍(𝑌𝑌 = 𝑦𝑦) = {
𝑤𝑤 + (1 − 𝑤𝑤)𝜃𝜃              ; 𝑦𝑦 = 1

(1 − 𝑤𝑤)(1 − 𝜃𝜃)𝑦𝑦−1𝜃𝜃           ; 𝑦𝑦 = 2,3, …, 

where 𝑤𝑤 is the one-inflation parameter, or the additional probability of a 1 count occurring,  0 ≤ 𝑤𝑤 ≤

1. The mean of the OIZTG distribution is  𝑤𝑤 + (1 − 𝑤𝑤) (1
𝜃𝜃).  

 

𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍(𝑌𝑌 = 𝑦𝑦) = (1 − 𝜃𝜃)𝑦𝑦−1𝜃𝜃       ; 𝑦𝑦 = 1,2, …, 
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𝜃𝜃).  

 

𝜃𝜃 = 1
𝜇𝜇.              (1) 

 
 

𝜃𝜃𝑖𝑖 = 1
𝜇𝜇𝑖𝑖

= 1

𝑒𝑒𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖
= 𝑒𝑒−𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖, 

 
 

𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑂𝑂(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖) = {
𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)              ; 𝑦𝑦𝑖𝑖 = 1

(1 − 𝑤𝑤)(1 − 𝜃𝜃𝑖𝑖)𝑦𝑦𝑖𝑖−1(𝜃𝜃𝑖𝑖)        ; 𝑦𝑦𝑖𝑖 = 2,3, … , 

 

𝜃𝜃 = 1
𝜇𝜇.              (1) 

 
 

𝜃𝜃𝑖𝑖 = 1
𝜇𝜇𝑖𝑖

= 1

𝑒𝑒𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖
= 𝑒𝑒−𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖, 

 
 

𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑂𝑂(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖) = {
𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)              ; 𝑦𝑦𝑖𝑖 = 1

(1 − 𝑤𝑤)(1 − 𝜃𝜃𝑖𝑖)𝑦𝑦𝑖𝑖−1(𝜃𝜃𝑖𝑖)        ; 𝑦𝑦𝑖𝑖 = 2,3, … , 

 

𝜃𝜃 = 1
𝜇𝜇.              (1) 

 
 

𝜃𝜃𝑖𝑖 = 1
𝜇𝜇𝑖𝑖

= 1

𝑒𝑒𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖
= 𝑒𝑒−𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖, 

 
 

𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑂𝑂(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖) = {
𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)              ; 𝑦𝑦𝑖𝑖 = 1

(1 − 𝑤𝑤)(1 − 𝜃𝜃𝑖𝑖)𝑦𝑦𝑖𝑖−1(𝜃𝜃𝑖𝑖)        ; 𝑦𝑦𝑖𝑖 = 2,3, … , 

 

𝑙𝑙(𝑤𝑤, 𝛽𝛽) = ∑ {𝐼𝐼𝑦𝑦=1𝑙𝑙𝑙𝑙𝑙𝑙[𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)] + (1 − 𝐼𝐼𝑦𝑦=1)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑤𝑤) + (𝑦𝑦𝑖𝑖 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖]}𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1

1−𝑤𝑤]}𝑛𝑛
𝑖𝑖=1 , 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑟𝑟

= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the 

𝑙𝑙(𝑤𝑤, 𝛽𝛽) = ∑ {𝐼𝐼𝑦𝑦=1𝑙𝑙𝑙𝑙𝑙𝑙[𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)] + (1 − 𝐼𝐼𝑦𝑦=1)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑤𝑤) + (𝑦𝑦𝑖𝑖 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖]}𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1

1−𝑤𝑤]}𝑛𝑛
𝑖𝑖=1 , 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑟𝑟

= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the 
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𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
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𝑖𝑖=1 , 
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= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the 

𝑙𝑙(𝑤𝑤, 𝛽𝛽) = ∑ {𝐼𝐼𝑦𝑦=1𝑙𝑙𝑙𝑙𝑙𝑙[𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)] + (1 − 𝐼𝐼𝑦𝑦=1)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑤𝑤) + (𝑦𝑦𝑖𝑖 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖]}𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1

1−𝑤𝑤]}𝑛𝑛
𝑖𝑖=1 , 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑟𝑟

= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the 

𝑙𝑙(𝑤𝑤, 𝛽𝛽) = ∑ {𝐼𝐼𝑦𝑦=1𝑙𝑙𝑙𝑙𝑙𝑙[𝑤𝑤 + (1 − 𝑤𝑤)(𝜃𝜃𝑖𝑖)] + (1 − 𝐼𝐼𝑦𝑦=1)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑤𝑤) + (𝑦𝑦𝑖𝑖 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖]}𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦=1 = 1 if 𝑦𝑦𝑖𝑖 = 1 and 𝐼𝐼𝑦𝑦=1 = 0 if 𝑦𝑦𝑖𝑖 > 1. Noted that the estimated value of 𝛽𝛽 is required for 

the estimation of 𝜃𝜃𝑖𝑖. The first derivatives of the log-likelihood are given by 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤 = ∑ {𝐼𝐼𝑦𝑦=1 [ 1−𝜃𝜃𝑖𝑖

𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)
] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1

1−𝑤𝑤]}𝑛𝑛
𝑖𝑖=1 , 

𝜕𝜕𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑟𝑟

= ∑ { 𝐼𝐼𝑦𝑦=1 [(1−𝑤𝑤)(−𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖)

] + (1 − 𝐼𝐼𝑦𝑦=1) [(𝑦𝑦𝑖𝑖−1)(𝑋𝑋𝑖𝑖𝑟𝑟𝜃𝜃𝑖𝑖)
1−𝜃𝜃𝑖𝑖

− 𝑋𝑋𝑖𝑖𝑟𝑟]}𝑛𝑛
𝑖𝑖=1 ; 𝑟𝑟 = 0,1,2, … , 𝑝𝑝. 

Due to the fact that we do not have any closed form expressions for �̂�𝑤 and �̂�𝛽 and the 
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the derivatives involved, maximizing the log-likelihood 
function directly can be a difficult undertaking. However, 
the maxLik function in the R program provides a useful 
tool for estimating the parameters of a given probability 
distribution. 

ESTIMATING THE SIZE OF AN UNKNOWN POPULATION 
USING THE OIZTG MODEL

The unknown size N of a closed population consists of 
the number of observed and unobserved units, N = n + 
f0. Capture-recapture methods use information on fy ,y 
= 1, 2, …, m to estimate f0 leading to the estimate of N 
as 𝑦𝑦 = 1, 2, … , 𝑚𝑚 to estimate 𝑓𝑓0 leading to the estimate of 𝑁𝑁 as �̂�𝑁 = 𝑛𝑛 + �̂�𝑓0. The Horvitz-Thompson 

estimator for estimating 𝑓𝑓0 is �̂�𝑓0 = ∑ 𝑃𝑃(𝑌𝑌𝑖𝑖=0)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=0)

𝑛𝑛
𝑖𝑖=1  where 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0) represents the 

. The Horvitz-Thompson estimator for 

estimating  f0 is

𝑦𝑦 = 1, 2, … , 𝑚𝑚 to estimate 𝑓𝑓0 leading to the estimate of 𝑁𝑁 as �̂�𝑁 = 𝑛𝑛 + �̂�𝑓0. The Horvitz-Thompson 

estimator for estimating 𝑓𝑓0 is �̂�𝑓0 = ∑ 𝑃𝑃(𝑌𝑌𝑖𝑖=0)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=0)

𝑛𝑛
𝑖𝑖=1  where 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0) represents the  where P(Yi = 0) 

represents the probability of ith unit being unobserved. 
If one-inflation exists, the conventional Horvitz-
Thompson estimator needs to be modified as suggested 
by Böhning and Friedl (2021). We base our inference on 
the zero-one-truncated probability function. Hence, the 
modified Horvitz-Thompson estimator for estimating f0 
is given by 

where Iy>1 = 1 if ith unit is identified more than once and 
Iy>1 = 0, otherwise. Accordingly, the estimated population 
size using the OIZTG model can be obtained as follows 

where 

�̂�𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1 𝑃𝑃(𝑌𝑌𝑖𝑖=0)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=0)−𝑃𝑃(𝑌𝑌𝑖𝑖=1)

𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦>1 = 1 if 𝑖𝑖𝑡𝑡ℎ unit is identified more than once and 𝐼𝐼𝑦𝑦>1 = 0, otherwise. Accordingly, the 

estimated population size using the OIZTG model can be obtained as follows  

�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑛𝑛 + ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

 is the MLEs of the OIZTG model.

VARIANCE OF THE POPULATION SIZE ESTIMATOR 
UNDER THE OIZTG MODEL

If the sample is large enough for the normal approximation 
to hold, the Wald approach is a valid method to 
construct a confidence interval for the population size 
𝑁. The (1-α)100% confidence interval for the size N of a 
population is given as 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

VARIANCE OF THE POPULATION SIZE ESTIMATOR UNDER THE OIZTG MODEL 

If the sample is large enough for the normal approximation to hold, the Wald approach is a valid method 

to construct a confidence interval for the population size 𝑁𝑁. The (1 − 𝛼𝛼)100% confidence interval for 

the size 𝑁𝑁  of a population is given as �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺 ± 𝑧𝑧1−𝛼𝛼
2
𝑆𝑆�̂�𝑆(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺)  where 𝑧𝑧1−𝛼𝛼

2
 is the (1 − 𝛼𝛼

2)
𝑡𝑡ℎ

 

percentile of the standard normal distribution and 𝑆𝑆�̂�𝑆(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺)  

is the estimated standard error of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺
. 

 According to aforementioned outcomes,  �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺
 is derived. Here, we will develop variance of 

�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺 which can be written as 

  𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉𝑉𝑉 (∑ 𝑂𝑂𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)). (1) 

For the first term of Equation ( 2), the distribution of 𝑛𝑛 is binomial with sample size parameter 𝑁𝑁 and 

success parameter 1 − 𝑃𝑃(𝑌𝑌 = 0).  Hence, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) = 𝑁𝑁(1 − 𝑃𝑃(𝑌𝑌 = 0))𝑃𝑃(𝑌𝑌 = 0)  which can be 

estimated by 𝑛𝑛 �̂�𝑓0
�̂�𝑁 . Using the OIZTG model, we obtain an estimate of the variance of the sample size: 

  𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) = ( 𝑛𝑛
 �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺) ∑ 𝑂𝑂𝑦𝑦>1

𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

, (2) 

 

 where      

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 
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If the sample is large enough for the normal approximation to hold, the Wald approach is a valid method 
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which can be written as

  (2)

For the first term of Equation (2), the distribution of n 
is binomial with sample size parameter N and success 
parameter 1 - P(Y=0). Hence, Var(n) = N(1-P(Y = 0))
P(Y=0) which can be estimated by which can be estimated by 𝑛𝑛 �̂�𝑓0

�̂�𝑁. Using the OIZTG model, we obtain an estimate of the 

variance of the sample size: 

  𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) = ( 𝑛𝑛
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where 𝑛𝑛 is the number of observed units; 𝜃𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and 

indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, elsewhere. 

 

 Using the 
OIZTG model, we obtain an estimate of the variance of 
the sample size:
 

 (3)

where n is the number of observed units; 

�̂�𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1 𝑃𝑃(𝑌𝑌𝑖𝑖=0)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=0)−𝑃𝑃(𝑌𝑌𝑖𝑖=1)

𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦>1 = 1 if 𝑖𝑖𝑡𝑡ℎ unit is identified more than once and 𝐼𝐼𝑦𝑦>1 = 0, otherwise. Accordingly, the 

estimated population size using the OIZTG model can be obtained as follows  

�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑛𝑛 + ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1
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1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

is obtained 
from fitting the OIZTG model, and indicator Iy>1 = 1 if yi 
> 1 and Iy>1 = 0, elsewhere.

For the second term of equation (2), the variance of 
the number of unobserved units which can be estimated 
using the conditional expectation approach taken by 
Böhning (2008). Let us now consider  Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
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term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 
Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1

𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 and Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

. That is

   
(4)

  The first term of equation (4) represents the 
variation in estimating 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 based on Iy>1 data. This term 
can be estimated by 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 using the δ-method. 
We consider  

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 and 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

For convenience of notation define 

the vector with derivatives

where r = 0, 1, …, p  and the observed information matrix 
represented in the following matrix:

�̂�𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1 𝑃𝑃(𝑌𝑌𝑖𝑖=0)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=0)−𝑃𝑃(𝑌𝑌𝑖𝑖=1)

𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦>1 = 1 if 𝑖𝑖𝑡𝑡ℎ unit is identified more than once and 𝐼𝐼𝑦𝑦>1 = 0, otherwise. Accordingly, the 

estimated population size using the OIZTG model can be obtained as follows  

�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑛𝑛 + ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

�̂�𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1 𝑃𝑃(𝑌𝑌𝑖𝑖=0)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=0)−𝑃𝑃(𝑌𝑌𝑖𝑖=1)

𝑛𝑛
𝑖𝑖=1 , 

where 𝐼𝐼𝑦𝑦>1 = 1 if 𝑖𝑖𝑡𝑡ℎ unit is identified more than once and 𝐼𝐼𝑦𝑦>1 = 0, otherwise. Accordingly, the 

estimated population size using the OIZTG model can be obtained as follows  

�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑛𝑛 + ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

VARIANCE OF THE POPULATION SIZE ESTIMATOR UNDER THE OIZTG MODEL 

If the sample is large enough for the normal approximation to hold, the Wald approach is a valid method 

to construct a confidence interval for the population size 𝑁𝑁. The (1 − 𝛼𝛼)100% confidence interval for 

the size 𝑁𝑁  of a population is given as �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺 ± 𝑧𝑧1−𝛼𝛼
2
𝑆𝑆�̂�𝑆(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺)  where 𝑧𝑧1−𝛼𝛼

2
 is the (1 − 𝛼𝛼

2)
𝑡𝑡ℎ

 

percentile of the standard normal distribution and 𝑆𝑆�̂�𝑆(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺)  

is the estimated standard error of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺
. 

 According to aforementioned outcomes,  �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺
 is derived. Here, we will develop variance of 

�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺 which can be written as 

  𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉𝑉𝑉 (∑ 𝑂𝑂𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)). (1) 

For the first term of Equation ( 2), the distribution of 𝑛𝑛 is binomial with sample size parameter 𝑁𝑁 and 

success parameter 1 − 𝑃𝑃(𝑌𝑌 = 0).  Hence, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) = 𝑁𝑁(1 − 𝑃𝑃(𝑌𝑌 = 0))𝑃𝑃(𝑌𝑌 = 0)  which can be 

estimated by 𝑛𝑛 �̂�𝑓0
�̂�𝑁 . Using the OIZTG model, we obtain an estimate of the variance of the sample size: 

  𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) = ( 𝑛𝑛
 �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺) ∑ 𝑂𝑂𝑦𝑦>1

𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

, (2) 

 

where �̂�𝜃𝑖𝑖 is the MLEs of the OIZTG model. 

 

VARIANCE OF THE POPULATION SIZE ESTIMATOR UNDER THE OIZTG MODEL 

If the sample is large enough for the normal approximation to hold, the Wald approach is a valid method 

to construct a confidence interval for the population size 𝑁𝑁. The (1 − 𝛼𝛼)100% confidence interval for 

the size 𝑁𝑁  of a population is given as �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺 ± 𝑧𝑧1−𝛼𝛼
2
𝑆𝑆�̂�𝑆(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺)  where 𝑧𝑧1−𝛼𝛼

2
 is the (1 − 𝛼𝛼

2)
𝑡𝑡ℎ

 

percentile of the standard normal distribution and 𝑆𝑆�̂�𝑆(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺)  

is the estimated standard error of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺
. 

 According to aforementioned outcomes,  �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺
 is derived. Here, we will develop variance of 

�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺 which can be written as 

  𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉𝑉𝑉 (∑ 𝑂𝑂𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)). (1) 

For the first term of Equation ( 2), the distribution of 𝑛𝑛 is binomial with sample size parameter 𝑁𝑁 and 

success parameter 1 − 𝑃𝑃(𝑌𝑌 = 0).  Hence, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) = 𝑁𝑁(1 − 𝑃𝑃(𝑌𝑌 = 0))𝑃𝑃(𝑌𝑌 = 0)  which can be 

estimated by 𝑛𝑛 �̂�𝑓0
�̂�𝑁 . Using the OIZTG model, we obtain an estimate of the variance of the sample size: 

  𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) = ( 𝑛𝑛
 �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺) ∑ 𝑂𝑂𝑦𝑦>1

𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

, (2) 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 
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Therefore, the first term of Equation (4) can be estimated 
as follows:

   (5)

where 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

 and 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

are obtained from fitting the OIZTG 
model.

The second term of  Equat ion (4)  shows 
variation in the obtained sample. If the number of 
observations is not too small, we can safely assume that  

 

(6)

Since the identification that has been observed 
more than once occurs independently for each population 
unit with probability 1-P(Yi = 0) - 1-P(Yi = 1), the variance 
number of each observed case is VarI(y > 1) (Iy > 1) = (1-P(Yi 
= 0) - P(Yi = 1))(P(Yi = 0) + P(Yi = 1)). Using the OIZTG 
model the variance of Iy > 1 can readily be estimated as  

   (7)

Substituting Equation (7) in Equation (6),

which is estimated from the observed data by

Consequently, the second term of Equation (4) can be 
estimated as follows:
  
 (8)

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)

(1−𝜃𝜃𝑖𝑖)2 ]} ,𝑛𝑛
𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 

  𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ 𝜏𝜏𝑇𝑇(�̂�𝑤, �̂�𝛽)𝑂𝑂−1(�̂�𝑤, �̂�𝛽)𝜏𝜏(�̂�𝑤, �̂�𝛽) (2) 

where �̂�𝑤 and �̂�𝛽 are obtained from fitting the OIZTG model. 

 

Let us now consider  𝑋𝑋 = 𝑓𝑓0 = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖) and 𝑌𝑌 = 𝐼𝐼𝑦𝑦>1. That is 

  𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0) = 𝐸𝐸𝐼𝐼𝑦𝑦>1[𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1)]. (1) 

 The first term of equation (4) represents the variation in estimating �̂�𝑓0 based on 𝐼𝐼𝑦𝑦>1 data. This 

term can be estimated by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) using the 𝛿𝛿-method. We consider 𝑋𝑋 = 𝜃𝜃𝑖𝑖 and 𝑓𝑓(𝑋𝑋) =

𝑓𝑓(𝜃𝜃𝑖𝑖) = ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)  = 𝑓𝑓0. For convenience of notation define the vector with derivatives 

𝜏𝜏(𝑤𝑤, 𝛽𝛽) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 𝑓𝑓0
𝑑𝑑

𝑑𝑑𝛽𝛽𝑟𝑟
𝑓𝑓0

) = (
𝑑𝑑

𝑑𝑑𝑑𝑑 ∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

𝑑𝑑
𝑑𝑑𝛽𝛽𝑟𝑟

∑ 𝐼𝐼𝑦𝑦>1
𝑛𝑛
𝑖𝑖=1

𝜃𝜃𝑖𝑖
1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖)

) = (
0

∑ 𝐼𝐼𝑦𝑦>1
𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖𝑟𝑟(𝜃𝜃𝑖𝑖

2−1)
(1−𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖(1−𝜃𝜃𝑖𝑖))2

𝑛𝑛
𝑖𝑖=1

), 

where 𝑉𝑉 = 0,1, … , 𝑝𝑝 and the observed information matrix represented in the following matrix: 

𝑂𝑂(𝑤𝑤, 𝛽𝛽) = (
𝑂𝑂𝑑𝑑𝑑𝑑 𝑂𝑂𝑑𝑑𝛽𝛽
𝑂𝑂𝛽𝛽𝑑𝑑 𝑂𝑂𝛽𝛽𝛽𝛽

) = (
− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝑑𝑑2 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝑑𝑑𝜕𝜕𝛽𝛽𝑟𝑟

− 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑑𝑑 − 𝜕𝜕2𝑙𝑙(𝑑𝑑,𝛽𝛽)

𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝛽𝛽𝑟𝑟

), 

where 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝑤𝑤2 = ∑ {𝐼𝐼𝑦𝑦=1 [ (−1)(1−𝜃𝜃𝑖𝑖)2

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [ −1
(1−𝑤𝑤)2]}𝑛𝑛

𝑖𝑖=1 , 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽)
𝜕𝜕𝑤𝑤𝜕𝜕𝛽𝛽𝑉𝑉

= 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑠𝑠𝜕𝜕𝑤𝑤 = − ∑ {𝐼𝐼𝑦𝑦=1 [ 𝑋𝑋𝑖𝑖𝑉𝑉𝜃𝜃𝑖𝑖

(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2]}𝑛𝑛
𝑖𝑖=1 , 𝑉𝑉 = 0,1, … , 𝑝𝑝, 

 𝜕𝜕2𝑙𝑙(𝑤𝑤,𝛽𝛽) 
𝜕𝜕𝛽𝛽𝑉𝑉𝜕𝜕𝛽𝛽𝑠𝑠

= ∑ {𝐼𝐼𝑦𝑦=1 [𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖𝑤𝑤(1−𝑤𝑤)
(𝑤𝑤+(1−𝑤𝑤)(𝜃𝜃𝑖𝑖))2] + (1 − 𝐼𝐼𝑦𝑦=1) [−𝑋𝑋𝑖𝑖𝑉𝑉𝑋𝑋𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖(𝑦𝑦𝑖𝑖−1)
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𝑖𝑖=1 𝑉𝑉, 𝑠𝑠 = 0,1, … , 𝑝𝑝. 

Therefore, the first term of Equation (4) can be estimated as follows: 
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where 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  
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. Hence, 
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1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)
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𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 
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elsewhere.  
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where we obtained this result by adding the expressions (3), (5), and (8). 

 

 is obtained from fitting the OIZTG model, and 
indicator Iy > 1 = 1 if yi > 1 and Iy > 1 = 0, elsewhere.  
Therefore, the estimated variance of 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 
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Consequently, the second term of Equation (4) can be estimated as follows: 
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𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 
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 The simulation experiment is conducted under 
specific conditions: (1) The population size (N) 
varied between 500, 1,000, and 2,000. (2) A binary 
covariate variable X was generated from a Bernoulli 
distribution with p = 0.5. (3) The response variable Y was 
generated from the OIZTG distribution with parameters 
w∈{0.1,0.3,0.5}. and θi∈{0.1, 0.3, 0.5}.
 To demonstrate the data generating process, assuming 
a population size of N = 500, with w = 0.1 extra-ones, NDist 
= 450 follows a geometric distribution with parameter (θx 

= 0), θx = 1) = (0.1, 0.3) for binary covariate variable (X) 
which θ = 0.1 if X = 0 and θ = 0.3 if X = 1. Additionally, 
there are NOI = 50 extra ones in the population that the 
total population size is N = NDist + NOI. A simple algorithm 
to generate data are as follows:

Step 1 Generate a binary covariate variable X of size N = 
500 from a Bernoulli distribution with parameter p = 0.5.

Step 2 Construct the parameter θi for i = 1, 2, ..., 450  by 
setting θi = 0.1 if Xi = 0 and θi = 0.3 if Xi = 1.

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
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(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
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𝑛𝑛
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The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 

 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 

 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 

 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 

 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 

 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 

 

The second term of Equation (4) shows variation in the obtained sample. If the number of observations 

is not too small, we can safely assume that  

𝐸𝐸(𝑓𝑓0|𝐼𝐼𝑦𝑦>1) ≈ ∑ 𝐼𝐼𝑦𝑦>1𝑛𝑛
𝑖𝑖=1

�̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

. Hence, 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1)𝑛𝑛

𝑖𝑖=1 . (1) 

𝑉𝑉𝑉𝑉�̂�𝑉𝐼𝐼𝑦𝑦>1(𝐼𝐼𝑦𝑦>1) = (1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)). (2) 

Substituting Equation (7) in Equation (6), 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(1 − �̂�𝜃𝑖𝑖 − �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) (�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖))𝑛𝑛

𝑖𝑖=1 , 

which is estimated from the observed data by 

∑ 𝐼𝐼𝑦𝑦>1 ( �̂�𝜃𝑖𝑖
1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖)

)
2
(�̂�𝜃𝑖𝑖 + �̂�𝜃𝑖𝑖(1 − �̂�𝜃𝑖𝑖)) = ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖

3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . 

Consequently, the second term of Equation (4) can be estimated as follows: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑦𝑦>1[𝐸𝐸(�̂�𝑓0|𝐼𝐼𝑦𝑦>1)] ≈ ∑ 𝐼𝐼𝑦𝑦>1 (2−�̂�𝜃𝑖𝑖)�̂�𝜃𝑖𝑖
3

(1−�̂�𝜃𝑖𝑖−�̂�𝜃𝑖𝑖(1−�̂�𝜃𝑖𝑖))
2

𝑛𝑛
𝑖𝑖=1 , (3) 

where �̂�𝜃𝑖𝑖 is obtained from fitting the OIZTG model, and indicator 𝐼𝐼𝑦𝑦>1 = 1 if 𝑦𝑦𝑖𝑖 > 1 and 𝐼𝐼𝑦𝑦>1 = 0, 

elsewhere.  

Therefore, the estimated variance of �̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
 can be written as 

𝑉𝑉𝑉𝑉�̂�𝑉 (�̂�𝑁𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑉𝑉𝑉𝑉�̂�𝑉(𝑛𝑛) + 𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝑓0), 

where we obtained this result by adding the expressions (3), (5), and (8). 
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Step 3 Generate the one-inflated geometric data by 
randomly generating Yi from a Geometric distribution 
with parameter θi for i = 1, 2, ..., 450, and setting Yi = 1 
for i = 451,...,500.

Step 4 Remove the zero counts from the sample, resulting 
in a new sample of size n. This step yields the one-inflated 
zero-truncated geometric data.
  This algorithm is repeated M = 10,000 times. 
Average percentage of relative bias (%RBias) and average 
percentage of relative mean square error (%RMSE) are 
calculated. Additionally, 95% CI, coverage probability 
(CP) and average lengths (AL) are computed. 
 

RESULTS AND DISCUSSION 

Table 2 provides %RBias and %RMSE for various 
estimators. With the increasing N, the %RBias as well as 
%RMSE of all estimators �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 consistently decrease. When 
the parameter w increases, the %RBias of �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 

and 
�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 tend to increase, while the %RBias of 
�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

and 
�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 decrease. Similarly, when w increases, the 
%RMSE of , and , tend to increase, but the %RMSE of 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

and 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover,  decrease. Moreover, �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 and 
�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 have a consistent tendency to overestimate the 
true value, with 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover,  exhibiting a more severe bias 

towards overestimation. Conversely, the estimators �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 
and 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 consistently underestimate the true value. 
However, among these estimators, �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 and 
�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 
demonstrate the least bias.
 CP and AL of the 95% confidence intervals using 
the OIZTG model as the data generation process were 
presented in Table 3. As can be seen, the CIs of �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 and  
�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

do not cover the true population size in almost all 
cases, as they tend to overestimate. On the other hand, 
the CIs of  

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

and  showed low CP. However, the CI 
of  exhibited a high CP and narrow range. Additionally, 
it was observed that increasing the values of  N and w led 
to an increase in the performance of the CI of 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

.

TABLE 2. %RBias (and %RMSE below) of the proposed estimator and comparators Chao, modified Chao, MLE under zero-
truncated geometric, MLE under OIPP model and MLE under OIZTNB model when the OIZTG is the data-generating process

N w θ(x=0) θ(x=1)�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶
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 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

�̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
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, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
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and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 
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, �̂�𝑁𝑀𝑀𝐶𝐶
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 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
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and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

500 0.1 0.1 0.3 37.19 1.71 5.96 -17.21 7.87E+06 0.54

15.12 1.33 0.44 2.99 4.37E+13 0.09

0.5 43.77 -1.44 13 -20.7 1.11E+07 3.55

21.35 2.78 2.03 4.36 2.13E+14 0.44

0.3 0.5 42.66 2.22 16.59 -30.84 2.17E+01 2.45

20.46 4.8 3.15 9.58 9.31E+01 0.58

0.3 0.1 0.3 197.07 1.97 21.37 -13.08 5.05E+05 0.87

402.71 1.19 4.71 1.74 6.08E+12 0.08

0.5 229.35 -0.23 48.75 -12.45 3.31E+06 6.82

548.34 2.44 24.96 1.68 5.04E+13 0.88

0.3 0.5 200.36 2.46 61.66 -21.47 7.46E+01 3.9

416.82 4.02 39.23 4.7 3.52E+03 0.67

0.5 0.1 0.3 589.37 2.53 46.45 -9.02 1.43E+02 0.82

3615.36 1.2 22.03 0.83 2.04E+05 0.06

0.5 676.66 1.33 113.88 -3.79 3.00E+04 7.76

4794.94 2.5 135.96 0.46 1.49E+10 1.09

0.3 0.5 552.46 3.13 142.19 -11.94 1.17E+02 4.16

3164.05 3.57 208.22 1.58 1.11E+03 0.64
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1000 0.1 0.1 0.3 36.52 0.46 5.93 -17.19 1.13E+07 0.49

13.94 0.52 0.39 2.97 6.02E+13 0.04

0.5 42.82 -3.7 12.54 -20.9 8.72E+06 3.02

19.36 1.13 1.74 4.4 4.76E+13 0.24

0.3 0.5 41.81 -0.57 16.12 -31.01 1.51E+01 1.79

18.58 1.72 2.78 9.65 1.13E+01 0.27

0.3 0.1 0.3 193.77 0.72 21.08 -13.15 2.80E+05 0.69

382.1 0.45 4.52 1.74 4.04E+11 0.04

0.5 225.34 -2.32 47.68 -12.79 2.13E+06 6.2

517.9 0.9 23.29 1.7 1.69E+13 0.57

0.3 0.5 197.82 -0.06 60.64 -21.76 4.04E+01 3.1

398.33 1.43 37.35 4.78 7.38E+01 0.33

0.5 0.1 0.3 578.04 0.89 45.82 -9.08 6.57E+01 0.66

3402.98 0.34 21.2 0.83 3.56E+04 0.03

0.5 663.21 -1.13 111.18 -4.47 1.16E+04 6.92

4493.28 0.72 126.39 0.34 1.19E+10 0.69

0.3 0.5 543.12 0.71 139.72 -12.43 7.27E+01 3.3

2999.45 1.17 197.94 1.61 2.64E+02 0.31

2000 0.1 0.1 0.3 36.12 -0.12 5.84 -17.21 1.44E+07 0.4

13.34 0.23 0.36 2.97 1.89E+14 0.02

0.5 42.45 -4.57 12.5 -20.9 1.15E+07 2.96

18.54 0.65 1.64 4.39 1.79E+14 0.16

0.3 0.5 41.36 -1.8 15.93 -31.08 1.16E+01 1.55

17.64 0.84 2.63 9.67 4.50E+00 0.14

0.3 0.1 0.3 192.9 -0.04 21.05 -13.16 2.00E+05 0.65

375.26 0.18 4.47 1.74 2.64E+11 0.02

0.5 224.13 -3.42 47.44 -12.9 1.67E+06 5.97

507.18 0.45 22.78 1.69 7.87E+12 0.45

0.3 0.5 196.8 -1.24 60.14 -21.91 3.12E+01 2.71

390.75 0.65 36.45 4.82 1.76E+01 0.19

0.5 0.1 0.3 573.94 0.21 45.65 -9.1 2.07E+01 0.61

3324.63 0.14 20.95 0.83 9.46E+01 0.02

0.5 654.94 -2.07 109.7 -4.83 2.56E+02 6.49

4334.23 0.32 121.63 0.3 1.86E+06 0.52

0.3 0.5 540.44 -0.51 138.14 -12.7 5.30E+01 2.82

2945.09 0.49 192.1 1.64 5.05E+01 0.18
The bold number shows the smallest %RBias and %RMSE.
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TABLE 3. The coverage probability (CP) and average length (AL) of 95% CI of  using the OIZTG model as the data generation 
process

N w θ(x=0) θ(x=1)

CP AL

C MC ZTG OIPP OIZTG C MC ZTG OIPP OIZTG

500 0.1 0.1 0.3 0.0148 0.8940 0.5253 0 0.9457 163.93 218.28 58.84 NaN 54.44

0.5 0.0498 0.8223 0.4047 0 0.9874 217.82 327.82 105.83 NaN 131.24

0.3 0.5 0.0882 0.8793 0.2262 0 0.9675 228.68 405.15 114.76 NaN 145.18

0.3 0.1 0.3 0 0.8878 0 0 0.9471 NaN 203.01 NaN NaN 50.68

0.5 0 0.8239 0 0.0744 0.9832 NaN 306.75 NaN 81.35 143.63

0.3 0.5 0 0.8765 0 0.0012 0.9738 NaN 380.12 NaN 106.09 142.88

0.5 0.1 0.3 0 0.8774 0 0 0.9523 NaN 190.81 NaN NaN 44.74

0.5 0 0.8129 0 0.6174 0.9914 NaN 299.46 NaN 88.55 147.99

0.3 0.5 0 0.8739 0 0.1302 0.9793 NaN 359.17 NaN 98.03 136.36

1000 0.1 0.1 0.3 0 0.9084 0.2018 0 0.9403 NaN 281.85 81.91 NaN 76.36

0.5 0.0001 0.8075 0.0833 0 0.9746 243.01 409.83 143.33 NaN 180.99

0.3 0.5 0.0011 0.8970 0.0221 0 0.9632 290.04 524.37 155.87 NaN 199.00

0.3 0.1 0.3 0 0.9013 0 0 0.9396 NaN 256.98 NaN NaN 70.74

0.5 0 0.8186 0 0.0068 0.8977 NaN 373.53 NaN 118.00 191.99

0.3 0.5 0 0.8949 0 0 0.9618 NaN 475.09 NaN NaN 194.41

0.5 0.1 0.3 0 0.8990 0 0 0.9420 NaN 227.00 NaN NaN 61.96

0.5 0 0.8219 0 0.4918 0.8913 NaN 334.96 NaN 120.28 190.09

0.3 0.5 0 0.8881 0 0.0218 0.9649 NaN 421.72 NaN 136.89 178.72

2000 0.1 0.1 0.3 0 0.9190 0.0160 0 0.9402 NaN 379.19 114.12 NaN 107.60

0.5 0 0.7733 0.0025 0 0.9308 NaN 549.79 196.69 NaN 251.69

0.3 0.5 0 0.8920 0.0001 0 0.9572 NaN 706.38 226.94 NaN 277.79

0.3 0.1 0.3 0 0.9144 0 0 0.9254 NaN 339.62 NaN NaN 99.55

0.5 0 0.7907 0 0 0.6731 NaN 492.21 NaN NaN 259.70

0.3 0.5 0 0.8981 0 0 0.9280 NaN 630.03 NaN NaN 268.76

0.5 0.1 0.3 0 0.9104 0 0 0.9212 NaN 294.35 NaN NaN 86.65

0.5 0 0.8000 0 0.3068 0.5896 NaN 429.12 NaN 167.03 247.58

0.3 0.5 0 0.8981 0 0.0003 0.9237 NaN 548.37 NaN 222.17 243.10
If the confidence interval does not contain the true parameter N, then the length of the confidence interval will be undefined or NaN
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AN APPLICATION TO A DRUG USE POPULATION IN 
CHIANG MAI, THAILAND

We demonstrate the proposed estimators by an application 
to estimate the size of a drug use population in Chiang 
Mai, Thailand. The data was collected by a hospital and 
a health treatment center, which recorded information on 
heroin users, including their gender and how many times 
they were treated (Table 1). 
 We examine the distributions providing the best fit 
to the observed counts. The associated distributions are 
presented in Figure 1 and show clear evidence that the 
OIZTG distribution provides a better fit compared to the 
other distributions.

 In Table 4, various statistics are provided including 
the estimated number of unobserved drug users, estimates 
for the number of heroin users, standard error, and 95% 
CI for N. Among the comparators, if �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

and �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

 are 
close, this indicates lack of evidence for one-inflation. 
Evidently, we are dealing with the situation of one-
inflation as the difference between �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶

, �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍

 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Moreover, 

and �̂�𝑁 consistently decrease. When the parameter 𝑤𝑤 increases, the %RBias of �̂�𝑁𝐶𝐶
, �̂�𝑁𝑀𝑀𝐶𝐶

, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
 and 

�̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍
 tend to increase, while the %RBias of �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
 decrease. Similarly, when 𝑤𝑤 

increases, the %RMSE of �̂�𝑁𝐶𝐶, �̂�𝑁𝑍𝑍𝑍𝑍𝑍𝑍
, and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑍𝑍

, tend to increase, but the %RMSE of �̂�𝑁𝑀𝑀𝐶𝐶
, �̂�𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, 

and �̂�𝑁𝑂𝑂𝑂𝑂𝑍𝑍𝑍𝑍𝑁𝑁𝑂𝑂
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. We conclude that the total number of heroin 
users is 1385 with a 95% CI of (1246, 1525).

FIGURE 1. Frequency distribution of heroin users with gender as a covariate among the 
observed counts, ZTG, OIZTG, OIPP and OIZTNB distribution
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TABLE 4. Estimated total number of heroin users with gender as a covariate

Estimator 95% CI of 

Chao 1897 2740 216.34 (2316, 3164)

Modified Chao 549 1392 181.33 (1036, 1747)

ZTG (

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.57) 1114 1957 77.50 (1805, 2109)

OIPP (

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=2.29,

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.51) 95 938 15.54 (908, 969)

OIZTNB (

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.44,

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.27,

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.16) 2831 3674 - -

OIZTG (

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.48, 

ZTG (𝜃𝜃 = 0.57) 

OIPP (�̂�𝜆 = 2.29, �̂�𝑤 = 0.51) 

OIZTNB (�̂�𝜆 = 0.44, �̂�𝑎 = 0.27, �̂�𝑤 = 0.16) 

OIZTG (𝜃𝜃 = 0.48, �̂�𝑤 = 0.30) 

 

=0.30) 542 1385 71.25 (1246, 1525)

Noted that the estimated SE and CI for the  are not included in this research

CONCLUSIONS

Capture-recapture is a useful method for estimating the 
size of an elusive target population. During the capture-
recapture sampling process, frequency count data is 
collected over the observational period. In addition to the 
frequency counts, data on various characteristics such as 
gender, or other relevant factors may also be collected. 
However, there are cases where certain individuals remain 
unobserved because they have never been identified, 
leading to missing zero-count data. Estimating the 
number of unobserved cases is typically necessary in 
such situations. In some capture-recapture studies, the 
observed data shows the presence of one-inflation in 
the count distribution, indicating that a portion of the 
population is primarily captured only once. Ignoring 
this one-inflation phenomenon can result in a significant 
overestimation of the population size. Additionally, it is 
important to consider variations in capture probability 
due to heterogeneity. By incorporating a heterogeneous 
Poisson model, which accounts for this heterogeneity, 
a more realistic estimation of the true population size 
can be achieved. The commonly used negative binomial 
distribution has been applied as a model for capture-
recapture data. However, many studies have demonstrated 
the failure of accurately estimating the dispersion 
parameter in the negative binomial distribution, leading 
to spurious population size estimates N. As an alternative 
approach, this study proposes the use of the geometric 
distribution to overcome these limitations.

We proposed the one-inflated, zero-truncated 
geometric (OIZTG) model, which is designed to handle 
three crucial aspects often observed in capture-recapture 
data: zero-truncation, one-inflation, and observed 

heterogeneity. The OIZTG model also includes covariates 
that link the mean of the model to the covariates through 
a log link function. A new estimator N̂OIZTG is proposed 
based on the OIZTG distribution through the modified 
Horvitz-Thomson approach. The simulation results show 
that N̂OIZTG is an asymptotic estimator under the OIZTG 
distributions. In addition, we employed the OIZTG model 
to construct confidence intervals (CI) for the population 
size N using the Wald approach. The estimation of the 
variance of the proposed estimator was based on the 
conditional expectation technique. Simulation results 
confirm that the proposed CI is a suitable choice for 
estimating the CI of the population size N based on the 
OIZTG distribution.
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