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ABSTRACT

In order to estimate the unknown size of the population that is difficult or hidden to enumerate, the capture-recapture
method is widely used for this purpose. We propose the one-inflated, zero-truncated geometric (OIZTG) model to
deal with three important characteristics of some capture—recapture data: zero-truncation, one-inflation, and observed
heterogeneity. The OIZTG model is generated by two distinct processes, one from a zero-truncated geometric (ZTG)
process, and the other one-count producing process. To explain heterogeneity at an individual level, the OIZTG
model provides a simple way to link the covariate information. The new estimator was proposed based on the OIZTG
distributions through the modified Horvitz-Thomson approach, and the parameters of the OIZTG distributions are
estimated by using a maximum likelihood estimator (MLE). With regard to making inferences about the unknown size
of the population, confidence interval estimations are proposed where variance estimate of population size estimator
is achieved by using conditional expectation technique. All of these are assessed through simulation studies. The real
data sets are provided for understanding the methodologies.

Keywords: Capture-recapture; geometric regression; observed heterogeneity

ABSTRAK

Dalam proses untuk menganggarkan saiz populasi yang sukar atau tersembunyi untuk dihitung, kaedah tangkap-
tangkap semula digunakan secara meluas untuk tujuan ini. Kami mencadangkan model geometrik satu-lambung,
geometrik sifar-pemangkasan (OIZTG) untuk menangani tiga ciri penting bagi beberapa data tangkap-tangkap semula:
sifar-pemangkasan, satu-inflasi dan heterogeniti yang diperhatikan. Model OIZTG dijana oleh dua proses yang berbeza,
satu daripada proses geometri terpangkas sifar (ZTG) dan satu lagi proses menghasilkan satu kiraan. Untuk menerangkan
heterogeniti pada peringkat individu, model OIZTG menyediakan cara mudah untuk memautkan maklumat kovariat.
Penganggar baharu telah dicadangkan berdasarkan taburan OIZTG melalui pendekatan Horvitz-Thomson yang
diubah suai dan parameter taburan OIZTG dianggarkan dengan menggunakan penganggar kemungkinan maksimum
(MLE). Berkenaan dengan membuat inferens tentang saiz populasi yang tidak diketahui, anggaran selang keyakinan
dicadangkan dengan anggaran varians penganggar saiz populasi dicapai dengan menggunakan teknik jangkaan
bersyarat. Kesemua ini dinilai melalui kajian simulasi. Set data sebenar disediakan untuk memahami metodologi.

Kata kunci: Kepelbagaian yang diperhatikan; regresi geometri; tangkap-tangkap semula

INTRODUCTION number of female grizzly bears (Chao & Huggins 2006).

Capture-recapture techniques are widely used to estimate
the size of hidden population. This population might be
a wildlife population or a population of drug addicts.
Traditionally, capture-recapture methods are used in
the field of wildlife biology/ecology (estimating the

Currently, the methods are applied in a variety of area
including social science (estimating the number of
illicit drug users (McDonald et al. 2014), public health
and epidemiology (investigating the completeness of
contact tracing for COVID-19 (Lerdsuwansri et al. 2022))
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as well as quantitative criminology (estimating the
hidden population size of criminals (Tajuddin, Ismail
& Ibrahim 2022)). A closed population (with no birth,
death, or migration) of N units is assumed meaning that
the population size remains constant during the study
period and n distinct units are identified through some
mechanisms (traps, lists, & registers). The number of
units identified exactly y times is denoted by ]: . However,
the number of unobserved units, f;, remains unknown
as some units are not observed at all. The total number of
observed units is n =f, + f, + f, + -« + f where m is the
largest counts. Since the unknown size of population N
=n + f,, estimating f; is necessary to estimate N.

A common estimation approach is to model the
number of times a unit has been identified through a
counting distribution (Poisson, negative binomial, &
geometric). Under homogeneity model, probability of
each unit being identified exactly y times is an equal
chance (Bunge & Fitzpatrick 1993; Good 1953).
However, the homogeneous assumption is unrealistic as
individual characteristics (gender, age, social status, &
behavior) can lead to variations in capture probabilities
known as heterogeneity (Chao 1987; Niwitpong et al.
2013; Zelterman 1988), whether observed or unobserved.
Ignoring heterogeneity can lead to an underestimation
of the true population size. To get accurate estimates N
, covariate information may be used to account for the
population heterogeneity.

Before we go on, we illustrate the situation at hand
with a real data example. Provided in Table 1 is the
frequency distribution of the number of times that a
heroin user contacted a hospital and a health treatment
center in Chiang Mai, Thailand, from 2013 to 2018.
Additionally, individual information such as gender
is also collected. A total of 843 observed heroin users
consisted of 754 men and 89 women. Among these, 537
had treatment once with 482 men and 55 women. Of the
152 users with treatment twice, 134 were males and 18

were females. Clearly, f;, the number of hidden heroin
users is unobserved and there is a large number of f,. More
details of the data source are provided in Panyalert and
Lanamtaeng (2020).

In certain capture-recapture studies, one-inflation
in the count distribution can be observed due to
difficulties in recapturing individuals and behavioral
responses. Ignoring one-inflation may lead to significant
overestimation of the population size. Several estimators
have been developed to address this issue. Godwin and
Bohning (2017) added an excess probability of observing
one counts in the positive Poisson (PP) distribution
and propose the one-inflated positive Poisson (OIPP)
distribution. Godwin (2017) proposed the one-inflated,
zero-truncated negative binomial (OIZTNB) model to
estimate population size. What they have in common
are one-inflation parameter and covariate information
incorporating into truncated regression model. Although
covariates can help to improve the fit of the model,
OIZTNB model have the boundary problem. Bdohning,
Kaskasamkul and van der Heijden (2019) suggested
modification of Chao's lower bound estimator (Chao
1987) to avoid overestimation caused by one-inflation,
but it does not account for heterogeneity. Béhning and
Friedl (2021) proposed a population size estimation for
sparse count data using a zero-truncated, one-inflated
model, but it does not consider observed heterogeneity.

In this study, we are interested in estimating
population size using zero-truncated, one-inflated
capture-recapture count data with observed heterogeneity.
We propose the one-inflated, zero-truncated geometric
(OIZTG) model for the Horvitz-Thompson estimator
(Horvitz & Thompson 1952) N of the population size.
Additionally, confidence interval estimations for the
unknown population size N are provided using the
conditional expectation technique. Simulation studies
and real datasets are utilized to assess the effectiveness
of these methods and enhance their understanding.

TABLE 1. Frequency distribution of heroin user contacts in Chiang Mai, Thailand, from 2013 to 2018

Gender — f, /i L L L L S L K S So o S S Suoom
Male - 482 13 73 3 13 7 s 7 0 1 1 0 0 1 75

Female - ss 18 7 4 2 1 1 1 0 0 0 0 0 0 8
Total - 537 12 80 34 15 8 6 8 0 1 1 0 0 1 843




MATERIALS AND METHODS

THE ONE-INFLATED, ZERO-TRUNCATED GEOMETRIC
MODEL

The one-inflated, zero-truncated geometric (OIZTG)
model employs two components that correspond to
two generating processes. The first process is from the
zero-truncated geometric (ZTG) model that generates
counts, some of which may be one. The probability mass
function for a random variable Y that follows a ZTG
distribution is

PPy =yp)=(1-6)7""'0 ;y=12,..

where 6 is the geometric parameter, 0 <8 < 1. The second
process is from one-count producing that generates
structural ones. The combination of these two processes
is called the OIZTG distribution which can be expressed
as:

w4+ (1-w)d
1-w)(1-6Y""8

pOIZTGy — ) = ¥y =1

;y=23,..)
where is the one-inflation parameter, or the additional
probability of a 1 count occurring, 0 <w < 1. The mean
of the OIZTG distribution is w + (1 — w) (%)

INCORPORATING COVARIATES IN THE OIZTG MODEL

In standard models, covariate affecting the mean of the
distribution can be incorporated into the model by using
reparameterization. For the case of OIZTG distribution,
there is no simple way to directly express the mean as
a function of covariates. In the cases of OIPP model
(Godwin & Bohning 2017) and OIZTNB model (Godwin
2017), it has been usual to include covariates into the
models in the same way as they are included in their
equivalent untruncated models. This approach assumes
that the effects of covariates are on the conditional
distribution and the inflation parameter are the same for
both truncated and untruncated models. The OIZTG
model follows this groundwork as well.

In the original geometric model, the mean is u = 16.
Alternatively, we can use this relationship to express 6
in terms of u:

1

0 = v (1)

To explain heterogeneity at an individual level, a
reparameterization is necessary to link the mean of the
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distribution to covariates. Using the natural logarithm liTnk
function, we have In(u;) = B7x;and we getp, = ef *i.
Substituting the re-parameterized value of y, into the
equation (1), we obtain

9[. = 1 = 1 = e_ﬁTxi’

H; eﬁTxi

where 8 is a vector of coefficients; f = (8, B, ..., ﬂp)
'; p; is the number of covariates; and x, is a vector
of covariate values for subject i or X, = (1, xl1,.., xl.p)
T Therefore, the OIZTG distribution can be rewritten as
follows:

w+ (1—-w)(8))
A-w)(1-6)7"8)

Y, =1
Y= 2,3, ...

s

POIZTG(Yi — yi) — {

where 0, = exp (-f" x)). Additionally, we can use a logit
link function for the one-inflation parameter assuming
that equally across subject for all subject i in the

population as w =

—~ where ¢ may be estimated

without limited range, ensuring that 0 <w < 1.

MAXIMUM LIKELIHOOD ESTIMATION OF THE OIZTG
MODEL
Let Y be the count variable that represents the number of
times a " unit was identified during the study period.
The log-likelihood function for independent sampling
from the OIZTG distribution can be written as:

LW, B) = Xiea{ly=1loglw + (1 = w) (6] + (1 = I=)

[log(1—w) + (y; — Dlog(1 — 6,) + logb;1},

where [y:1 =1lify,=1and Iy:l =0ify,> 1. Noted that the
estimated value of f is required for the estimation of
0. The first derivatives of the log-likelihood are given by

Tl =S = [ramas] + @ - L0 [l

olw,B) _ yn A-—w)(=Xir6) _
B, Zi:l{lyzl w+(1-w)(6;) ] + (1 1y=1)

=D &Xirb)
[T;L - Xir]}; r = 0,1,2, v P

Due to the fact that we do not have any closed
form expressions for W and B and the complexity of
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the derivatives involved, maximizing the log-likelihood
function directly can be a difficult undertaking. However,
the maxLik function in the R program provides a useful
tool for estimating the parameters of a given probability
distribution.

ESTIMATING THE SIZE OF AN UNKNOWN POPULATION
USING THE OIZTG MODEL

The unknown size N of a closed population consists of
the number of observed and unobserved units, N =n +
J,- Capture-recapture methods use information on f} Y%
=1, 2, ..., m to estimate f, leading to the estimate of N
as N=n+ f The Horvitz-Thompson estimator for
P(Yi=0)
estimating £ is fo=2nL 17"p(r,—0) Where P(Y,= 0)
represents the probability of i unit being unobserved.
If one-inflation exists, the conventional Horvitz-
Thompson estimator needs to be modified as suggested
by Bohning and Friedl (2021). We base our inference on
the zero-one-truncated probability function. Hence, the
modified Horvitz-Thompson estimator for estimating f;
is given by

_\n ___Pi=0)
fo =Ziz1ly>1 1—-P(Y;=0)—P(Y;=1)

where /_ = 1 if i” unit is identified more than once and
I =0, otherwise. Accordingly, the estimated population
size using the OIZTG model can be obtained as follows

AOIZTG 0;
N +ley>119 9(1 91)

where 8; is the MLEs of the OIZTG model.

VARIANCE OF THE POPULATION SIZE ESTIMATOR
UNDER THE OIZTG MODEL

If the sample is large enough for the normal approximation
to hold, the Wald approach is a valid method to
construct a confidence interval for the population size
N. The (1-a)100% confidence interval for the size N of a
population is given as oG +z 1_5§E‘(1’\7mzm) where

) o th ’
Zy_g is the (1 _‘) is the percentile of the standard
normal distribution and SE(N ) is the estimated
standard error of N’

~0IZTG

According to aforementloned outcomes, IYOIZTG
is derived. Here, we will develop variance of N
which can be written as

Y 0IZTG 0
Var(N ) =Var(n) + Var (Zl 11ys1 m) ©)

For the first term of Equation (2), the distribution of n
is binomial with sample size parameter N and success
parameter 1 - P(¥Y=0). Hence, Var(n) = I}/(I-P(Y =0))
P(Y=0) which can be estimated by nﬁo. Using the
OIZTG model, we obtain an estimate of the variance of
the sample size:

- 6;
Var(n) = (NOIZTG)ZL 1 y>1—1 9=0,0=0) 3)

where 7 is the number of observed units; 8; is obtained
from fitting the OIZTG model, and indicator / _ =1 ify,
>Tland/_ =0, elsewhere.

For the second term of equation (2), the variance of
the number of unobserved units which can be estimated
using the conditional expectation approach taken by

Bohmng (2008). Let us now consider X = fo=Xi, Ly
1-9; 9(1 ) and Y =I5, That is
Var(fo) = Ep., [Var(follys1)] + @)

vary, [E(follys1)]-

The first term of equation (4) represents the
variation in estimating f, o based on I , data. This term
can be estimated by Var(f0| y>1) usmg the -method.
We consider X =8; and f(X) = f(6,) = %, I,5,

i
8-8,1-3p) = fo. For convenience of notation define

the vector with derivatives

d d n 0;

_ Efo _ aw “i= 1Iy>1 1-6;—6;(1-6;
T(W; B) = d f = d 8;
g0 ap, i=1ly>17, —0;(1-6;

0
=< N 0:Xir(6:°-1) )
Y>1 (1-6;-6;(1-6)))>

where r=0, 1, ..., p and the observed information matrix
represented in the following matrix:

_ %l(w,B) _ %l(w,B)

ow,B) = (Oww OWB) _ ow? owa By
’ - Oﬁw Oﬁﬁ - _ azl(W.B) _ azl(W.B) ’

0Bs0w 0650 Br

*Iwp) _ yn { [ (=D@a-6)* ]
where w2 =Xk W+ 1-w) )

+ =[]}



PUwp _ Plwp) _ n { Xir6; }
awdp,  op.ow Y= (wra-wyep)* 1)’

r=01,..,p,

PIwB) _ g {,

— XirXis9iW(1—W)]
38,0,

Y= (wHa-w@)°

XX 0i(y.—1
XX 00,71 } s =0,1,...,p.

(A =ly=) l (1-6°

Therefore, the first term of Equation (4) can be estimated
as follows:

By, [Var(Follysa)] = 7 (. B)0™ (W, B)r (W, B) (5)

where W and B are obtained from fitting the OIZTG
model.

The second term of Equation (4) shows
variation in the obtained sample. If the number of

observations is not too small, we can safely assume that

E(fol >1) pia 1Iy>11__3ﬁ Hence,

e A 2
Vary [E(fo|lys1)] = Eie (#(1_9)) Vary,,,(Iys1). (6)

Since the identification that has been observed
more than once occurs independently for each population
unit with probability 1-P(Y,= 0) - 1-P(Y, = 1), the variance
number of each observed case is var,, (I . ) =(-P(Y,
= 0) - P(Y, = D)(P(Y,= 0) + P(¥,=

1)). Using the OIZTG
model the variance of /| can readily be estimated as

W,y>1(1y>1) = (1 - ’gi - ’gl(l - ’9\1)) (91 + ’91(1 - ’gl)) (7)
Substituting Equation (7) in Equation (6),
. 2
Vary,  [E(folly>1)] = 2L 1(%@_9))

9.))(8:+0,(1-18)).

which is estimated from the observed data by

(1-8,-9,1-

21 1 y>1 (ﬁl(l%)) (a a( él))

R
=2k 1Iy>1( —8-0:(1-8))"

Consequently, the second term of Equation (4) can be
estimated as follows:

Var1y>1 [E(f0|1y>1)] ~ 2?21 Iy>1 (1—@( —;()19
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where 8; is obtained from fitting the OIZTG model, and
1nd1cator1 =1ify>1and I 0 elsewhere.
Therefore, the estimated Var1ance of N2 can be written
as

Var (N**"°) = Var(n) + Var(F,).

where we obtained this result by adding the expressions
(3), (5), and (8).

SIMULATION STUDY
‘We conduct a simulation study to investigate the performance
. ~O0IZTG .
of the proposed estimator N and confidence interval
estimations compared with the existing estimator developed
using the geometric distribution as follows: the Chao’s lower

2
bound estimator, N = n+LwithVar (IV C) n + 4 = + U
fa f2 fy

f>

the modified Chao’s lower bound estimator, V"¢ = n + 2

<f2> (1+(2f2+3f3) ) . fs
13 faf3 the Horvitz-Thomson

fatf ’

(HT) estimator under thze %TG model, N*" =¥ 91

where 8; is the MLEs of the OIZTG model when w = 0.

Moreover, the proposed estimator is also compared with

the other estimator as follows: the HT estimator under the
n

OIPP model, N = yn,
1—

the OIPP model and the HT estimator under the OIZTNB

model, N =yn —; where@and ; are the
1—(1+ )

MLEs of the OIZTNB model.

The simulation experiment is conducted under
specific conditions: (1) The population size (&)
varied between 500, 1,000, and 2,000. (2) A binary
covariate variable X was generated from a Bernoulli
distribution with p =0.5. (3) The response variable Y was
generated from the OIZTG distribution with parameters
w€{0.1,0.3,0.5}. and 6€{0.1, 0.3, 0.5}.

To demonstrate the data generating process, assuming
a population size of N= 500, withw = 0.1 extra-ones, N
=450 follows a geometric distribution with parameter (6_
_o)» 0._) =(0.1, 0.3) for binary covariate variable (X)
which §=0.11f X=0and 0=0.3 if X = 1. Additionally,
there are N, = 50 extra ones in the population that the
total population sizeis N= N, + N, . A simple algorithm
to generate data are as follows:

with VE(NMC)

Step 1 Generate a binary covariate variable X of size N =
500 from a Bernoulli distribution with parameter p = 0.5.

Step 2 Construct the parameter 6, for i =1, 2
setting ¢, = 0.1 if X, =0and 0, = 0.3 if X = 1.

., 450 by
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Step 3 Generate the one-inflated geometric data by
randomly generating ¥, from a Geometric distribution
with parameter 0, for i = 1, 2, ..., 450, and setting ¥ = 1
for i =451,...,500.

Step 4 Remove the zero counts from the sample, resulting
in a new sample of size n. This step yields the one-inflated
zero-truncated geometric data.

This algorithm is repeated M = 10,000 times.
Average percentage of relative bias (%RBias) and average
percentage of relative mean square error (YoRMSE) are
calculated. Additionally, 95% CI, coverage probability
(CP) and average lengths (AL) are computed.

RESULTS AND DISCUSSION

Table 2 provides %RBias and %RMSE for various
estimators. With the increasing N, the %RBias as well as
%RMSE of all estimators N consistently decrease. When

. . ~C ~MC —~ZTG
the parameter w increases, the %RBiasof N , N, N

0IZTG —0IPP
tend to increase, while the %RBias of N

and N%“™ decrease. Similarly, when w increases, the
%RMSE of , and , tend to increase, but the %RMSE of
1'\7;46 N oIPP and N%"“™" decrease. Moreover, N* and
N have a con51stent tendency to overestimate the
true value, with NOANE exhibiting a more severe bias
towards overestlmatlon Conversely, the estimators N
and §%' con51stently underestimate the true value.
However, among these estimators, NY¢ and NO#TC
demonstrate the least bias.

CP and AL of the 95% confidence intervals using
the OIZTG model as the data generation process ere
presented in Table 3. As can be seen, the CIs of N¢ and
N*"%do not cover the true population size in almost all
cases, as they tend to overestimate. On the other hand,
the CIs of N "PPand showed low CP. However, the CI
of exhibited a high CP and narrow range. Additionally,
it was observed that increasing the values of N and wled
to an increase in the performance of the CI of Noee

TABLE 2. %RBias (and %RMSE below) of the proposed estimator and comparators Chao, modified Chao, MLE under zero-
truncated geometric, MLE under OIPP model and MLE under OIZTNB model when the OIZTG is the data-generating process

N w 6()(:0) H(H) IVC NMC NZTG NOIPP NOIZTNB NOIZT G
500 0.1 0.1 0.3 37.19 1.71 5.96 -17.21 7.87E+06 0.54
15.12 1.33 0.44 2.99 4.37E+13 0.09
0.5 43.77 -1.44 13 -20.7 1.11E+07 3.55
21.35 2.78 2.03 4.36 2.13E+14 0.44
0.3 0.5 42.66 222 16.59 -30.84 2.17E+01 2.45
20.46 4.8 3.15 9.58 9.31E+01 0.58
0.3 0.1 0.3 197.07 1.97 21.37 -13.08 5.05E+05 0.87
402.71 1.19 4.71 1.74 6.08E+12 0.08
0.5 229.35 -0.23 48.75 -12.45 3.31E+06 6.82
548.34 2.44 24.96 1.68 5.04E+13 0.88
0.3 0.5 200.36 2.46 61.66 -21.47 7.46E+01 3.9
416.82 4.02 39.23 4.7 3.52E+03 0.67
0.5 0.1 0.3 589.37 2.53 46.45 -9.02 1.43E+02 0.82
3615.36 1.2 22.03 0.83 2.04E+05 0.06
0.5 676.66 1.33 113.88 -3.79 3.00E+04 7.76
4794.94 2.5 135.96 0.46 1.49E+10 1.09
0.3 0.5 552.46 3.13 142.19 -11.94 1.17E+02 4.16
3164.05 3.57 208.22 1.58 1.11E+03 0.64




1000 0.1 0.1 0.3 36.52 0.46 593 -17.19 1.13E+07 0.49
13.94 0.52 0.39 2.97 6.02E+13 0.04

0.5 42.82 -3.7 12.54 -20.9 8.72E+06 3.02

19.36 1.13 1.74 4.4 4.76E+13 0.24

0.3 0.5 41.81 -0.57 16.12 -31.01 1.51E+01 1.79

18.58 1.72 2.78 9.65 1.13E+01 0.27

0.3 0.1 0.3 193.77 0.72 21.08 -13.15 2.80E+05 0.69
382.1 0.45 4.52 1.74 4.04E+11 0.04

0.5 225.34 -2.32 47.68 -12.79 2.13E+06 6.2

517.9 0.9 23.29 1.7 1.69E+13 0.57

0.3 0.5 197.82 -0.06 60.64 -21.76 4.04E+01 3.1

398.33 1.43 37.35 4.78 7.38E+01 0.33

0.5 0.1 0.3 578.04 0.89 45.82 -9.08 6.57E+01 0.66
3402.98 0.34 21.2 0.83 3.56E+04 0.03

0.5 663.21 -1.13 111.18 -4.47 1.16E+04 6.92

4493.28 0.72 126.39 0.34 1.19E+10 0.69

0.3 0.5 543.12 0.71 139.72 -12.43 7.27E+01 33

2999.45 1.17 197.94 1.61 2.64E+02 0.31

2000 0.1 0.1 0.3 36.12 -0.12 5.84 -17.21 1.44E+07 0.4
13.34 0.23 0.36 2.97 1.89E+14 0.02

0.5 42.45 -4.57 12.5 -20.9 1.15E+07 2.96

18.54 0.65 1.64 4.39 1.79E+14 0.16

0.3 0.5 41.36 -1.8 15.93 -31.08 1.16E+01 1.55

17.64 0.84 2.63 9.67 4.50E+00 0.14

0.3 0.1 0.3 192.9 -0.04 21.05 -13.16 2.00E+05 0.65
375.26 0.18 4.47 1.74 2.64E+11 0.02

0.5 224.13 -3.42 47.44 -12.9 1.67E+06 5.97

507.18 0.45 22.78 1.69 7.87E+12 0.45

0.3 0.5 196.8 -1.24 60.14 -21.91 3.12E+01 2.71

390.75 0.65 36.45 4.82 1.76E+01 0.19

0.5 0.1 0.3 573.94 0.21 45.65 -9.1 2.07E+01 0.61
3324.63 0.14 20.95 0.83 9.46E+01 0.02

0.5 654.94 -2.07 109.7 -4.83 2.56E+02 6.49

4334.23 0.32 121.63 0.3 1.86E+06 0.52

0.3 0.5 540.44 -0.51 138.14 -12.7 5.30E+01 2.82

2945.09 0.49 192.1 1.64 5.05E+01 0.18

The bold number shows the smallest %RBias and %RMSE.
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TABLE 3. The coverage probability (CP) and average length (AL) of 95% CI of using the OIZTG model as the data generation

process
CP AL
N w H(X:()) G(X:l)
C MC ZTG  OIPP  OIZTG C MC ZTG  OIPP  OIZTG
500 0.1 0.1 0.3 0.0148 0.8940 0.5253 0 0.9457 163.93 21828 58.84 NaN 54.44
0.5 0.0498 0.8223 0.4047 0 0.9874 217.82 327.82 105.83 NaN 131.24
0.3 0.5 0.0882 0.8793 0.2262 0 0.9675 228.68 405.15 114.76 NaN 145.18
03 0.1 0.3 0 0.8878 0 0 0.9471 NaN  203.01 NaN  NaN 50.68
0.5 0 0.8239 0 0.0744  0.9832 NaN  306.75 NaN  81.35 143.63
0.3 0.5 0 0.8765 0 0.0012  0.9738 NaN  380.12 NaN 106.09 142.88
05 0.1 0.3 0 0.8774 0 0 0.9523 NaN  190.81 NaN NaN 44.74
0.5 0 0.8129 0 0.6174 09914 NaN 29946 NaN  88.55 147.99
0.3 0.5 0 0.8739 0 0.1302  0.9793 NaN  359.17 NaN  98.03 136.36
1000 0.1 0.1 03 0 09084 02018 0 0.9403 NaN  281.85 8191 NaN  76.36

0.5 0.0001 0.8075 0.0833 0 0.9746 243.01 409.83 143.33 NaN 180.99

0.3 0.5 0.0011 0.8970 0.0221 0 0.9632 290.04 52437 155.87 NaN 199.00

03 0.1 0.3 0 0.9013 0 0 0.9396 NaN 25698 NaN  NaN 70.74
0.5 0 0.8186 0 0.0068  0.8977 NaN 373.53 NaN 118.00 191.99

0.3 0.5 0 0.8949 0 0 0.9618 NaN 475.09 NaN  NaN 194.41

0.5 0.1 0.3 0 0.8990 0 0 0.9420 NaN 227.00 NaN  NaN 61.96
0.5 0 0.8219 0 0.4918  0.8913 NaN 33496 NaN 120.28 190.09

0.3 0.5 0 0.8881 0 0.0218  0.9649 NaN 421.72 NaN 136.89 178.72

2000 0.1 0.1 0.3 0 0.9190  0.0160 0 0.9402 NaN 379.19 114.12 NaN 107.60
0.5 0 0.7733  0.0025 0 0.9308 NaN 549.79 196.69 NaN 251.69
0.3 0.5 0 0.8920  0.0001 0 0.9572 NaN 70638 22694 NaN 277.79

03 0.1 0.3 0 0.9144 0 0 0.9254 NaN 339.62 NaN NaN 99.55
0.5 0 0.7907 0 0 0.6731 NaN 49221 NaN NaN 259.70

0.3 0.5 0 0.8981 0 0 0.9280 NaN 630.03 NaN NaN 268.76

0.5 0.1 0.3 0 0.9104 0 0 0.9212 NaN 29435 NaN NaN 86.65

0.5 0 0.8000 0 0.3068 0.5896 NaN 429.12  NaN  167.03  247.58

0.3 0.5 0 0.8981 0 0.0003  0.9237 NaN 54837 NaN  222.17 243.10

If the confidence interval does not contain the true parameter N, then the length of the confidence interval will be undefined or NaN



AN APPLICATION TO A DRUG USE POPULATION IN
CHIANG MAI, THAILAND

We demonstrate the proposed estimators by an application
to estimate the size of a drug use population in Chiang
Mai, Thailand. The data was collected by a hospital and
a health treatment center, which recorded information on
heroin users, including their gender and how many times
they were treated (Table 1).

We examine the distributions providing the best fit
to the observed counts. The associated distributions are
presented in Figure 1 and show clear evidence that the
OIZTG distribution provides a better fit compared to the
other distributions.
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In Table 4, various statistics are provided including
the estimated number of unobserved drug users, estimates
for the number of heroin users, standard error, and 95%
CI for N. Among the comparators, if NCand MY are
close, this indicates lack of evidence for one-inflation.
Evidently, we are dealing with the situation of one-
inflation as the difference between N and N is quite
substantial. Therefore, N OIPP, N OIZTNBan NO"2T are the
candidates for use. As can be seen, N is not only
providing the better fit to the observed count distribution
but also compromising on the estimates between N R
and N”"“™" We conclude that the total number of heroin

users is 1385 with a 95% CI of (1246, 1525).
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FIGURE 1. Frequency distribution of heroin users with gender as a covariate among the
observed counts, ZTG, OIZTG, OIPP and OIZTNB distribution
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TABLE 4. Estimated total number of heroin users with gender as a covariate

Estimator fo N SE(N) 95% CI of
Chao 1897 2740  216.34 (2316, 3164)
Modified Chao 549 1392 181.33 (1036, 1747)
727G (6=0.57) 1114 1957 77.50 (1805, 2109)
OIPP (1=2.29,W=0.51) 95 938 15.54 (908, 969)
OIZTNB (1=0.44,8=0.27,W=0.16) 2831 3674 - -
OIZTG (§=0.48, w=0.30) 542 1385 71.25 (1246, 1525)

Noted that the estimated SE and CI for the are not included in this research

CONCLUSIONS

Capture-recapture is a useful method for estimating the
size of an elusive target population. During the capture-
recapture sampling process, frequency count data is
collected over the observational period. In addition to the
frequency counts, data on various characteristics such as
gender, or other relevant factors may also be collected.
However, there are cases where certain individuals remain
unobserved because they have never been identified,
leading to missing zero-count data. Estimating the
number of unobserved cases is typically necessary in
such situations. In some capture-recapture studies, the
observed data shows the presence of one-inflation in
the count distribution, indicating that a portion of the
population is primarily captured only once. Ignoring
this one-inflation phenomenon can result in a significant
overestimation of the population size. Additionally, it is
important to consider variations in capture probability
due to heterogeneity. By incorporating a heterogeneous
Poisson model, which accounts for this heterogeneity,
a more realistic estimation of the true population size
can be achieved. The commonly used negative binomial
distribution has been applied as a model for capture-
recapture data. However, many studies have demonstrated
the failure of accurately estimating the dispersion
parameter in the negative binomial distribution, leading
to spurious population size estimates N. As an alternative
approach, this study proposes the use of the geometric
distribution to overcome these limitations.

We proposed the one-inflated, zero-truncated
geometric (OIZTG) model, which is designed to handle
three crucial aspects often observed in capture-recapture
data: zero-truncation, one-inflation, and observed

heterogeneity. The OIZTG model also includes covariates
that link the mean of the model to the covariates through
a log link function. A new estimator N4’ is proposed
based on the OIZTG distribution through the modified
Horvitz-Thomson approach. The simulation results show
that N9#7¢ i an asymptotic estimator under the OIZTG
distributions. In addition, we employed the OIZTG model
to construct confidence intervals (CI) for the population
size N using the Wald approach. The estimation of the
variance of the proposed estimator was based on the
conditional expectation technique. Simulation results
confirm that the proposed CI is a suitable choice for
estimating the CI of the population size N based on the
OIZTG distribution.
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