Insights on Anticancer Activities, Associated Phytochemicals and Potential Molecular Mechanisms of *Quisqualis indica*: A Mini Review

(Pandangan tentang Aktiviti Antikanser, Fitokimia Berkaitan dan Mekanisme Molekul Berpotensi *Quisqualis indica*: Suatu Kajian Mini)

YUAN SENG WU1,2, MICHELLE FELICIA LEE1,2, RHANYE MAC GUAD1,2, FATHIMA ZAHRAA OZEER1,2, APPALARAJU VELAGA1, VETRISELVAN SUBRAMANIYAN4, NEERAJ KUMAR FULORIA1, SHIVKANYA FULORIA1, KER WOON CHOY4, SZE MENG LEE4, SUBASH C.B. GOPINATH1,2, AMITA VERMA11 & TZE PHENG LAU2

1Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Petaling Jaya, Selangor, Malaysia
2Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Petaling Jaya, Selangor, Malaysia
3Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
4Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, 42610 Jenjarom, Selangor, Malaysia
5Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
6Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India
7Faculty of Pharmacy, AIMST University, 08100 Bedong, Kedah, Malaysia
8Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
9School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
10Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
11Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India

Received: 13 December 2022/Accepted: 12 June 2023

ABSTRACT

Drug resistance is the main issue causing the treatment failure of anticancer drugs. This issue has urged researchers to search for new substances from medicinal plants, which are widely reported as the good sources of anticancer agents. *Quisqualis indica* is a plant belongs to Combretaceae family, known as Rangoon Creeper, which can be found abundantly in tropical countries and distributed profusely as a wild shrub. It has been widely used traditionally and scientifically claimed to process various therapeutic activities. It has recently been reported to possess various potential anticancer activities against different cancers. Looking at its availability in almost all seasons and grow fast, it is an arising source of herbal medicine in the discovery of anticancer drugs economically. Besides, *Q. indica* is enriched with several secondary metabolites of interest, which are responsible for the positive findings for its anticancer potentials. In this review, we aim to decipher and discuss the anticancer activities of *Q. indica* crude extracts and isolated phytochemicals as evidenced in preclinical models, as well as the associated molecular mechanisms. More preclinical investigations on its anticancer potentials should be conducted before translation to clinical testing.

Keywords: Anticancer; molecular mechanism; phytochemicals; phytotherapy; *Quisqualis indica*

ABSTRAK

Rintangan ubat adalah isu utama yang menyebabkan kegagalan rawatan ubat antikanser sintetik. Isu ini telah menggesa para penyelidik untuk mencari bahan bawar daripada tumbuhan ubat yang dilaporkan secara meluas sebagai sumber agen antikanser yang baik. *Quisqualis indica* ialah tumbuhan daripada famili Combretaceae dan
INTRODUCTION

According to the World Health Organization (WHO), cancer is a leading cause of death globally, which contributed to approximately 10 million deaths in 2020 (World Health Organization 2022). Despite advances in various treatment options, chemotherapy remains as the preferred method. However, chemoresistance has contributed to 90% of chemotherapy failure during the metastasis and invasion stages (Housman et al. 2014; Wu et al. 2016). The development of newer synthetic chemotherapeutic agents is significantly stagnant and limited due to the complex mechanism of tumor cells, high cost, undesirable adverse events, low specificity, and toxicity, leading to less adherence to treatment if patient life quality is poor (Iqbal et al. 2017). With all things considered, an escalation of interest in using medicinal plants as an alternative approach has been reported as being safe, cost-effective, and causing lesser adverse effects (Ekor 2014).

Quisqualis indica Linn is a species from the Combretaceae family. *Quisqualis* stands for ‘Which? What?’ in Latin terms given by a Dutch botanist due to its odd behavior. The leaf size and flower color differentiate it; however, this species is exceptionally known to be a tropical vine, contributing to its common name called Rangoon Creeper. It is a shrub that is distributed widely all over the world, and thrives well in tropical locations, such as secondary forest areas and thickets throughout the Philippines (Sahu, Patel & Dubey 2012) and can be found in Malaysia, Myanmar, China, and Bangladesh. Traditionally, it has been widely used for tonsillitis, rheumatism, abdomen flatulence distention, helminthiasis, nephritis, cough, toothache gargle and birth control, ulcer boils and headache, urinary tract infection, diarrhea, and rickets (Bapuji & Ratnam 2009; Bose et al. 2009; Fiscal 2017; Gurib-Fakim 2012; Jadav 2006; Lim 2015; Singh 2017; Van Sam, Baas & Keßler 2008). Besides, studies have reported that it contains many phytochemicals, such as alkaloids (e.g. trigonelline), flavonoids (e.g., rutin and pelargonidin-3-glucoside), terpenoids (e.g., β-sitosterol and lupeol), amino acids (e.g., quisqualic acids and L-proline), tannins (e.g., quisqualin, ellagitannins and gallic acid), and fatty acids (e.g, oleic acids and linoleic acid), which may be responsible for the reported pharmacological activities (Bairagi et al. 2012; Lim 2015; Lin et al. 1997; Lohberger et al. 2015; Mahajan & Aher 2017; Rout, Naik & Rao 2008; Revathi & Radha 2018; Sahu, Patel & Dubey 2012).

This paper presents a detailed review of the anticancer activities of *Q. indica* as evidenced in preclinical models as well as the possible mechanisms of action, key molecules involved, and concentrations used. Furthermore, it discusses the phytochemicals of *Q. indica* that are directly or indirectly responsible for its anticancer potential against various cancers.

Quisqualis indica AS A POTENTIAL ANTICANCER AGENT AND ITS ASSOCIATED PHYTOCHEMICALS AND MOLECULAR MECHANISMS

Under normal circumstances, one out of ten million cancer cells in a tumour mass have the possibility to inherit genetic resistance against a specific drug. Thus, it is expected that ten to one thousand cancer cells are resistant to anticancer drugs considering a clinically detectable tumour mass of one billion cells (Wang et al. 2019). In this section, the anticancer activity, concentrations tested, phytochemicals involved, and associated mechanisms of the crude extracts and phytochemicals of *Q. indica* in preclinical settings in several cancers, including breast, hepatocellular
carcinoma, prostate, skin, colorectal, soft tissue sarcoma, and leukemia are discussed and tabulated (Table 1). The chemical structures of associated phytochemicals are also depicted (Figure 1).

HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC) is known to be a primary cancer of the liver that contributes to the mortality cases reported in a population aged 63 to 65 (Jemal et al. 2011). The low treatment efficacy of chemotherapeutic agents, PIAF for instance, has led to the use of a combination strategy. However, such a regimen has reported causing several problems, such as intolerability of side effects and increased risk of chemoresistance (Yeo et al. 2005). Thus, the discovery of potential herbal products with less toxicity and economic is a good treatment alternative for HCC. Several in vitro studies have demonstrated anticancer activities of Q. indica in HCC. For instance, Abd El-Rahman et al. (2016) unraveled the cytotoxic effects of Q. indica crude leaf extracts using different solvents and was assessed using brine shrimp lethality test (BSLT) and MTT assay against human HepG2 HCC cells. American Cancer Institute has reported that plant crude extracts with IC$_{50}$ values less than 20 µg/mL are considered to be strongly cytotoxic. In the MTT assay, the IC$_{50}$ values of dichloromethane (DCM) was 11.9 µg/mL and butanolic extracts (BuOH) was 17.9 µg/mL, showing that both extracts were strongly cytotoxic against HepG2 cells. Comparatively, moderate cytotoxicity was observed for defatted 90% methanol or MeOH (IC$_{50}$ = 24.1 µg/mL), petroleum ether or PET (IC$_{50}$ = 35.1 µg/mL), and ethyl acetate (EtOAc) (IC$_{50}$ = 65.1 µg/mL). However, Park et al. (2002) showed that the cytotoxic effect of MeOH and aqueous (H$_2$O) extracts of whole Q. indica plant on both HCC HepG2 (IC$_{50}$ = 350 µg/mL) and Hep3B (IC$_{50}$ = 290 µg/mL) cells was weak (Park et al. 2002). This finding discrepancy could be explained by the possibility that non-polar molecules may be responsible for the anticancer activity of Q. indica. Studies have found that the organic solvents would have a significant impact on the total dry weight and extraction yield of plant parts (Zhang et al. 2020). Therefore, it is possible that different solvent extracts of Q. indica plant parts may contain different amounts of each phytochemical, thus giving different cytotoxicity effects.

Furthermore, two in vitro hepatoprotective studies further supported the cytoprotective potential of Q. indica. Song, Kim and Heo (2013) discovered that Q. indica fruit extract isolated using 70% MeOH positively protected HepG2 cells from ethanol-induced cytotoxicity and exhibited a cytoprotective effect of 1.3% toward ethanol-reduced cell viability (85.6%), indicating that Q. indica could protect the liver from developing diseases, such as cirrhosis and HCC. Similarly, Lee et al. (2017) showed that the ethanolic (EtOH) extract of Q. indica crude extract showed promising cytoprotection of 83.9% at 100 µg/mL for HepG2 cells. However, relatively less cytoprotective effect (20.6%) was observed when treated with a higher concentration (300 µg/mL). Heme-oxygenase-1 (HO-1) is a heme-degrading enzyme with anti-inflammatory, anti-apoptotic, and anti-proliferative functions. It was found that HO-1 induction is important to the cytoprotective mechanism against hepato-oxidative damage (Lee et al. 2017). The hepatoprotective mechanism was provided via the induction of nuclear factor E2 related factor 2 (Nrf2)-mediated HO-1 gene expression to scavenge high levels of reactive oxygen species (ROS) responsible for liver damage or cancer promotion (Gong, Cederbaum & Nieto 2004).

FIGURE 1. Phytochemicals involved in anticancer activities of Q. indica. (1) Kaempferol, (2) 25-O-acetyl-23,24-dihydro-cucurbitacin F, (3) 23,24-dihydrocucurbitacin F
TABLE 1. Anticancer activity of *Q. indica* crude extracts or phytochemical with associated molecular mechanisms

<table>
<thead>
<tr>
<th>Tested material</th>
<th>Solvent</th>
<th>Concentration</th>
<th>Test model</th>
<th>Isolated phytochemical</th>
<th>Mechanism</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>MeOH, PET, defatted 90% MeOH, DCM, EtOAc, n-BuOH, H₂O</td>
<td>10-1000 µg/mL</td>
<td>In vitro (human HepG2 HCC cells)</td>
<td>Not available</td>
<td>Not available</td>
<td>Abd El-Rahman et al. (2016)</td>
</tr>
<tr>
<td>Whole plant</td>
<td>MeOH, H₂O</td>
<td>Not available</td>
<td>In vitro (human HepG2 and Hep3B HCC cells)</td>
<td>Not available</td>
<td>Not available</td>
<td>Park et al. (2002)</td>
</tr>
<tr>
<td>Fruit</td>
<td>70% MeOH</td>
<td>0.4% of the culture</td>
<td>In vitro (human HepG2 HCC cells treated with 1.3% EtOH)</td>
<td>Not available</td>
<td>Not available</td>
<td>Song, Kim & Heo (2013)</td>
</tr>
<tr>
<td>Whole plant</td>
<td>EtOH</td>
<td>100 µg/mL, 300 µg/mL</td>
<td>In vitro (human HepG2 HCC cells treated with tBHQ)</td>
<td>Not available</td>
<td>1. Reduced ROS levels via Nrf2-activated HO-1 gene expression</td>
<td>Lee et al. (2017)</td>
</tr>
<tr>
<td>Leaf</td>
<td>EtOH (crude) followed by hx, EtOAc and H₂O</td>
<td>Not available</td>
<td>In vitro (human MCF-7 BC cells)</td>
<td>Tannins, saponins, terpenoids, flavonoids, cardiac glycosides, alkaloids</td>
<td>Not available</td>
<td>Luna, Limbo & Jacinto (2019)</td>
</tr>
<tr>
<td>Leaf and flower</td>
<td>EtOH (crude)</td>
<td>10 g/mL, 20 g/mL and 40 g/mL</td>
<td>In vitro (human MDA-MB-231)</td>
<td>Not available</td>
<td>Not available</td>
<td>Lanchhana, Ranjit & Kumar (2023)</td>
</tr>
<tr>
<td>Leaf</td>
<td>EtOH (crude) followed by hx, EtOAc and H₂O</td>
<td>Not available</td>
<td>In vitro (human HCT-116 CRC cells)</td>
<td>Tannins, saponins, terpenoids, flavonoids, cardiac glycosides, alkaloids</td>
<td>1. Induced apoptosis biomarker, DNA fragmentation</td>
<td>Luna, Limbo & Jacinto (2019)</td>
</tr>
<tr>
<td>Seed</td>
<td>70% EtOH</td>
<td>25-3200 µg/mL</td>
<td>In vitro (BPH in human LnCaP PC cells)</td>
<td>Not available</td>
<td>1. Decreased TP-induced AR and PSA levels</td>
<td>Ub Wijerathne et al. (2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 mg/kg</td>
<td>In vivo (TP-induced BHP in rats)</td>
<td>Not available</td>
<td>1. Reduced prostate weight, testosterone in serum, dihydrotestosterone concentration and 5α-reductase; type 2 gene expression in prostate tissue;</td>
<td></td>
</tr>
<tr>
<td>Flower</td>
<td>H₂O</td>
<td>40-120 µg/mL</td>
<td>In vitro using QCuNPs (human B16F melanoma cells)</td>
<td>Not available</td>
<td>Mukhopadhyay, Kazi & Debnath (2018)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Leaf, twig</td>
<td>Defatted PET</td>
<td>10 µg/mL</td>
<td>In vitro (human CCRF-CEM leukemia cells)</td>
<td>kaempferol, 25-O-acetyl-23,24-dihydro-cucurbitacin F and 23, 24-dihydrocucurbitacin F</td>
<td>Not available</td>
<td>Efferth et al. (2008)</td>
</tr>
<tr>
<td>Leaf, twig</td>
<td>Defatted PET</td>
<td>0-100 µg/mL</td>
<td>In vitro (human soft tissue sarcoma SW-872, SW-982, TE-671)</td>
<td>25-O-acetyl-23,24-dihydro-cucurbitacin F</td>
<td>1. Accumulated cells at G2/M cell cycle phase 2. Decreased cell cycle checkpoint regulators (e.g., cyclinB1, cyclinA, CDK1, CDK2) 3. Reduced apoptotic survivin gene and protein expression</td>
<td>Lohberger et al. (2015)</td>
</tr>
</tbody>
</table>

2. Attenuated TP-induced BPH; 3. Reduced protein levels of PCNA and cyclin D1; 4. Induced apoptosis by upregulating caspase 3 and 9, decreased, Bel2/ Bax ratio; 5. Suppressed TP-induced p-AKT and glycogen synthase kinase 3β
BREAST CANCER

According to the National Cancer Institute, or NCI (2019), breast cancer (BC) is one of the most common cancers diagnosed in women, accounting for more than one in ten new diagnosed cases every year. Typically, the most aggressive type of cancer, triple negative breast cancer (TNBC) is resistant to the standard chemotherapeutic agents targeting these receptors (Wahba & El-Hadaad 2015).

The anticancer activity of \textit{Q. indica} leaf crude extracts against human MCF-7 breast cancer cells was reported by Luna, Limbo and Jacinto (2019). The crude extracts were prepared using different organic solvents, such as hexane (hx), EtOAc, and water. All treatments with IC\textsubscript{50} values of less than 30 µg/mL were considered active. The crude extract which consisted of phytochemicals such as alkaloids, cardiac glycosides, flavonoids, tannins, and terpenoids did not exhibit any significant cytotoxicity against MCF-7 cells. Therefore, the hx extract containing phytochemicals such as alkaloids, cardiac glycosides, flavonoids, and terpenoids, was further fractionated using isocratic column chromatography to generate eight fractions. The results showed that only isocratic fraction (IF) 4 of hx extract (IC\textsubscript{50} = 13.33 µg/mL) was significantly cytotoxic against MCF-7 cells, while IF 8 had an IC\textsubscript{50} value between 30 and 40 µg/mL. Furthermore, IF 4 was further subjected to gradient silica gel column chromatography to generate six fractions (GF 6a to 6f). Among six sub-fractions, GF 6e (IC\textsubscript{50} = 4.69 µg/mL) and GF 6f (IC\textsubscript{50} = 4.78 µg/mL) exhibited potent cytotoxicity against MCF-7 cells. Furthermore, the phytochemical testing indicated the presence of alkaloids, flavonoids, and cardiac glycoside, which may be responsible for the observed significant cytotoxic effect against MCF-7 cells (Luna, Limbo & Jacinto 2019). The emergence of cytotoxicity of the isocratic fractions and sub-fractions even though the crude extract did not exhibit any significant cytotoxicity against MCF-7 cells could be due to antagonistic interactions between these fractions. When the MCF-7 cells were subjected to treatment with these fractions separately, cytotoxicity was then observed (Sang et al. 2006).

In another study by Lanchhana, Ranjit and Kumar (2023), the anticancer activity of \textit{Q. indica} leaf and flower crude extracts were investigated against another human breast cancer cell line, MDA-MB-231. The \textit{Q. indica} crude extracts were prepared using ethanol and the final tested concentrations were 10 g/mL, 20 g/mL, 40 g/mL, and 80 g/mL. No cytotoxicity was observed against the MDA-MB-231 cells for concentrations of 10 g/mL, 20 g/mL, and 40 g/mL of the \textit{Q. indica} crude extracts. Approximately 20% cytotoxicity was observed against the MDA-MB-231 cells for concentration of 80 g/mL of the \textit{Q. indica} crude extracts. The IC\textsubscript{50} value for treatment of MDA-MB-231 cells with the \textit{Q. indica} crude extracts was estimated to be >100 µg/mL. However, further studies are warranted to identify the phytochemicals responsible for the anticancer activity and their specific mechanisms of action (Lanchhana, Ranjit & Kumar 2023).

COLORECTAL CANCER

Colorectal cancer (CRC) is the fourth most commonly occurring cancer among males and females worldwide (Van der Jeught et al. 2018). The primary chemotherapeutic agent for CRC is 5-FU (Salonga et al. 2000), while its combination with oxaliplatin and irinotecan was given to advanced-stage patients (Yaffee et al. 2015). Although there is an improvement to existing therapy, the 5-year survival rate is only 12% as nearly half of the advanced stage CRC patients are 5-FU resistant (Douillard et al. 2000; Siegel, Miller & Jemal 2016). Luna, Limbo and Jacinto (2019) further showed the potent anticancer potential of \textit{Q. indica} leaf extracts in human HCT-116 CRC cells. The results showed that strong cytotoxicity was exhibited by ethanolic (EtOH) extract (IC\textsubscript{50} = 11.48 µg/mL) and hx extract (IC\textsubscript{50} = 7.81 µg/mL). Only five fractions (i.e., IF 1, IF 2, IF 4, IF 5, and IF 6) exhibited potent cytotoxicity, with IF 4 (IC\textsubscript{50} = 10.90 µg/mL) and IF 5 (IC\textsubscript{50} = 9.43 µg/mL) showing the highest cytotoxic effect. Similar to the results obtained from BC, IF 4 was further sub-fractioned. Interestingly, GF 6d (IC\textsubscript{50} = 20.38 µg/mL) was selected for TUNEL assay to detect DNA fragmentation, which is an apoptosis biomarker, although GF 6e (IC\textsubscript{50} = 5.07 µg/mL) and GF 6f (IC\textsubscript{50} = 8.77 µg/mL) showed better cytotoxicity. Similarly, phytochemical screening suggested the cytotoxic effect of \textit{Q. indica} leaf extracts could be contributed by flavonoids, alkaloids, and cardiac glycosides.

PROSTATE CANCER

Prostate cancer (PC) is ranked the third most common type of cancer among males, with an estimation of 1,414,259 new cases estimated for the year 2020 (IARC 2022) and was further reported to have caused 375,304 deaths in 2020 (Wang et al. 2022). Taxane is the mainstay
chemotherapeutic agent for PC, but its treatment outcome is impeded by various chemoresistance mechanisms (Fitzpatrick & De Wit 2014). Currently, docetaxel is the only approved FDA chemotherapeutic agent, but it can only maintain a survival rate of 7 months on average, with several clinical side effects (Kahn, Collazo & Kyprianou 2014; Malik et al. 2015).

The anticancer activity of *Q. indica* in PC has been unveiled by Ub Wijerathne et al. (2017) using *in vitro* and *in vivo* models. They extracted *Q. indica* seeds with 70% EtOH before testing its cytotoxic effect using different concentrations on benign prostate hyperplasia (BPH) in human LnCaP PC cells (25 to 3200 μg/mL) and testosterone propionate (TP)-induced BPH rat model (150 mg/kg). In MTT assay, *Q. indica* treatment did not significantly decrease in LnCaP cell viability, with only 3200 μg/mL causing 37.2% reduction. The high expression of androgen receptor (AR) and prostate specific antigen (PSA) induced by testosterone was remarkably suppressed after treating with 50 μg/mL of *Q. indica* seed extract. The TP-induced rat models exhibited high expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 proteins in BPH tissue, which was similarly observed in PC tissue. In fact, PCNA is known to regulate cell proliferation and implicated in PC clinical grade (Wang et al. 2011). Intriguingly after *Q. indica* treatment, downregulated PCNA and cyclin D1 and upregulated pro-apoptotic protein, such as B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3 and caspase-9, were observed.

SKIN CANCER

The most aggressive type of skin cancer is melanoma and is the 17th most common cancer worldwide, as it is resistant to both chemotherapy and radiotherapy with 150,000 new melanoma cases in 2020 (Kalal, Upadhyya & Pai 2017; World Cancer Research Fund International 2022). The main mechanism for melanoma chemoresistance is due to deregulated apoptosis induction (Grossman & Altieri 2001). The anticancer activity against human B16F10 melanoma cells by copper nanoparticles (QCuNPs) synthesized using the H2O extract of *Q. indica* has been recently reported by Mukhopadhyay, Kazi and Debnath (2018). The B16F10 cell viability was decreased in a dose-dependent manner from 40 to 120 μg/mL, with the IC50 of 102 μg/mL. Interestingly, QCuNPs was non-toxic to normal mouse embryonic fibroblast (NIH3T3) as a minimal reduction in cell viability was observed at 120 μg/mL. This finding is verified in LDH assay in which QCuNPs dose-dependently (0 to 120 μg/mL) induced LDH leakage in B16F10 cells. It was interesting to note that nearly 50% of QCuNPs-treated B16F10 cells were apoptotic or in cell cycle arrest as evidenced with the upregulation of apoptotic genes (i.e., caspase 3, caspase 9, and Bax) and proteins (i.e., coiled-coil domain containing-8 (CCDC8), CTLA4, BRISC complex subunit Abro1 (ABRAXAS2), anxa5 protein (ANXA5), galectin-1, and WD repeat-containing protein 11 (WDR11), together with the downregulation of cell cycle arrest-related proteins (i.e., PCNA, 14-3-3 protein gamma (14-3-3γ), prohibitin, and heat shock cognate 71 kDa protein (HSPA8)). The induction of cytotoxicity and apoptosis was mediated by oxidative stress as evidenced with high ROS levels and low glutathione levels. However, QCuNPs did not significantly inhibit tumor growth in mice bearing B16F10 cells (Mukhopadhyay, Kazi & Debnath 2018).

LEUKEMIA

NCI statistics have reported that leukemia is the tenth most commonly occurring cancer worldwide and has contributed to 3.4% of all new cases in the US (Caiado et al. 2019). Chemoresistance of leukemia arises from genetic variation, making many clinicians and researchers screening into the impact of mutation (Almeida & Ramos 2016). However, this approach is not extensively studied and complex, leading to the elderly getting the appropriate treatment late that consequently increases the mortality risk.

Effert et al. (2008) investigated the anticancer potential of *Q. indica* twig and leaf crude extracts isolated by defatted PET followed by EtOAc against human CCRF-CEM leukemia cells. The combined leaf and twig crude extracts were tested at 10 μg/mL, and the cell proliferation was reduced by approximately 20%. It interestingly showed that out of seven phytochemicals isolated from the crude extracts of *Q. indica*, kaempferol, 25-O-acetyl-23,24-dihydro-cucurbitacin F and 23, 24-dihydrocucurbitacin F, inhibited cell proliferation significantly, with 25-O-acetyl-23,24-dihydro-cucurbitacin F identified to exhibit the strongest cytotoxicity. Nonetheless, the researcher did not further investigate the possible molecular mechanisms underlying anti-leukemia of these phytochemicals.

SOFT TISSUE SARCOMA

Soft tissue sarcoma (STS) is a rare malignancy representing only 0.7% of all new cancer cases in the
US, as reported in NCI statistics. Because metastasis is also widespread in STS, chemotherapy is the treatment option for palliative care (Reed & Altiok 2011). The combination of doxorubicin and ifosfamide is the first-line treatment for advanced metastatic cases but limited by adverse toxicity, and some STS subtypes are anthracycline resistant. Thus, alternative medicine, such as specific-histology-based drugs (pazopanib) is given, but it is costly and still under clinical trials (In, Hu & Tseng 2017).

One study has reported the anticancer activity of *Q. indica* in STS using *in vitro* models (Lohberger et al. 2015). In the study, 25-O-acetyl-23,24-dihydro-cucurbitacin F from *Q. indica* leaves and twigs was isolated before examining its cytotoxicity on three human STS cells, including SW-872 liposarcoma cells, SW-982 synovial sarcoma cells, and TE-671 rhabdomyosarcoma cells. After treating with this phytochemical (0 to 100 μg/mL), the cell viability was reduced in a dose-dependent manner, with the IC₅₀ values of 9.1 μg/mL (SW-872), 2.4 μg/mL (SW-982), and 0.7 μg/mL (TE-671), respectively. Besides, a high number of cells was arrested at G2/M phase which led to reduced gene and protein levels of cell cycle-related checkpoint regulators, such as cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A, and cyclin B1. The gene and protein expression of Survivin, which plays a crucial role in mitosis and cell survival regulation, were also downregulated significantly by this phytochemical. The result further showed that 25-O-acetyl-23,24-dihydro-cucurbitacin F promoted the expression of apoptotic caspase-3 dose-dependently in SW-872 and TE-671 cells.

CONCLUSION

In this paper, the anticancer potential of *Q. indica*, possible associated molecular mechanisms, and phytochemicals involved were discussed. The anticancer activity of *Q. indica* has been evaluated mostly using *in vitro* models against liver, breast, colorectal, prostate, skin, leukemia cancers, and soft tissue sarcoma, with relatively more studies in HCC. Collectively, this review paper has provided a clear insight that *Q. indica* is a potential anticancer and is suggested for all parts of *Q. indica* to be examined using different polarity solvents to obtain a complete therapeutic profile. Future research may need to test the anticancer potentials of *Q. indica* against more cancers using different preclinical models as well as pharmacokinetic profile and toxicity. Besides, the molecular mechanisms underlying its anticancer activity should also be determined further before clinical testing. The issues of bioavailability, drug design, and nano-formulation in order to achieve successful clinical outcomes should also be tested and addressed.

ACKNOWLEDGEMENTS

This work was supported by the Sunway University research grant (project no. GRTIN-IGS-CVVR[S][03-2022]) and Brain, Mind and Neuroscience Research Foundation (project no. GRTEX-OTR-CVVR-YPOMNM-001-2022).

REFERENCES

*Corresponding author; email: rhanye@ums.edu.my