Genomic Analysis of a Novel Antarctic Bacterium, *Cryobacterium* sp. SO2 Provides Insights into its Genomic Potential for Production of Antimicrobial Compounds

(Analisis Genom Bakteria Antartika Baharu, *Cryobacterium* sp. SO2 Memberi Cerapan tentang Potensi Genomnya untuk Pengeluaran Sebatian Antimikrob)

TEOH, C.P., **LAVIN, P.**, **GONZÁLEZ-ARAVENA, M.** & **WONG, C.M.V.L.**

1Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
2Departamento de Biotecnologia, Facultad de Ciencias del Mar y Recursos Biologicos, Universidad de Antofagasta, 601 Avenida Angamos, Antofagasta 1270300, Chile
3Instituto Antártico Chileno, Plaza Muñoz Gamero 1035, Punta Arenas, Chile

Received: 17 February 2023/Accepted: 19 June 2023

ABSTRACT

A novel strain of *Cryobacterium* designated as SO2, was isolated from the Antarctic. Hence, this study was undertaken to gain further insight into the antimicrobial compounds and secondary metabolites produced by *Cryobacterium* sp. SO2. It was found that strain SO2 is a Gram-positive that exhibits an irregular rod shape, which formed yellow to orange pigmented colonies on semi-solid media. Strain SO2 grows at temperatures ranging from 4 to 25 ºC. It has a complete genomic size of 4.097 Mb. SO2 has a DNA G+C content of 68.43%, and genomic annotation showed that the genome contained 3,862 CDS, 10 rRNA, 55 tRNA and 1 tm-RNA. Phylogenetic and OrthoANI analysis suggested *Cryobacterium* sp strains SO1, N22, TMB1-8, LW097, TMN39-1, *C. zongtaii* TMN-42, *C. arcticum* PAMC27867 and *C. soli* GCJ02 as its closest phylogenetic neighbour. Genome annotation shows that strain SO2 confers β-lactamase class A, cephalosporin-C deacetylases, and 27 drug-resistance or efflux coding genes, and allows resistance to ceftazidime. Functional annotation identifies 28.74% of predicted genes are of unknown functions. Genome mining indicates that there are six putative secondary metabolite gene clusters in strain SO2. They are made up of RRE-containing, terpene, beta-lactone, T3PKS, NAPAA, and 2dos. This finding shows strain SO2 harbours genes that may be involved in the production of compounds with antibacterial and antioxidant activities.

Keywords: Complete genome; *Cryobacterium* sp.; drug-resistant; psychrotolerant; secondary metabolite gene cluster

ABSTRAK

Kata kunci: *Cryobacterium* sp.; genom lengkap; kerintangan dadah; kluster gen metabolit sekunder; psikrotoleran
INTRODUCTION
The rapid emergence of antibiotic-resistant pathogens, compared to the discovery of new antibiotics, is endangering the effectiveness of available antibiotics. In 1940, penicillin-resistant *Staphylococcus* was reported (Centers for Disease Control and Prevention [CDC] 2013; Spellberg & Gilbert 2014). Several new beta-lactam were discovered by the 1950s, and the first case of methicillin-resistant *Staphylococcus aureus* (MRSA) was reported by 1960s (CDC 2013; Sengupta, Chattopadhyay & Grossart 2013; Spellberg & Gilbert 2014). By 1972, vancomycin was introduced for the treatment of MRSA and coagulase-negative staphylococci (CDC 2013; Sengupta, Chattopadhyay & Grossart 2013). Nevertheless, vancomycin resistance in coagulase-negative staphylococci was first reported in 1979 (Sengupta, Chattopadhyay & Grossart 2013). The pharmaceutical industry has introduced new antibiotics throughout the years, but the discovery of new antibiotics has been relatively fewer (Spellberg & Gilbert 2014). Therefore, it is important for the discovery of novel lead compounds to keep pace with emerging multi-drug-resistant pathogens (Ventola 2015).

Microorganisms are the source of a wide diversity of natural products, especially members of the phylum Actinobacteria (Bérdy 2005). Actinobacteria have been reported as a great source of new biological active agents, including antibacterial, antifungal, antitumor, anticancer, anti-inflammatory, antiviral, cytotoxic, and immunosuppressive activities (Dharmaraj 2010; Hassan & Shaikh 2017; Manivasagan et al. 2014; Silva et al. 2020). The genus *Cryobacterium* is classified under the Actinobacteria phylum and the Microbacteriaceae family (Suzuki et al. 1997). Members of the *Cryobacterium* genus are Gram-positive, aerobic and exhibit irregular rod-shaped morphology (Bajerski et al. 2011; Reddy et al. 2010; Suzuki et al. 1997; Zhang et al. 2007). They have been isolated from different geographical locations, such as Antarctica, the Arctic, China, South Korea, and India. At the time of writing, fifteen *Cryobacterium* species have been identified, but potential valuable novel bioactive molecules of *Cryobacterium* species have yet to be reported.

Despite the substantial number of *Cryobacterium* spp. that have been identified and the fact that they belong to Actinobacteria, little is known about their phenotypic traits, genomes, genes they encode, or antimicrobial compounds they produce. Hence, phenotypic and genomic analyses were carried out in this study to understand *Cryobacterium* sp. SO2 better. The PacBio RSII sequencer was used to sequence its entire genome to obtain a single contig. Bioinformatics analysis was then used to mine the strain SO2 complete genome data for potential novel biological active agents, such as peptides and antimicrobial compounds.

MATERIALS AND METHODS

SOURCES OF BACTERIAL STRAIN
Strain SO2 was isolated from the snow sample near the Estrellas lake (S 62°12’15" W 58°57’43"), Fildes Peninsula, King George Island, Antarctica (Teoh et al. 2018) and was used in this study.

MORPHOLOGY AND PHYSIOLOGY
Cell shapes were determined using a compound light microscope and scanning electron microscope (SEM). A modified hexamethyldizilazane (HMDS) drying method from Murtey and Ramasamy (2016) was used to prepare cells before examination under SEM. The sample was centrifuged at 4,500 rpm for 1 min. The supernatant was discarded and 1 mL of 5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) was added to the sample, followed by resuspension and incubation at 4 °C for 6 h for fixation. After fixation, the sample was centrifuged at 4,500 rpm for 1 min. The supernatant was discarded, and the pellet was washed twice with 0.05 M phosphate buffer. The specimen was dehydrated once in each graded series of 35, 50, 80, 95, and twice for 100% ethanol. The sample was centrifuged at 4,500 rpm for 1 min between each dehydration step after 5 min of incubation. The supernatant was discarded, and the pellet was resuspended in 0.1 M phosphate buffer (pH 7.2) and washed and resuspended three times for 5 min. The specimen was dehydrated once in 100% ethanol for 6 h for fixation. After fixation, the sample was mounted onto a specimen stub using double-sided sticky tape, coated with gold, and viewed under SEM.

The growth performance of strain SO2 on different agar media was determined. Agar media, namely Luria-Bertani (LB), R2A, Nutrient (NA) and Trypticase Soy (TS) media from Difco were used. Ten-fold serial dilutions of culture were performed, and 1 uL of cell suspension from each dilution was transferred onto the agar media. Culture agar plates were incubated at 4, 10, 15, 20, and 28 °C for two weeks. Quantitative growth measurements were performed by growing strain SO2 in Trypticase Soy broth media. Cultures were incubated at 10, 15, 20, and 25 °C. Optical densities for triplicate cultures at 600 nm were measured at 24-hour intervals using a spectrophotometer and SpectraMax M2 microplate readers. The average and standard deviation of optical densities for cultures were calculated and a graph was constructed.
GENOMIC DNA EXTRACTION, SEQUENCING, ASSEMBLY AND ANNOTATION

Cryobacterium sp. SO2 was cultivated in TS broth media at 20 °C with shaking at 180 rpm for 2 days. Cells were harvested when the culture reached the mid-logarithm phase (OD₆₀₀=0.4). Cells were pelleted by centrifuging at 10,000 rpm for 5 min. The supernatant was discarded and the genomic DNA was then extracted using the DNeasy Blood and Tissue kit (Qiagen) according to the manufacturer’s instructions. Extracted genomic DNA was suspended in sterilized distilled water. The concentration of genomic DNA was examined using the Invitrogen Qubit 2.0 fluorometer and the Invitrogen Qubit® dsDNA HS assay. As for the purity of genomic DNA, a Thermo Scientific NanoDrop 2000 UV/Vis spectrophotometer was used for examination.

The genomic DNA was then sequenced by Macrogen (Seoul, South Korea) for Single-Molecule Real-Time (SMRT) sequencing on a PacBio RSII system. A 20 kb SMRT bell template DNA library was constructed and loaded into 1 SMRT cell 8Pac V3. Sequencing was then performed using the DNA Polymerase Binding Kit P6V2 Reagent. The sequencing reads were then subjected to Canu v2.1 for correction, trimming and assembly at default settings (Koren et al. 2017). The assembled genome was then circularized using Circulator v1.5.5 at default settings (Hunt et al. 2015). The genome completeness of the assembled genome was then determined using the OrthoANI pipeline v1.006924 for pan-genome analysis (Page et al. 2015). The predicted proteins of strain SO2 were inputted into eggNOG-mapper v0.90.0 and eggnog database 4.5.1 (Huerta-Cepas et al. 2016, 2017) for functional annotation at the default setting. BlastKOALA was implemented for the KEGG orthology (KO) prediction (Kanehisa, Sato & Morishima 2016). Lastly, the secondary metabolite of strain SO2 was predicted by using anti-SMASH 7.0 beta (Medema et al. 2011).

ANTIBIOTICS ASSAY

The log-phase culture of strain SO2 was cultivated in the Trypticase Soy broth medium. The cultures were subsequently transferred onto Trypticase Soy agar medium and evenly swabbed using a cotton swab. Antibiotic discs were then transferred onto the agar media and incubated at 20 °C for 5 days. The following antibiotics were tested: Clarithromycin 15 µg (CLR15), Lincomycin 10 µg (MY10), Cefalothin 30 µg (KF30), Rifampicin 5 µg (RD5), Erythromycin 15 µg (E15), Cefazidime 30 µg (CAZ30), Clindamycin 2 µg (DA2), Cefoxime 5 µg (CFM5), Nitrofurantoin 100 µg (F100) and Gentamicin 10 µg (CN10). Three blank discs, each containing 10 µl of sterile broth culture, were included as negative controls, while CN10 was used as the positive control due to its broad-spectrum antibacterial activity. The average diameter of the formed halo zones was recorded.

BIOINFORMATIC ANALYSES

To determine genomic similarity of strain SO2 and neighbouring *Cryobacterium* species resulting from PhyloSift, the OrthoANI was measured by using the Orthologous Average Nucleotide Identity Tool (OAT) (Lee et al. 2016). All the closely phylogenetic-related genomes were re-annotated by using Prokka (Seemann 2014) to ease downstream analysis. The resulting general feature format (.gff) files were inputted into Roary pan-genome pipeline v1.006924 for pan-genome analysis (Page et al. 2015). The predicted proteins of strain SO2 and *Cryobacterium* sp. were inputted into eggNOG-mapper v0.90.0 and eggnog database 4.5.1 (Huerta-Cepas et al. 2016, 2017) for functional annotation at the default setting. BlastKOALA was implemented for the KEGG orthology (KO) prediction (Kanehisa, Sato & Morishima 2016). Lastly, the secondary metabolite of strain SO2 was predicted by using anti-SMASH 7.0 beta (Medema et al. 2011).

RESULTS AND DISCUSSION

Cryobacterium sp. SO2 is a Gram-positive bacterium. When viewed under an SEM, it exhibited an irregular rod-shaped (Figure 1). Most of them had an a verage length of about 0.6 µm, with a small number of cells that formed longer rods. As depicted in Figure 2, *Cryobacterium* sp. SO2 formed yellow to yellowish orange pigmented colonies on agar media, which were circular, entire and pulvinate. The qualitative growth test showed *Cryobacterium* sp. SO2 grew best on the TSA...
medium, followed by NA, LB, and R2A. Strain SO2 grew at temperatures ranging from 4 to 25 °C but not at 28 °C. Quantitative growth measurements showed that the culture of strain SO2 reached the early log phase on day 1. Strain SO2 grown at 20°C had the highest growth rate, followed by 25, 15, and 10 °C at the log phase (between 1 and 5 days) (Figure 3). Psychrotolerant have broad ranges of growth temperatures, capable of growing at 0 °C and below, while their optimal growth temperatures are usually above 15 °C and their maximum growth temperature is 30 °C (Bakermans 2012). This suggested that *Cryobacterium* SO2 is psychrotolerant.

GENOME SEQUENCING

The concentration of extracted gDNA is 170.4 ng/μL, with absorbance ratio of A260/280 = 1.940 and A260/230 = 1.940. The raw data from SMRT sequencing resulted in a total of 1,087,890,530 bases of polymerase reads, consisting of 73,024 reads with an average length of 14,896 nucleotide bases and a polymerase read quality of 0.861. The polymerase reads were pre-processed in the SMRT portal to remove adapters sequences, resulting in a total of 1,086,626,470 subread bases, which made up of 100,797 subreads with an average length of 10,780 nucleotide bases. After correction and trimming, 7,954 reads with a mean length of 23,715 bases were recovered, providing a genome coverage of 46 times.

GENOME PROPERTIES

The genome size of strain SO2 is 4,097,436 bp (Table 1). Computational analysis showed that strain SO2 had a high DNA G+C content of 68.43%. This is a common characteristic of bacteria from the genus *Cryobacterium*. The N50 of the genome was 4,097,436 bp. As annotated, 3,862 genes were identified, and they were made up of 3,796 CDSs, 10 rRNA, 55 tRNA and 1 tmRNA. There were 1,406 (36.4%) genes identified as hypothetical proteins. The completeness of the genome for strain SO2 was quantitatively assessed using BUSCO and predicted as 94.9% complete, 2.3% fragmented and 2.8% missing.

Orthology prediction was carried out for functional annotation based on Clusters of Orthologous Groups (COGs). As predicted, there were 3,440 (89.07%) genes classified as COGs and the remaining 422 (10.93%) genes were not recognized. Functional annotation showed that the majority of the ortholog genes of strain SO2 are assigned as category ‘S’, whereby the function of 1002 (28.74%) genes was unknown. There were 320 (9.18%) genes assigned to categories G (Carbohydrate transport

![FIGURE 1. SO2 observed under SEM at 40,000× magnification](image-url)
FIGURE 2. *Cryobacterium* sp. SO2 cultivated on LB, NA, R2A, and TSA media and incubated 4, 10, 15, 20 and 28 °C

FIGURE 3. SO2 cultivated in TS broth media, incubated at 10, 15, 20 and 25 °C
TABLE 1. Genome properties of strain SO2

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome size (bp)</td>
<td>4,097,436</td>
<td>100</td>
</tr>
<tr>
<td>Contigs No.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GC content (%)</td>
<td>2,803,875</td>
<td>68.43</td>
</tr>
<tr>
<td>N50</td>
<td>4,097,436</td>
<td>100</td>
</tr>
<tr>
<td>L50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total number of genes</td>
<td>3,862</td>
<td>100</td>
</tr>
<tr>
<td>Protein coding sequences (CDS)</td>
<td>3,796</td>
<td>98.29</td>
</tr>
<tr>
<td>CDS with predicted function</td>
<td>2,390</td>
<td>61.89</td>
</tr>
<tr>
<td>Hypothetical genes</td>
<td>1,406</td>
<td>36.41</td>
</tr>
<tr>
<td>Mean gene length</td>
<td>963.38</td>
<td></td>
</tr>
<tr>
<td>rRNA</td>
<td>10</td>
<td>0.26</td>
</tr>
<tr>
<td>tRNA</td>
<td>55</td>
<td>1.42</td>
</tr>
<tr>
<td>tmRNA</td>
<td>1</td>
<td>0.03</td>
</tr>
</tbody>
</table>

and metabolism), followed by 292 (8.39%) genes assigned to categories K (Transcription), 257 (7.37%) genes assigned to categories E (Amino acid transport and metabolism), 254 (7.29%) genes assigned to categories P (Inorganic ion transport and metabolism) and 156 (4.48%) genes assigned to categories M (Cell wall/membrane/envelope biogenesis) (Figure 4).

The Basic Local Alignment Search Tool (BLASTn) result indicated that the 16S rDNA sequence of strain SO2 shared 99.93% identity with C. soli GCJ02 (CP030033.1), 99.93% identity with Cryobacterium sp. Asd M3-6 (FM955863.1) and 99.87% identity with C. arcticum PAMC27867 (CP016282.1). To better understand the relatedness of Cryobacterium species and strain SO2, the phylogenetic relationship was examined using PhyloSift software. Cryobacterium sp. SO2 forms a distinctive cluster with strains SO1, N22, TMB1-8, LW097, TMN39-1 and C. zongtaii TMN-42 (Figure 5). Further comparison was then carried out using OAT (Orthologous Average Nucleotide Identity Tool) (Lee et al. 2016), whereby OrthoANI was implemented for the measurement of genome similarity among strain SO2 and relevant Cryobacterium species. According to Lee et al. (2016), the proposed cut-off value for species demarcation is 95–96% for OrthoANI. Low identity values resulted between strain SO2 and other species (Figure 6).

In this study, the relatedness of Cryobacterium species was further measured by using a pangenome analysis. Cryobacterium sp. showed huge variability among the neighbouring species. There are 544 genes that were identified as the core genome, 4,832 genes as the shell genome and 12,590 genes as the cloud genome. According to Guimarães et al. (2015), the core genome can be used as the indicator to examine the diversity of the studied genomes. When the diversity of organisms used for pangenome study increases, the size of the core genome will be reduced. According to Page et al. (2015), the core for the highly related bacteria is about 1,000 genes for every million bases in pangenome analysis. The analysis had shown that the core genome was way too small, and this is most probably due to the species used in this analysis being way too diverse. These resulting data have shown that Cryobacterium sp. SO2 is a novel, newly isolated cold-adapted Cryobacterium species.

Antibiotic profiles give an overview of what types of antibiotics that strain SO2 is susceptible to or
resistant to. The average size of halo zones was measured and recorded. Strain SO2 was resistant to CAZ30 but susceptible to all other antibiotics tested (Table 2). The smaller the size of the halo zones, the less susceptible they are to the tested antibiotics. The following shows the susceptibility of strain SO2 to the antibiotics: F100 < CFM5 < CN10 < MY10 < DA2 < E15 < KF30 < RD5 < CLR15.

KEGG analysis shows that strain SO2 possesses a gene (BJQ94_00098) that was identified as β-lactamase class A (EC:3.5.2.6). β-lactamase class A is a group of key antibiotic resistance enzymes to β-lactam compounds (Philippon et al. 2016). β-lactamase class A involved in the hydrolyzation of penicillin to penicilloic acid. In addition, there were three genes, BJQ94_01585, BJQ94_02275 and BJQ94_03673, that were identified as cephalosporin-C deacetylase (EC:3.1.1.41). BlastP analysis shows that these genes share low similarity (<61%). Cephalosporin-C deacetylases (CAH) are involved in the hydrolysis of the acetyl ester bond of cephalosporin C and may also play a role in the biosynthesis of cephamycin C. In addition, the annotation for the genome of strain SO2 indicated the presence of 27 multidrug resistance or efflux coding genes.

These genes most probably confer resistance to a narrow range of cephalosporin, such as CAZ30. As reported by Poirel et al. (2007), Acinetobacter spp. shows resistance to kanamycin, tobramycin, amikacin, gentamicin, rifampin and sulfonamides but is susceptible to chloramphenicol, tetracycline, fosfomycin, nalidixic acid and fluoroquinolones. This is because the gene from isolates Acinetobacter species encodes a narrow-spectrum β-lactamase (Poirel et al. 2007). Cryobacterium sp. SO2 may exhibit the same pattern of resistance. Strain SO2 resisted ceftazidime but was susceptible to cephaplothin and cefixime. Nevertheless, strain SO2 may have other mechanisms of resistance towards ceftazidime that do not rely on spectrum β-lactamase.
FIGURE 5. Phylogenetic tree of *Cryobacterium* sp. SO2 and neighbouring species were constructed using the Phylsift pipeline. *Z. bifida* NBRC 103089 served as the outgroup.
TABLE 2. Antibiotics assay on Cryobacterium sp. SO2

<table>
<thead>
<tr>
<th>Antibiotics disc</th>
<th>The average size of halo zones (cm)</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarithromycin 15 ug (CLR15)</td>
<td>4.27</td>
<td>Macrolide</td>
</tr>
<tr>
<td>Lincomycin 10 ug (MY10)</td>
<td>3.30</td>
<td>Lincosamide</td>
</tr>
<tr>
<td>Cephalothin 30 ug (KF30)</td>
<td>3.53</td>
<td>Beta-lactam</td>
</tr>
<tr>
<td>Rifampicin 5 ug (RD5)</td>
<td>3.70</td>
<td>Antimycobacterials</td>
</tr>
<tr>
<td>Erythromycin 15 ug (E15)</td>
<td>3.50</td>
<td>Macrolide</td>
</tr>
<tr>
<td>Ceftazidime 30 ug (CAZ30)</td>
<td>Resistant</td>
<td>Cephalosporin</td>
</tr>
<tr>
<td>Clindamycin 2 ug (DA2)</td>
<td>3.43</td>
<td>Lincomycin</td>
</tr>
<tr>
<td>Cefixime 5 ug (CFM5)</td>
<td>1.20</td>
<td>Cephalosporin</td>
</tr>
<tr>
<td>Nitrofurantoin 100 ug (F100)</td>
<td>0.93</td>
<td>Nitrofuran</td>
</tr>
<tr>
<td>Gentamicin 10 ug (CN10)*</td>
<td>2.23</td>
<td>Aminoglycoside</td>
</tr>
<tr>
<td>Negative control</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*: refers to the positive control

FIGURE 6. Orthologous Average Nucleotide Identity (Lee et al. 2016) for Cryobacterium sp. SO2 and neighbouring species
The secondary metabolites produced by strain SO2 were predicted using the antiSMASH software. It was found that strain SO2 conferred only six gene clusters of known and unknown secondary metabolites. In contrast, other Actinobacteria usually have large numbers of gene clusters. For instance, *Streptomyces coelicolor* A3(2) and *S. avermitilis* confer more than 29 and 37 putative gene clusters, respectively (Bentley et al. 2002; Ōmura et al. 2001). Regions 1 and 2 are RRE-element-containing clusters, and Region 2 displays low similarity (18%) to actinokineosin. Gene clusters with low similarities (40%) are most probably species-specific and might encode metabolites with novel chemical structures and biological activities (Zhong et al. 2013). For Regions 1, 4 (Type III Polyketide Synthase) and 6 (2-deoxystreptamine aminoglycoside), as predicted, there are no known homologous sequences in the public database. Whereby, their products could be predicted partially from the gene organization. These clusters probably encode new biologically active compounds (Paulus et al. 2017).

Region 3 is identified as a terpene and beta-lactone containing a protease inhibitor, displaying 50% similarity to carotenoid. Up until 2018, there are about 850 carotenoids reported. Carotenoids appear in various colors, most noticeably yellow, orange, red, and purple. Carotenoids are valuable components in various industries due to their antioxidant, anti-inflammatory, and anti-cancer properties (Kaulmann & Bohn 2014; Maoka 2020; Mata-Gómez et al. 2014). Strain SO2 appeared as yellow to orange colored colonies, indicating possible production of carotenoids.

Region 5 is identified as non-alpha poly-amino acids like e-Polylysine, displaying 100% similarity to e-Poly-L-lysine. e-Poly-L-lysine is an antibacterial agent that is widely used due to its broad antimicrobial spectrum (Ye et al. 2013). The above genome analysis showed that strain SO2 likely encodes several bioactive substances with antimicrobial properties, and this can be explored further in the future.

CONCLUSION

Cryobacterium sp. SO2 is a psychrotolerant organism that is capable of growing at temperatures as low as 4°C. The information from this work will facilitate our understanding of bacteria from this genus better because there is very little genomic research on *Cryobacterium* species. In silico bioinformatics analysis of the genome of *Cryobacterium* sp. SO2 shows that this strain is most probably a novel species as low core genome size and ANIb values were identified. In addition, strain SO2 was predicted to produce natural products such as antimicrobial compounds and enzymes. The antiSMASH analysis results showed that strain SO1 encodes several bioactive substances, some of which have distinctive properties and could be novel antimicrobial compounds. Future works can focus on the characterization of bioactive compounds produced by strain SO2 and elucidation of their antimicrobial properties.

TABLE 3. Putative secondary metabolite gene clusters of strain SO2

<table>
<thead>
<tr>
<th>Region</th>
<th>Type</th>
<th>From</th>
<th>To</th>
<th>Most similar known cluster</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>RRE-containing</td>
<td>661,616</td>
<td>678,879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 2</td>
<td>RRE-containing</td>
<td>1,486,434</td>
<td>1,506,694</td>
<td>actinokineosin</td>
<td>18%</td>
</tr>
<tr>
<td>Region 3</td>
<td>terpene, betalactone</td>
<td>1,775,350</td>
<td>1,817,376</td>
<td>carotenoid</td>
<td>50%</td>
</tr>
<tr>
<td>Region 4</td>
<td>T3PKS</td>
<td>3,011,743</td>
<td>3,053,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 5</td>
<td>NAPAA</td>
<td>3,080,829</td>
<td>3,114,875</td>
<td>e-Poly-L-lysine</td>
<td>100%</td>
</tr>
<tr>
<td>Region 6</td>
<td>2dos</td>
<td>3,930,879</td>
<td>3,952,018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS
The funding support from the Ministry of Science, Technology, and Innovation (MOSTI), Malaysia, under the Antarctica Flagship Programme (Sub-Project 1: FP1213E036) is gratefully acknowledged.

REFERENCES

Paulus, C., Rebets, Y., Tokovenko, B., Nadmid, S., Terekhova,

*Corresponding author; email: michaelw@ums.edu.my