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ABSTRACT

An inspiration from the fundamentals of (r,q) calculus to introduce an innovative subclass within the T(p) category 
of multivalent analytic functions, located within the confines of the open unit disk, is subjected to examination. The 
establishment of the subclass was achieved by employing Jackson’s derivative operator to enhance the comprehension 
of these analytical functions. This article began by investigating and establishing adequate criteria that dictate 
the inclusion of functions within this recently introduced subclass. To achieve this, a comprehensive coefficient 
characterization to facilitate a deeper comprehension of the subclass’s properties and behavior is derived. Further, 
various pertinent results that contribute to the broader understanding of the functions belonging to this subclass are 
explored. The findings and implications of these results are elucidated, underscoring the potential significance of this 
work in advancing the field of multivalent analytic functions and their applications. In conclusion, this paper broadens 
the scope of T(p) and sheds light on the distinct characteristics exhibited by the functions in this newly introduced 
subclass. This work sets the stage for further exploration and applications of (r,q) calculus and Jackson’s derivative 
operator in the domain of multivalent analytic functions.
Keywords: p - valent function; quantum or (r,q)-calculus; (r,q)-derivative operator

ABSTRAK

Inspirasi daripada konsep asas kalkulus-(r,q) dengan memperkenalkan satu subkelas yang inovatif dalam kategori 
fungsi analisis multivalen T(p) tertakrif pada cakera unit terbuka akan dikaji. Pembinaan subkelas tercapai dengan 
menggunakan pengoperasi terbitan Jackson bagi meningkatkan kefahaman berkenaan fungsi analisis ini. Makalah ini 
dimulakan dengan mengkaji dan membina kriteria yang cukup bagi menyatakan rangkuman fungsi agar terkandung 
dalam subkelas yang diperkenalkan. Bagi mencapai hasrat tersebut, satu ciri pekali yang komprehensif diperoleh 
bagi memudahkan lagi kefahaman terhadap sifat dan kelakuan subkelas tersebut. Malah beberapa hasil penting yang 
menyumbang kepada kefahaman luas bagi subkelas fungsi ini dikaji. Keputusan dan implikasi hasil ini diperjelaskan 
dan menekankan potensi kepentingan kajian dalam memajukan bidang fungsi analisis multivalen dan penggunaannya. 
Kesimpulannya, makalah ini memperluaskan skop T(p) dan memberi pencerahan kepada ciri berbeza yang ditunjukkan 
oleh fungsi dalam subkelas baharu yang diperkenalkan. Kajian ini menyediakan ruang kepada penerokaan lanjutan 
dan penggunaan kalkulus-(r,q) dan pengoperasi terbitan Jackson dalam domain fungsi analisis multivalen. 
Kata kunci:  Fungsi valen p -; kuantum atau kalkulus- (r,q); pengoperasi terbitan- (r,q)

INTRODUCTION

This structure embodies the entirety of analytic functions 
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 As we note 
for r = 1, the Jackson (r,q)-derivative reduces to the 
Jackson q-derivative operator of the function f, 𝒟𝒟q f(z), 
as explained in Alharayzeh (2021) and Jackson (1910, 
1909). Note also that 𝒟𝒟1,q f(z) → f '(z) when q →1-, where  
f ' is the classical derivative of the function f . Clearly for 
a function g(z) = zn, we obtain.

and

where𝑔𝑔′represents the standard derivative.
The field of applied science draws upon the 

principles of q-calculus to effectively tackle a diverse 
array of complex problems. This includes not only 
ordinary fractional calculus and quantum physics, but 
also extends to optimizing control systems, delving 
into intricate hypergeometric series, probing operator 
theories, and unraveling enigmas within complex analysis. 
Through the lens of q-calculus, these multifaceted 
challenges find resolution, demonstrating the remarkable 
versatility and applicability of this mathematical 
framework in complex analysis. Jackson (1909) initiated 
the application of q-calculus. Furthermore, fractional 
q-calculus operators are used to examine of specific 
class of functions that are analytic in 
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. In tandem with the progress in 
q-calculus research, the variant of q-calculus reliant 
on two parameters (r,q)-integers has been introduced 
and garnered heightened attention over the recent 
decades. For example, by Chakrabarti and Jagannathan 
(1991) and Sadjang (2018). As of late, Tunç and Göv 
(2021) studied the (r,q)-derivative and (r,q)-integral 
on finite intervals. Besides, they concentrated on 
certain properties of (r,q)-calculus and (r,q)-associated 
with some important integral inequalities. The (r,q)-
derivative have been considered and quickly created 
during this period by many creators.

Utilizing the previous defined (r,q)-calculus, certain 
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 in univalent geometric 
function theory is explored. A study conducted by Ismail, 
Merkes and Steyr (1990) who studied the first used the 
q-derivative operator 𝒟𝒟q, the study concentrated on the 
q-calculus comparable to the class S* of starlike function 
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This class of functions was studied by Dix and 
Pal (1995). Further, we present some general subclass 
of analytic and multivalent functions that are related to 
(r,q)-derivative operator as follows.
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 \{0},-1 ≤ B < A ≤ 1, k ≥ 0, 0 
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) 
that are satisfying the following condition

           

(1.3)

The preliminary discovery pertains to the estimation 
of coefficients for function f ∈ Θ(t,A,B,c,k,r,q,p). 
We also verify the theorem of growth and distortion 
theorem. Moreover, we deduce the extreme points 
and the radius of starlikeness and convexity, for the 
include function  f in the class ( ), , , , , , ,t A B c k r q pθ
. Primarily, let us focus on the coefficient inequalities 
for its importance, and the technique which studied in 
Aqlan, Jahangiri and Kulkarni (2004), Alharayzeh and 
Alzboon (2023), Alharayzeh and Ghanim (2022), and 
Alharayzeh and Darus (2010).

INEQUALITIES OF COEFFICIENTS 

In this section, we are going to present the fundamental 
and necessary conditions for the function  in the class 
( ), , , , , , ,t A B c k r q pθ .

Through this paper, we use the following notation.
                 

                                                     (2.1)

Where -1 ≤ B < A ≤ 1, k ≥ 0, 0 ≤ c <1, 0 < q < r ≤ 1 and 
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(2.5)

we have
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GROWTH AND DISTORTION THEOREMS FOR THE 
SUBCLASS ( ), , , , , , ,t A B c k r q pθ

The upcoming investigation will involve the examination 
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Theorem 3.2 If the function f given by (1.1) is in the 
class ( ), , , , , , ,t A B c k r q pθ

 
for 0 <  |z| = l < 1, then we 

have
                                                             

(3.3)

Equality holds for the function f given by

where vp and μp+1 can be found by (2.1).

Proof.  Since f ∈ θ (t,A,B,c,k,r,q,p) by Theorem 2.1 we 
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By applying the inequality (3.4), we extracted Theorem 
3.2, and this will complete the proof.

Theorem 3.3 If the function f given by (1.1) is in the 
class θ (t,A,B,c,k,r,q,p) it follows that f exhibits a starlike 
of order δ, where

The result is sharp with
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encompassing all analytic functions 𝑓𝑓. This category is characterized by functions possessing 
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 ∈ ℕ = {1,2,3,...}. This completes the 
proof of Theorem 3.3.

EXTREME POINTS WITHIN CLASS ( ), , , , , , ,t A B c k r q pθ

The extreme points of the class ( ), , , , , , ,t A B c k r q pθ
given by the following theorem.
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Now it is suffices to show that , 1n
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Corollary 4.2 The extreme point of the class θ 
(t,A,B,c,k,r,q,p) is the function.

fp (z) = zp,

and

where μn and vp given by (2.1).

Theorem 4.3 The class θ (t,A,B,c,k,r,q,p) is closed 
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Theorem 5.2 If the function f given by (1.1) is in the class 
θ (t,A,B,c,k,r,q,p) then f is convex of order ε   (0 ≤ ε < p), 
in the disk |z| < w where

where μn and vp  given by (2.1).
Proof. By employing the identical technique as employed 
in the proof of Theorem 5.1, we can demonstrate that.

with the aid of (2.8). Thus, we have the assertion of 
Theorem 5.2.

CONCLUSION

This paper has successfully explained the search for 
a novel subclass of multivalent analytic functions on 
the open unit disc, employing the (r,q) derivative 
operator as a defining criterion. The primary focus 
of this investigation was to establish coefficient 
characterization within specific classes of functions. The 
results obtained through this approach have proven to 
be of great interest and significance, offering valuable 
insights into estimation of coefficients, distortion 
and growth theorems, extreme points, convexity of 
functions, and starlikeness radius. Moreover, this study 
showed the possibility of deriving extended classes of 
multivalent analytic functions using the (r,q) derivative 
operator. These discoveries present a novel opportunity 
to extend the horizons of subsequent investigations 
and to attain a more profound comprehension of the 
attributes exhibited by p-valent functions in conjunction 
with Jackson’s operator. Ultimately, the systematic 
examination of this specialized function category 
alongside the application of the (r,q) derivative 
operator has significantly enhanced our cognitive grasp 
of the inherent traits of multivalent analytic functions. 
Furthermore, these accomplishments have established 
a fundamental framework upon which forthcoming 
inquiries within this realm can be constructed. The results 
presented herein contribute significantly to the existing 
body of knowledge and present promising opportunities 
for advancing the field of p-valent functions in connection 
with Jackson’s operator. 

We remark that some extended classes of 
multivalent analytic functions can be derived with 

(r,q) derivative operator and studied their coefficients 
characterization. Also these results can be extended to 
study problems related to the Fekete-Szego theorem 
(Harayzeh & Darus 2011) as a future research.
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