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ABSTRACT

Mesenchymal stem cells (MSCs) are adult stem cells that possess the remarkable ability to self-renew and differentiate
into various cell lineages. Due to their regenerative potential, MSCs have emerged as the most commonly used stem
cell type in clinical applications. Angiogenesis, the formation of new blood vessels, plays a critical role in several
pathological conditions, including ocular neovascular diseases, cancer, and inflammatory disorders. Conventional
anti-angiogenic therapies face limitations such as frequent visits for repeated doses, off-target effects and resistance
development. Recent advances in genetic engineering techniques have opened up novel avenues in regenerative
medicine. Genetically engineering MSCs using viral vectors presents a promising strategy to specifically target
angiogenesis and enhance anti-angiogenic therapies’ efficacy. Viral vectors, including lentiviruses, adeno-associated
viruses and adenoviruses, provide an effective means of delivering therapeutic genes into MSCs, allowing the
expression of a wide range of therapeutic agents, including anti-angiogenic proteins. This review explores the
frontier of using genetically engineered MSCs delivered through viral vectors as a potent anti-angiogenic therapeutic
approach. By leveraging the unique properties of MSCs and the targeted delivery capabilities of viral vectors, this
approach initiates the potential to revolutionize anti-angiogenic therapy, offering new possibilities for the treatment
of angiogenesis-related diseases.
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ABSTRAK

Sel stem mesenkima (MSCs) adalah sel stem dewasa yang memiliki keupayaan luar biasa untuk memperbaharui
diri dan berubah menjadi pelbagai barisan sel. Disebabkan potensi regeneratif merecka, MSCs telah menjadi jenis
sel stem yang paling biasa digunakan dalam aplikasi klinikal. Angiogenesis, pembentukan saluran darah baru,
memainkan peranan penting dalam beberapa keadaan patologi, termasuk penyakit neovaskular okular, kanser dan
penyakit keradangan. Terapi anti-angiogenesis konvensional mempunyai kekurangan seperti lawatan kerap untuk
dos berulang, kesan di luar sampingan dan pembangunan rintangan. Kemajuan terkini dalam teknik kejuruteraan
genetik telah membuka peluang baharu dalam perubatan regeneratif. Kejuruteraan genetik MSCs menggunakan vektor
virus merupakan strategi yang berpotensi untuk menyerang angiogenesis secara khusus dan meningkatkan
keberkesanan terapi anti-angiogenesis. Vektor virus termasuk lentivirus, virus adeno-terkait dan adenovirus
menyediakan cara yang berkesan untuk menghantar gen terapi ke dalam MSCs, membolehkan ekspresi pelbagai agen
terapeutik, termasuk protein anti-angiogenesis. Kajian ini meneroka hala tuju penggunaan MSCs yang direka bentuk
secara genetik yang dihantar melalui vektor virus sebagai pendekatan terapeutik anti-angiogenesis yang berkuasa.
Dengan memanfaatkan sifat unik MSCs dan keupayaan penghantaran yang dituju oleh vektor virus, pendekatan
ini berpotensi untuk mengubah terapi anti-angiogenesis, menawarkan kemungkinan baru untuk rawatan penyakit
berkaitan angiogenesis.

Kata kunci: Angiogenesis; kejuruteraan genetik; sel stem mesenkima; terapi anti-angiogenesis; vektor virus
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INTRODUCTION

Mesenchymal stem cells (MSCs), as mesenchymal
stromal cells, are adult stem cells that can self-renew
and differentiate into multiple lineages. They were first
discovered in bone marrow but later in other tissues
such as adipose tissue, muscle, peripheral blood, hair
follicles, teeth, placenta, and umbilical cord (Ding, Shyu
& Lin 2011). Mesenchymal stem cells have emerged
as the predominantly utilized stem cell type in clinical
settings. MSCs can migrate to injury sites in response to
environmental signals and promote tissue regeneration
by releasing paracrine factors with pleiotropic effects
and different source and multilineage differentiation
potential (Hmadcha et al. 2020).

Angiogenesis, the formation of new blood vessels,
plays a crucial role in various pathological conditions,
including ocular neovascular diseases, cancer, and
rheumatoid arthritis. Uncontrolled angiogenesis is a
hallmark of numerous diseases, often leading to the
progression and spread of tumors or contributing to the
pathogenesis of inflammatory disorders. Conventional
anti-angiogenic therapies have limitations, such as
frequent visits for repeated doses, off-target effects and
the development of resistance. Genetically engineering
MSCs using viral vectors offers a novel strategy to target
angiogenesis and improve the efficacy of anti-angiogenic
therapies specifically (Hu et al. 2008).

Recent advances in genetic engineering techniques
have paved the way for novel approaches in regenerative
medicine. One such strategy involves using MSCs, a
population of multipotent cells with immunomodulatory
and tissue repair properties (Damasceno et al. 2020).
MSCs have a unique ability to home to sites of
inflammation and injury, making them appealing
candidates for targeted therapeutic delivery. MSCs can
be genetically modified to improve their therapeutic
properties and explicitly tailored for anti-angiogenic
therapy (Pawitan et al. 2020). Viral vectors, which are
derived from naturally occurring viruses, are an effective
way to deliver exogenous genes into target cells such
as MSCs (Hodgkinson et al. 2010). These vectors can
be programmed to express a wide range of therapeutic
agents, including anti-angiogenic proteins and peptides
(Javan, Khosrojerdi & Moazzeni 2019). Viral vectors,
including lentiviruses, adeno-associated viruses and
adenoviruses, have been extensively employed to
introduce therapeutic genes into MSCs (Varkouhi et al.
2020).

This review explores the novel frontier of
using genetically engineered MSCs delivered through
viral vectors as a potent anti-angiogenic therapeutic

approach. We discuss the advantages and challenges
associated with this strategy, highlight the recent
progress made in preclinical and clinical studies, and shed
light on the prospects of this emerging field.

By harnessing the unique properties of MSCs
and the targeted delivery capabilities of viral vectors,
this approach holds the potential to revolutionize anti-
angiogenic therapy, opening up new avenues for the
treatment of angiogenesis-related diseases.

MSCs AS A GENE DELIVERY VEHICLE

Mesenchymal stem cells (MSCs) are stromal cells
that can self-renew and differentiate into many lineages
(Via, Frizziero & Oliva 2012). The International Society
for Cellular Therapy defines MSCs as cells with a specific
immunophenotype, ex vivo plastic-adherent growth,
and multilineage differentiation (Dominici et al. 2006).
Although MSCs have a wide range of anti-inflammatory
and immune-modulatory properties, as shown in the
clinical trials using MSCs, the properties of cultured MSCs
in vitro suggest they can have broader applications
(Pittenger et al. 2019). MSCs’ multipotent features make
them an appealing candidate for developing pre-clinical
and clinical trials (Ding, Shyu & Lin 2011).

In gene therapy, the delivery of foreign genetic
material into host cells is crucial for the success of the
treatment. There are three main categories of gene delivery
methods: Mechanical methods such as microinjection
or electroporation, chemical methods involving lipid
or nanoparticle carriers, and biological methods using
viral, bacterial, or cell-based vectors (Ramamoorth &
Narvekar 2015). The success of gene therapy hinges upon
the efficacy of the gene delivery vehicle to the MSCs.
It must be able to carry a sufficient amount of genetic
material to the targeted cells and facilitate efficient gene
expression. The ideal gene delivery vehicle to the MSCs
should possess several characteristics, such as the ability
to sustain gene expression for the desired period, low or
non-immunogenicity, and safety for human use (Mali
2013).

BENEFITS OF USING MSCS AS A GENE DELIVERY
VEHICLE

In current research on gene therapy, viral vectors and
synthetic liposomes have become the preferred gene
delivery vehicle options for clinical applications.
However, the major drawback of using viral vectors is
that they have been shown to trigger immunogenicity
(Seow & Wood 2009). Hence, introducing genes into
MSCs to serve as a gene delivery vehicle might overcome
the limitations that arise from viral vectors.



MSCs can be an excellent choice of delivery vehicle
due to their relative ease of isolation from various human
tissues, such as bone marrow, Wharton’s jelly from the
umbilical cord, adipose tissue, and dental tooth pulp
(Mansoor et al. 2019). MSCs can be propagated
extensively through in vitro expansion without losing
differentiative capacity (Porada & Almeida-Porada
2010). This accessibility facilitates their use in various
therapeutic applications. Furthermore, MSCs can migrate
and home to damaged tissues and tumors, known as
homing (Gao et al. 2013; Lan et al. 2012). This homing
ability is crucial for therapeutic applications, as it
suggests that MSCs can be directed or recruited to sites of
injury, allowing them to participate in tissue repair
and regeneration, as demonstrated in studies involving
corneal injury and tumor microenvironments. Lan et
al. (2012) demonstrated this homing effect by showing
a 2-fold increase of MSC circulation towards corneal
injury sites in mice within 48 hours, but not in normal
cornea. Marofi et al. (2017) reviewed that MSCs
migration to the tumor site is strongly associated with
generating inflammatory chemokines and growth factors
within the tumor microenvironment. A wide range
of adhesion molecules and toll-like receptors on the
surface of MSCs strongly suggest their responsibility
for tumor tropism.

Another feature of MSCs worth highlighting is their
high capability to be genetically manipulated through
in vitro applications (D’souza et al. 2015). Genetic
manipulation can be performed using various vectors
to express therapeutic proteins and then secrete these
proteins into the damaged tissues or tumor sites. This
opens up avenues for targeted and localized delivery
of therapeutic agents. Wen et al. (2012) explored the
use of allogeneic MSCs with adenoviral vector genetic
modification that overexpressed the hepatocyte growth
factor (HGF) gene. Transplantation of HGF-transgenic
MSCs was performed one week after traumatic
osteonecrosis of the femoral head (ONFH) in a rabbit
model. The results showed recovery with decreased
empty lacunae and increased vascular endothelial
growth factor (VEGF) expression. The ability of
genetically modified MSCs to promote recovery, as
seen in studies involving traumatic osteonecrosis
and hepatocyte growth factor (HGF) overexpression,
highlights their therapeutic potential in diverse diseases.
With engineered MSCs as a promising new treatment
method for various diseases, continuous research and
clinical trials can further explore their application in
various medical conditions.

Moreover, MSCs have a low immunogenicity
property. The low immunogenicity of MSCs is closely
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associated with the low expression levels of MHC class
I and class II molecules, along with co-stimulatory
molecules (Garcia-Bernal et al. 2021; Hu et al. 2010).
This unique property allows them to be used as an
allogeneic transplant without HLA matching. In short,
the unique immunologic tolerance of MSCs allows
them to engraft into xenogeneic environments while
preserving their ability to perform therapeutic effects
toward targeted tissues or tumor sites (Esmaeilzadeh &
Farshbaf, 2015). Expanding research in this area could
lead to breakthroughs in developing effective treatments
without the need for strict matching criteria.

Table 1 summarizes the in vitro, in vivo and up-to-
date clinical trials using MSCs as gene delivery vehicles.
The summarized clinical trials using MSCs as gene
delivery vehicles demonstrate the translation of these
findings into clinical investigations. Both clinical trials
used autologous bone marrow derived MSCs. Continued
efforts in conducting robust clinical trials, considering
different sources of MSCs and targeting various critical
diseases, will be essential to validate the safety and
efficacy of MSCs-based gene therapies.

Despite the promising attributes of MSCs as
gene delivery vehicles, several research gaps warrant
further exploration. While the homing ability of MSCs
to damaged tissues and tumors is acknowledged, a
more comprehensive understanding of the underlying
mechanisms is needed. Unraveling the intricate signaling
pathways and factors influencing MSCs homing will
contribute to enhancing their therapeutic efficacy.

MSCs have previously proven to be safe (Jung,
Bauer & Nolta 2012; Sun et al. 2018); however, the
long-term safety assessments of MSCs-based gene
therapies are lacking. Comprehensive studies are needed
to evaluate the durability of transgene expression,
potential risks of insertional mutagenesis, and any off-
target effects associated with prolonged exposure to
genetically modified MSCs. Further advancements in
enhancing the targeted delivery of therapeutic proteins are
essential. This involves exploring innovative strategies to
improve the specificity and efficiency of MSCs homing
to specific tissues or tumor microenvironments. Also,
gene editing technologies should be pursued to optimize
genetic manipulation methods and ensure controlled and
regulated expression of therapeutic genes.

The future direction of research in MSC-based gene
delivery should focus on refining techniques, deepening
mechanistic insights, ensuring long-term safety, and
exploring innovative strategies for personalized and
combination therapies. Collaborative efforts across
disciplines, rigorous clinical trials, and advancements in
translational research will be vital to unlocking the full
therapeutic potential of MSCs in gene therapy.
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GENE THERAPY PROCESS USING GENETICALLY
MODIFIED MSCS AS A DELIVERY VEHICLE FOR
TARGETED TREATMENT

Gene therapy utilizing genetically modified MSCs
represents an innovative approach for the targeted
treatment of various diseases. MSCs, classified as the
second generation, offer distinct advantages as delivery
vehicles, combining the regenerative properties of
stem cells with the precision of genetic modifications.
Second-generation MSCs refer to those engineered or
genetically modified to enhance specific characteristics.
In the context of gene therapy, these modifications often
involve introducing therapeutic genes, allowing MSCs
to express and deliver targeted therapeutic proteins. This
classification distinguishes them from unmodified or
first-generation MSCs.

Figure 1 represents the gene therapy process using
second-generation MSCs as the gene delivery vehicle.
The first step in this process involves identifying
the mutated or malfunctioned gene responsible for
the targeted disease, followed by the production of
therapeutic genes for treatment. There are four main
types of therapeutic genes, including functional genes,
silencing genes, suicide genes, and marker genes,
depending on the specific method of treating the disease
(Marofi etal. 2017). The loading of the therapeutic gene
into MSCs can be achieved through several methods,
including viral vectors such as adeno- associated
virus, lentivirus or retrovirus, non-viral vectors such
as plasmids, or physical methods such as RNAI,
liposomes, or electroporation. Therapeutic genes are
introduced into MSCs, enabling them to express specific
proteins with therapeutic effects. The expression of
the introduced genes is verified through molecular
assays and imaging techniques. This step ensures the
successful incorporation of the therapeutic genes into
the MSCs and confirms their ability to produce the
desired therapeutic proteins. The genetically modified
MSCs undergo further expansion to achieve the required
cell number for effective therapeutic delivery. This
step is crucial for generating a clinically relevant cell
population while maintaining the characteristics of the
modified MSCs.

These genetically engineered MSCs are administered
to the patient, either locally or systemically, depending
on the therapeutic target. In some cases, a personalized
approach may be adopted, tailoring the gene therapy to
the individual patient’s specific genetic profile or disease
characteristics. This may involve using patient-derived

MSCs for genetic modification. The homing ability of
MSCs directs them to the specific tissues or sites of injury,
facilitating targeted delivery of therapeutic proteins.
Once the therapeutic gene has arrived at the nucleus of
the targeted cell, it integrates with the DNA and corrects
the mutated or malfunctioning gene (Ramamoorth
& Narvekar 2015). Genetically modified MSCs exert
their therapeutic effects by expressing and secreting
therapeutic proteins. This may involve promoting tissue
repair, modulating the immune response, or inhibiting the
growth of tumors, depending on the specific therapeutic
genes introduced.

The gene therapy process utilizing genetically
modified MSCs as the second generation of delivery
vehicles holds great promise for targeted and personalized
treatments. Advances in genetic engineering and stem
cell biology continue to propel this field forward, offering
new avenues for addressing complex diseases with high
precision and efficacy.

BIODISTRIBUTION OF MSCs AS A GENE DELIVERY
VEHICLE

Safety is a crucial consideration in developing cell-based
gene therapy using MSCs. The choice of administration
route can impact the biodistribution of MSCs in various
organs, which may have different effects. Therefore, this
section will thoroughly discuss the potential impact of
MSC deposition in different organs. Furthermore, an in-
depth review of the toxicity study for MSCs will also be
presented to ensure the safety and efficacy of the therapy.

The administration route significantly influences the
distribution of MSCs within the body, with implications
for both safety and clinical outcomes. The commonly
used routes of administration for MSCs are intravenous,
intraarterial, and intralesional (Sanchez-Diaz et al. 2021).
Table 2 summarises the in vivo and clinical studies on
MSCs biodistribution that are relevant to intravenous,
intraarterial, intralesional and subconjunctival using
MSCs as an administration pathway. Intravenous
administration of MSCs results in initial accumulation in
the lungs, a common observation reported by Kim et al.
(2016) and Schubert et al. (2018).

They were subsequently redistribution to the liver,
spleen, and kidneys, indicating a systemic distribution
pattern. Understanding this trajectory is crucial for
predicting potential effects on organs involved in filtration
and clearance. Intraarterial administration, on the other
hand, bypasses the pulmonary filter, allowing MSCs to
distribute more widely into other organs.
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FIGURE 1. Gene therapy process using genetically engineered MSCs as a
delivery vehicle for targeted treatment

Espinosa et al. (2016) observed homogeneous
distribution through the entire distal limb, including
within the hoof, after intraarterial selective infusion via
the median artery. This route provides an alternative
to intravenous delivery, potentially influencing the
therapeutic impact by targeting specific organs or tissues
more efficiently. In contrast, intralesional injection
leads to localized distribution, where MSCs remain at the
injection site without systemic migration. This route offers
a targeted approach and may be advantageous when
localized therapeutic effects are desired, minimizing
systemic exposure. Khan et al. (2018) demonstrated
MSCs distributed throughout the tendon synovial sheath
but restricted to the synovial tissues, with no systemic
biodistribution observed. Another study (Zhang et al.
2021) reported no labeled cells infiltrating the cornea
when injected into the subconjunctival on Day 28.

Thorough biodistribution and toxicity studies are
crucial to ensure the safety of MSC-based therapy in

clinical applications. These studies aim to investigate
the potential adverse effects of MSCs on the host
organism. Table 2 describes the crucial findings of in vivo
biodistribution studies on vast host organisms ranging
from small animals (mice, rats, and rabbits) to large
animals (horses, dogs, and sheep). Understanding the
interaction between MSCs and host organs are crucial for
predicting and mitigating potential toxicities. Factors such
as host immune response, inflammatory reactions, and
any off-target effects need to be thoroughly investigated
to ensure the overall safety of the therapy. Long-term
effects of MSC administration, including any potential
accumulation or persistence in specific organs, should
be a focus of toxicity studies. A clinical trial has been
found to assess the biodistribution of MSCs at 8§ months
and 28 months post-injection (Henriksson et al. 2019).
MSCs were found to be persistent enough to be detected
at 8 months post-injection but not detected at 28 months.
However, such longer term evaluation studies are limited.
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Assessing the durability of the therapeutic effects and the
resolution of any adverse events over time is essential for
the clinical translation of MSC-based gene therapies.
Thus, the inclusion of longitudinal monitoring in clinical
trials is recommended to track the biodistribution of
MSCs over time. This will provide valuable insights into
the persistence of therapeutic effects and any potential
late-onset adverse events.

The insights gained from studying the
biodistribution of MSCs and conducting toxicity
assessments have direct implications for the clinical
use of MSC-based gene therapies. Understanding
where MSCs accumulate and assessing potential risks
informs the selection of administration routes and
dosage regimens for optimal therapeutic outcomes.
Optimization efforts should focus on selecting the most
effective route that balances targeted delivery with
minimized systemic exposure, aligning with the desired
clinical outcomes. Additionally, the integration of
advanced imaging techniques, such as positron emission
tomography (PET) or magnetic resonance imaging
(MRI), can enhance the accuracy of biodistribution
studies. Integrating these techniques into preclinical
and clinical research allows accurate, real-time
visualization and quantification of MSCs distribution.
The critical evaluation of MSCs biodistribution and
toxicity is foundational for ensuring the safety and
efficacy of gene therapies. Recommendations for
optimization, longitudinal monitoring, and advanced
imaging contribute to advancing the field toward safe
and effective clinical applications.

VIRAL GENE DELIVERY INTO MSCs

The field of viral gene transfer has advanced
significantly through a deep comprehension of the
life cycle of viruses, which involves two critical stages:
infection and replication. Gene transfer has focused on
manipulating the viral genome to abrogate its replication
ability and, instead, introducing a heterologous gene
of interest through transduction (Vannucci et al.
2013). This allows for the targeted delivery of genetic
information to a specific cell. To achieve this, modified
viral vectors are introduced to mesenchymal stem cells,
which then act as effective gene delivery agents when
administered to the patient. By modifying MSCs with
various beneficial genes, the therapeutic potential of
these cells can be significantly enhanced, leading to

an increase in survival rates. Lentiviruses, adenoviruses,
adeno-associated viruses, and retroviruses are among the
viral vectors that are currently employed for viral gene
transfer into MSCs.

LENTIVIRUSES

Lentiviruses have garnered significant attention as gene
delivery agents, owing to their unique ability to infect
non-dividing or slow-proliferating cells, such as
MSCs, without cell division (Zahler et al. 2000). This
efficiency is attributed to the pre-integration complex,
which allows the lentiviral vectors to infect target cells
efficiently. While lentiviral vectors are derived from
HIV-1, their modifications have been developed based
on the HIV-1 vector system, as opposed to the HIV-2
vector system, due to their enhanced efficacy (Dissen
et al. 2012). Lentiviral vectors enter the target cell via
endocytosis and undergo endosomal escape, allowing
their genome to be reversed transcribed to double-
stranded DNA (dsDNA) and subsequently integrated into
the host cell chromatin. Lentiviral vectors can integrate
up to a maximum size of 9kb and are widely used in gene
therapy research (McGinley et al. 2011). Figure 2(a)
demonstrates the mechanism of infection from entering
the cell and integrating the targeted gene into the nucleus.

ADENOVIRUSES

Adenovirus is a non-enveloped virus with double-
stranded DNA genomes that encode genes ranging from
26 to 45kb. It consists of icosahedral capsids with 12
vertices and 7 surface proteins, and its DNA genome
encodes 30 proteins (San Martin 2012). Adenovirus
enters host cells through various receptors, including the
commonly known integrin receptor, inducing endocytosis
for internalization of the virus, as shown in Figure 2(b).
The virus then proceeds through the endosomal rupture
process, known as cytoplasmic transport, to the nuclear
envelope for nuclear pore complex attachment (Greber &
Flatt 2019). Adenovirus can transfer the gene of interest
to the nucleus of the host cell without integrating with the
host chromatin (Nowakowski et al. 2013). It can transfect
both dividing and non-dividing cells, with a maximum
insert size of up to 36kb. However, adenovirus has
several disadvantages, including high immunogenicity,
potential insertional mutagenesis, and a short
expression duration.
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ADENO-ASSOCIATED VIRUS (AAV)

Adeno-associated virus (AAV) is a single-stranded DNA
virus capable of integrating its genome into human
chromosome 19. Its viral genome comprises two
genes, each producing multiple polypeptides: rep for
viral genome replication and cap for encoding proteins
(Dissen et al. 2012). AAV can serve as a viral vector
by introducing separate plasmids flanking therapeutic
genes and adding a helper such as adenoviruses and
herpes simplex viruses.

The transduction pathway of AAV initiates by
binding to a specific receptor-mediated endocytosis
on the cell surface to commence infection (Desfarges
& Ciuffi 2012). Heparin sulfate proteoglycan receptor
(HSPG) promotes clathrin-mediated endocytosis and
forms the endosome, involving avf5 integrin (Dissen et
al. 2012). The virus subsequently undergoes endosomal
escape and gradually traverses the nuclear pore complex
into the nucleus. Inside the nucleus, the virus’s capsid
protein degrades, and its genome undergoes replication
by relying on the host cell polymerase, forming an
episome for the expression of the desired protein. Figure
2(c) illustrates the brief mechanism of the transduction
pathway of AAV to the host cell for transferring
therapeutic genes.

AAV is a virus that can transfer its genome to the
host cell’s nucleus and integrate with host chromatin
or act as an extrachromosomal DNA. It elicits a
low immune response in host cells and has efficient
transfection, providing a good length of expression in
vivo (Nowakowski et al. 2013). However, AAV has a
few significant disadvantages, such as its small size,
which can only accommodate a maximum insert size of
4.5kb, and safety concerns due to potential insertional
mutagenesis (Johnson 2010).

RETROVIRUSES

Retroviruses have a unique transcription mechanism,
allowing them to integrate with the host genome and
transfer therapeutic genes to host cells, making them an
effective vector for gene therapy. Retrovirus infection
involves endocytosis of the virus into the host cell,
followed by endosomal escape and fusion with the
transmembrane protein at the virus membrane (Sandrin,
Russell & Cosset 2003). The resulting fused membrane
flips inside out, allowing the viral gene to enter the host
cell cytoplasm. Eventually, reverse transcription occurs,
and the resulting double-stranded DNA enters the nucleus

for expression to express the desired protein. (Figure
2(d)).

Despite their high transfection efficiency and
low immune response in host cells, retroviruses have
limitations, such as a payload size limit of 8kb and low
transfection efficiency in vivo studies, as well as safety
concerns related to insertional mutagenesis (Johnson
2010). To address these limitations, retroviruses have
been modified into various vectors, including retroviral
bicistronic vectors and murine stem cell retroviral
vectors. These modified vectors have shown promising
results in treating myocardial infarction by limiting the
infarct area’s size or promoting angiogenesis and cell
survival.

Retroviral bicistronic vectors, based on Internal
Ribosome Entry Site (IRES), have been utilized to transfer
genes to MSCs for modifying them into gene delivery
agents (Martin et al. 2006). Meanwhile, murine stem
cell retroviral vectors, based on the retroviral bicistronic
vector, have presented high efficiency transduction and
long-term gene expression in MSCs (Sandrin, Russell
& Cosset 2003). Both vectors have shown promising
results in treating myocardial infarction by limiting the
infarct area’s size or promoting angiogenesis and cell
survival. Overview of the key characteristics of each
viral vector is summarized in Table 3.

ANTI-ANGIOGENESIS

Angiogenesis is a physiological process that involves
the formation of new blood vessels from pre-existing
ones, often in response to tissue hypoxia or insufficient
tissue oxygenation. This results in the accumulation of
hypoxia-inducible factor (HIF-1a) and overexpression
of vascular endothelial growth factor (VEGF) (Adams &
Alitalo 2007; Hirota & Semenza 2006). The angiogenesis
process involved: (a) signalling, (b) detachment and
sprouting, (c) migration and proliferation, (d) tube/
lumen formation, (e) pericyte recruitment, and (f) vessel
maturation and remodeling (Van Hove & Benoit 2015).

Angiogenesis is a complex biological process
that begins with releasing pro- angiogenic signals from
ischemic tissues, creating a growth factor gradient
primarily involving HIF-1a and VEGF (Hirota &
Semenza 2006). The subsequent interaction between
endothelial cells (EC) and pericytes results in pericyte
destabilization and detachment, causing further
degradation of the extracellular matrix (ECM) and the
formation of sprouts towards ischemic tissues. ECs then



migrate towards ischemic tissues while proliferating
in response to factors such as VEGF, FGF, and SDF-1
(Kuhlmann et al. 2005; Lieu et al. 2011). The resulting
immature vessels are composed of ECs assembled
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to enable cell-cell contact to form tube/lumen-like
structures. Finally, recruited pericytes interact with ECs
and are stabilized by factors such as Angl and PDGF.

TABLE 3. Overview of the key characteristics of each viral vector

Virus Type Similarity Differences Advantages Disadvantages
Stable integration; Stable integration; infects . . .
i S S L ’ Risk of insertional
Lentiviruses Gene d.ehvery VECIOTS; infects both dividing an both dividing and non- )
RNA viruses o . mutagenesis
non-dividing cells dividing cells
Gene delivery vectors;  Transient expression; does ~ Large transgene capacity;
Adenoviruses double- stranded DNA  not integrate into host does not integrate into High immunogenicity
viruses genome host genome
Gene delivery vectors; Versatile trobi tential Stable transgene Limited packaci
ersatile tropism, potentia . . imited packagin
AAV double- stranded DNA ropism, p expression, reduced im- °¢ packaging
) for stable integration e capacity
viruses munogenicity
Stable integration; infects Stable transgene . . :
. Gene delivery vectors; o ’ . . Risk of insertional
Retrovirus Very v > both dividing and non- expression, only infect

RNA viruses

dividing cells

dividing cells

mutagenesis

However, an overexpression of pro-angiogenic
factors can lead to an excess of new blood vessel
formation, contributing to various diseases such as ocular
disorders, cancer, psoriasis, and arthritis (Dreyfuss,
Giordano & Regatieri 2015; Van Hove & Benoit
2015). Therefore, anti- angiogenesis factors, which are
angiogenesis inhibitors that block the formation of new
blood vessels, are critical for preventing or treating
such diseases. Angiogenesis inhibitors can function by
inhibiting angiogenic signaling pathways, such as VEGF
and its receptors, tyrosine kinase, or other growth factors
involved, by inhibiting the interaction between ECs
and ECM through integrin inhibition, or by inhibiting
pericytes. The process through which MSCs modulate
angiogenesis is elucidated in Figure 3.

Therefore, genetically MSCs have emerged as a
promising therapeutic option for diseases involving
angiogenesis. These MSCs are engineered to overexpress
anti-angiogenic markers, enabling targeted delivery to

the site of interest. Such advancements pave the way for
novel and effective treatments for angiogenesis-related
diseases.

ANTI-ANGIOGENESIS IN ENGINEERED MSCs USING
VIRAL VECTORS

Genetically engineered MSCs utilizing viral vectors have
emerged as a promising approach for anti-angiogenesis
therapy. Genetically modified MSCs have presents
compelling anti- angiogenic effects in various preclinical
models. Table 4 summarizes findings on the potential of
engineered MSCs using various viral vectors to inhibit
angiogenesis both directly and indirectly.

The application of engineered MSCs using lentivirus
have been found in various disease models. For
instance, in acute lung injury, Chen et al. (2013) showed
improvement in pulmonary microvascular permeability
and total severity scores significantly reduced in
lipopolysaccharide (LPS)-induced lung injury using
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BALB/C mouse bone marrow derived- MSC. Another
study demonstrated similar anti-angiogenic effects
on LPS- induced lung injury using Angiopoietin-1
(Angl) using C57BL/6 mice bone marrow-derived
MSCs (Xu et al. 2008). Li et al. (2017) demonstrated
that the overexpression of anti- angiogenic factors by
BALB/C mouse bone marrow derived-MSC can inhibit
endothelial cell proliferation in tube formation assay in
hepatocellular carcinoma. The authors further confirmed
the inhibition of microvessel density and hepatocellular
carcinoma (HCC) tumour formation in vivo. In a different

study, Bone marrow derived MSCs were engineered
to express thrombospondin-1 (TSP-1) via lentivirus
transduction (LV-TSP-1-BM- MSCs) to treat Glioblastoma
multiforme (GBM) (Choi et al. 2015). The study inhibited
angiogenesis by suppressing brain endothelial cells
during angiogenesis. This diversity highlights the
versatility of MSC-based anti-angiogenic therapies across
different pathological contexts.

Furthermore, the use of engineered MSCs has
contributed to therapeutic impact in tumorigenesis.
Another study treated the same HCC disease model with
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MSCs engineered specific anti-angiogenic factors, sFltl,
using adenoviruses (Niu et al. 2016). The engineered
MSCs in combination with low-dose doxorubicin and
overexpressing sFltl demonstrate promising results
in inhibiting tumor growth. This combination therapy
approach enhances the therapeutic impact, potentially
mitigating the need for high doses of cytotoxic agents.
Chu et al. (2014) reported using adenoviruses to engineer
human placenta derived MSCs by overexpressing
kringle1-5 gene to suppress angiogenesis effects in vitro
and in vivo. The authors showed promising findings
on inhibiting microvessel growth in aortic rings in
vitro. Human placenta derived MSCs was engineered
by Zhang et al. (2014) to express endostatin by using
adenoviral vector. The findings indicated a significant
reduction in blood vessel and tumour cell proliferation.
MSCs can be home to angiogenic sites and act as cellular
carriers for the targeted delivery of anti-angiogenic
agents. Engineered MSCs exhibit the ability to home
to angiogenic sites, enabling targeted delivery of anti-
angiogenic agents. This homing effect is showcased in
studies where MSCs engineered with sFltl resulted in
decreased lung metastases and inhibited angiogenesis,
underscoring the clinical significance of targeted
therapies (Hu et al. 2008). Another anti- angiogenesis
study on the tumour model performed by Wang et
al. (2013) showed MSCs engineered with pigment
epithelium-derived factor (PEDF) using adeno-associated
virus (AAV). These engineered MSCs improved tumour
migration in vitro by infiltrating the vessels surrounding
the tumour site and inhibited glioma cells significantly
in a xenograft model.

Other studies focus on paracrine effects via
extracellular vesicles. MSCs demonstrate the capacity to
release extracellular vesicles containing anti-angiogenic
miRNAs or proteins, exerting paracrine effects on nearby
endothelial cells (Hmadcha et al. 2020). This paracrine
modulation further contributes to the suppression of
angiogenesis, showcasing the multifaceted mechanisms
of MSC-mediated anti-angiogenic effects.

Studies using various viral vectors have consistently
demonstrated the in vivo efficacy of engineered MSCs
in inhibiting angiogenesis. These findings hold clinical
significance as they provide a basis for exploring MSCs-
based therapies in human trials, particularly in cancer
and other angiogenesis-related disorders. In a clinical

setting, interferon-f (IFN-f) has been used for inhibiting
tumor growth due to its potency in anti-angiogenesis
through the suppression of endothelial growth factors
(Takano et al. 2014). Ren et al. (2008b) transduced
MSCs with recombinant AAV encoding mouse IFN- 3
to investigate the therapeutic effect on prostate cancer
lung metastasis. Results indicated a suppression of
blood vessel counts and tumour cell proliferation.
The authors also evaluated interferon-o (IFN-a) using
recombinant AAV (rAAV) on the lung metastasis model
of melanoma (Ren et al. 2008a). The transduced MSCs
with rAAV- IFN-a were intravenously injected and
immunohistochemistry demonstrated a decrease in blood
vasculature and proliferation.

The promising outcomes in preclinical models
warrant translating engineered MSCs-based anti-
angiogenic therapies into clinical trials. However, a
research gap exists in understanding the long-term
safety and durability of MSCs-based anti-angiogenic
therapies. Longitudinal studies assessing potential off-
target effects, the persistence of therapeutic effects, and
the emergence of late-onset adverse events are crucial for
a comprehensive safety profile. Also, rigorous clinical
investigations are essential to validate the safety, efficacy,
and feasibility of these approaches in human subjects.

Further research can explore comparative
preclinical studies and combination therapies in clinical
settings. Comparative studies comparing the efficacy
of different viral vectors and their impacts on MSC
function could provide valuable insights for optimizing
vector selection. Innovations in viral vector design,
including the development of next- generation vectors,
should be pursued. Advancements in vector design
and delivery methods may further refine the precision
of engineered MSCs for anti-angiogenic therapies.
Additionally, exploring combination therapies with
conventional treatments may enhance the overall
therapeutic potential.

The use of viral vector-engineered MSCs for
anti-angiogenesis therapy is a promising avenue with
significant clinical potential. Continued research,
translation to clinical trials, and addressing existing
research gaps will be crucial for realizing the full
therapeutic impact of this innovative approach in various
disease contexts.
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CONCLUSION

The utilization of MSCs for anti-angiogenesis therapy
holds immense promise, yet the field faces formidable
challenges. First and foremost, the optimal selection of
anti-angiogenic genes demands careful consideration,
as different diseases may necessitate specific gene
sets for effective therapeutic outcomes. The intricate
task of identifying genes that strike a balance between
efficacy in inhibiting angiogenesis and long-term safety
requires an in-depth understanding of disease-specific
pathways. Furthermore, the design of efficient vectors
for delivering these genes into MSCs poses challenges
related to stability, payload capacity, and targeted
delivery, with a critical need to address safety concerns
such as the risk of insertional mutagenesis. Equally
crucial is the safety of genetically modified MSCs,
encompassing issues like potential immunogenicity
and unintended off-target effects. The immune response
triggered by genetically modified MSCs could lead
to rejection or inflammatory reactions, necessitating
thorough evaluation. Additionally, ensuring that genetic
modifications do not result in unintended consequences
requires rigorous testing for specificity and safety.
Long- term effects and the potential development of
resistance to anti-angiogenic therapies using genetically
engineered MSCs also warrant extensive investigation.
Continuous monitoring, multidisciplinary collaboration,
and comprehensive preclinical studies are essential to
overcome these challenges and pave the way for the safe
and effective application of genetically engineered MSCs
in anti-angiogenesis therapy.

In conclusion, the application of genetically
engineered mesenchymal stem cells (MSCs) using viral
vectors for anti-angiogenesis has shown significant
potential in inhibiting the formation of blood vessels and
suppressing tumour growth in various types of cancer.
Studies on mice and in vitro tests have demonstrated
successful inhibition of angiogenesis through the
expression of angiogenic inhibitors, such as endostatin,
tumstatin, and sFlt-1, as well as kringlel-5 protein and
thrombospondin-1. These genetically altered MSCs
have shown promising results in inhibiting angiogenesis
in various types of cancers such as prostate cancer,
colorectal cancer, and glioblastoma multiforme. These
findings suggest that genetically engineered MSCs could
potentially serve as a promising therapeutic option for
anti-angiogenesis treatment in cancer. However, more
extensive research, including preclinical and clinical
studies, is required to validate the safety, efficacy, and
translation of genetically engineered MSCs for anti-
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angiogenesis therapies. With continued advancements
in gene therapy and MSC research, genetically modified
MSCs hold significant promise for the future development
of targeted anti-angiogenic treatments.
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