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ABSTRACT

The ordinary least squares (OLS) is the widely used method in multiple linear regression model due to tradition 
and its optimal properties. Nonetheless, in the presence of multicollinearity, the OLS method is inefficient because 
the standard errors of its estimates become inflated.  Many methods have been proposed to remedy this problem that 
include the Jackknife Ridge Regression (JAK). However, the performance of JAK is poor when multicollinearity and 
high leverage points (HLPs) which are outlying observations in the X- direction are present in the data. As a solution 
to this problem, Robust Jackknife Ridge MM (RJMM) and Robust Jackknife Ridge GM2 (RJGM2) estimators are put 
forward. Nevertheless, they are still not very efficient because they suffer from long computational running time, 
some elements of biased and do not have bounded influence property. This paper proposes a robust Jackknife ridge 
regression that integrates a generalized M estimator and fast improvised Gt (GM-FIMGT) estimator, in its establishment. 
We name this method the robust Jackknife ridge regression based on GM-FIMGT, denoted as RJFIMGT. The numerical 
results show that the proposed RJFIMGT method was found to be the best method as it has the least values of RMSE 
and bias compared to other methods in this study. 
Keywords: High leverage points; jackknife; MM-estimator; multicollinearity; ridge regression

ABSTRAK

Kaedah kuasadua terkecil sering digunakan dalam model linear regresi berganda kerana tradisi dan sifatnya yang 
optimal. Walau bagaimanapun, dalam kehadiran multikolinearan, kaedah OLS tidak cekap disebabkan penganggar 
ralat piawai menjadi besar. Banyak kaedah telah dicadangkan bagi mengatasi masalah ini termasuk kaedah Jackknife 
Ridge Regression (JAK). Namun, prestasi kaedah JAK sangat lemah dengan kehadiran multikolinearan dan titik 
tuasan tinggi iaitu cerapan terpencil dalam arah X. Sebagai penyelesaian bagi masalah ini, penganggar Robust 
Jackknife Ridge MM (RJMM) dan penganggar Jackknife Ridge GM2 (RJGM2) di ketengahkan. Walau bagaimanapun, 
kaedah ini masih tidak cukup cekap kerana mereka mengambil masa pengiraan yang panjang, mempunyai unsur 
kepincangan dan tidak mempunyai sifat pengaruh terbatas.  Kertas ini mencadangkan kaedah robust Jackknife ridge 
regression yang menggabungkan penganggar- M teritlak (GM) dan penganggar pantas terubah suai GT (GM-FIMGT) 
dalam membangunkannya. Kaedah ini dinamakan robust Jackknife ridge regression berdasarkan GM-FIMGT, 
ditandakan dengan RJFIMGT. Keputusan berangka menunjukkan bahawa kaedah RJFIMGT yang dicadangkan 
adalah yang terbaik kerana ia mempunyai nilai RMSE dan pincang terkecil berbanding dengan kaedah lain dalam 
kajian ini. 
Kata kunci: Jackknife; multikolinearan; penganggar MM; regresi ridge; titik tuasan tinggi 

INTRODUCTION

The multiple linear regression (MLR) model is one of 
the most widely used statistical approaches in applied 
and social sciences. The OLS estimation method is the 

most commonly used method to estimate the parameters 
of a multiple linear regression model. This is because it 
has excellent properties and makes computation simple. 
However, in the presence of multicollinearity and outliers, 
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the OLS estimates become very unstable and may have 
large variance (Pison et al. 2003), which leads to poor 
predictions. Multicollinearity occurs when two or more 
predictor variables are highly correlated. Outliers are 
noted to have significant impacts on the OLS estimates, 
and they cause model failure and misleading conclusions.  

In addressing the problem of multicollinearity, 
one of the suggested approaches is the ridge regression 
(RR) approach, as introduced by Hoerl and Kenard 
(1970). However, while the RR is noted to have optimal 
properties that enable it to manage the presence of 
multicollinearity, its estimators are significantly biased 
(Akdeniz Duran & Akdeniz 2012; Batah, Ramanathan & 
Gore 2008). In attempting to address the issue of bias in 
the RR approach, Singh, Chaubey and Dwivedi (1986) 
suggested an almost unbiased ridge estimator based on 
the Jackknife technique. 

Interestingly, Singh, Chaubey and Dwivedi (1986) 
showed that the Jackknife ridge estimator has a smaller 
bias and lower mean square error (MSE) than the classical 
RR under certain conditions.  Shah et al. (2021) suggested 
using Jackknife ridge estimator by introducing different 
values of biasing constant, k.  However, the RR and the 
Jackknife techniques alone are not completely robust to 
outliers and leverage points. In addressing the problem 
of outliers, a number of robust methods have been 
proposed (Huber 2004; Maronna, Martin & Yohai 2016). 
The methods are the least median squares (LMS), the 
M-estimator, the MM-estimator and the generalized M 
(GM-estimator). Unfortunately, the robust methods alone 
and the RR techniques alone are not adequate enough to 
address the complicated problems of multicollinearity 
and outliers (Alguraibawi, Midi & Rana 2015; Midi & 
Zahari 2007; Zahariah, Midi & Mustafa 2021). However, 
significant efforts aimed at addressing the inadequacies 
have been done. Prominent among such efforts is the 
integration of the RR with the robust method to get an 
estimator that is much less influenced by multicollinearity 
and outliers (Alguraibawi, Midi & Rana 2015). 

Evidently, Arskin and Montgomery (1980) 
suggested the use of Weighted Ridge Regression 
(WRR). Midi and Zahari (2007) proposed the use of 
robust ridge regression, which is a combination of RR 
and the MM-estimator. Relatedly, Jadhav and Kashid 
(2011) suggested the use of Jackknife ridge M-based 
estimator (RJRM) to overcome multicollinearity and 
outliers in the Y direction or referred as vertical outliers. 
Regrettably, the suggested methods do not focus on the 
combined problem of multicollinearity and high leverage 
points (HLPs) which are outlying observations in the 

X-direction.  As noted by Dhhan, Rana and Midi (2016), 
the M estimator can only handle outliers in the Y direction, 
but cannot cope with HLPs.  According to Bagheri and 
Midi (2015) and Rashid et al. (2021), among the three 
types of outliers (vertical outliers, HLPs and residual 
outliers, i.e., observations that have large residuals), 
HLPs has the most detrimental effect on the computed 
values of various estimates; hence their effects should 
be minimized (Zahariah, Midi & Mustafa 2021). Due 
to this, Alguraibawi, Midi and Rana (2015) proposed 
a combination of the Jackknife Ridge Regression 
(JRR) with the MM-estimator and the Jackknife Ridge 
Regression with the GM2-estimator, which are assumed to 
be able to handle HLPs. Nonetheless, the GM2-estimator 
which is almost identical to GM6 estimator is very time 
consuming due to using minimum volume ellipsoid 
(MVE) in its establishment (Lim & Midi 2016; Zahariah 
& Midi 2023). Moreover, the initial weight function of 
GM6 or GM2 tend to swamp some low leverage points 
(Bagheri & Midi 2015; Midi et al. 2021). ‘Masking’ refers 
to a situation where outliers are incorrectly declared as 
inliers, while ‘swamping’ refers to normal observations 
incorrectly declared as outliers. Hence, integrating 
the GM2 or GM6 estimator with the Jackknife Ridge 
Regression is still not very efficient with regard to its 
parameter estimations and computational running time. 
In addressing these capabilities, we proposed RJFIMGT 
method which is based on GM-FIMGT (Midi et al. 2021) 
which has been proven to be more efficient, less biased, 
and less time-consuming than the commonly used GM6 
estimator.

MATERIALS AND METHODS

REMEDIAL MEASURE OF MULTICOLLINEARITY IN THE 
PRESENCE OF OUTLIERS IN LINEAR REGRESSION

The linear regression model can be written as follow:

   (1)

where y is a vector of the response vector, X is a n 
1×n  p matrix of predictor variables, β is p 1×n 1 vector of 

unknown regression coefficients, ε is an n 1×n  1 vector 
of random errors with mean 0 and variance σ2. For 
convenience, it is assumed that the X variables are 
standardized so that XX ′  has the form of correlation 
matrix. Let λ1, λ2, ..., λp be the eigenvalues of X' X 
and q1, .., qp be the corresponding eigenvectors. Let 

),...,,( 21 pdiagXQXQ λλλ=Λ=′′  and Q = (q1, q2,.., 

         𝑦𝑦 = 𝑋𝑋𝑋𝑋 + ɛ𝑖𝑖    (1) 
 

where y is a (𝑛𝑛 × 1) vector of the response vector, X is a pn matrix of predictor variables, 

𝑋𝑋 is 1p  vector of unknown regression coefficients, ε is an 1n  vector of random errors with 

mean 0 and variance 2 . For convenience, it is assumed that the X variables are standardized 

so that XX   has the form of correlation matrix. Let p ,...,, 21 be the eigenvalues of XX 

and pqq ,..,1 be the corresponding eigenvectors. Let ),...,,( 21 pdiagXQXQ ==  

and Q= ( pqqq ,...,, 21  ) such that QQXX = . The regression model in Equation (1) can 

written in a canonical form as:                  

                                    𝑦𝑦 = 𝑍𝑍𝑍𝑍 + 𝜀𝜀                                                                                                           (2) 

where  == ZZXQZ ,  and  . Q=  The OLS estimator of (2) is given by     

                                        𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑍𝑍′𝑍𝑍)−1𝑍𝑍′𝑦𝑦 =∧−1 𝑍𝑍′𝑦𝑦                                                                (3) 
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qp) such that X' X = Q Λ Q'. The regression model in 
Equation (1) can written in a canonical form as:         
        

 (2)

where Z = XQ, and α = Q' β, hence, Λ = Z'Z = Q' X' 
X Q. The OLS estimator of (2) is given by    

                                        (3)

Since α= Q' β and Q' Q = I, the OLS estimator is 
given by 
                                       

(4)

Note that, because of the relation α= Q' β, any 
estimator α̂  of α has a corresponding αβ ˆˆ Q=  and

).ˆ()ˆ( βα MSEMSE = ) = σ2 Λ-1. Hence, it is sufficient to 
consider only the canonical form. Some parameter 
estimation methods will be discussed in the following 
sections.

THE GENERALIZED RIDGE REGRESSION

The generalized ridge regression (GRR) estimate is 
obtained by minimizing the penalized sum of squares:
                                   

       (5)

In Equation (5) we can see that GRR penalizes the size 
of the regression coefficients to be more resistant to 
multicollinearity. When k1 = k2 = ⋯= kp = k, k > 0, k is 
fixed, the solution of GRR, namely the ordinary ridge 
regression (RR), is given by 
                  

(6)

Different technique of identifying k has been proposed 
in the literature. The most widely used technique for 
choosing the optimal k was developed by Hoerl and 
Kennard (1970) given as:
                                    

(7)

where kHK is Hoerl and Kennard shrinkage parameter 
and robust

2σ̂ and α̂  are obtained by using the Ordinary Least 
Squares (OLS) method. If k is equal to zero, robustβ̂OLS and robustβ̂ RR 

are equivalent. The shrinkage parameter k has the impact 
of shrinking the estimates toward zero, which leads to 
the introduction of bias but reduces the variance of the 
estimate (Belsley, Kuh & Welsch 2004; Groβ 2003). 
The canonical form of the RR estimator in (6) is given 
by Kutner et al. (2005), Montgomery, Peck and Viving 
(2001), and Singh, Chaubey and Dwivedi (1986)

     

(8)

where Z'Z = Λ, B = (Λ + kIp), Λ = diag(λ1, λ2, ..., λp) be 
the matrix of eigenvalues, and hence the RR coefficients 
can be formulated as:

       (9)

The bias and variance of the RR estimator are given as 
follows:

   
(10)

ROBUST RIDGE REGRESSION

The robust ridge regression (RRR) combines ridge and 
robust regression in order to handle the problem of 
multicollinearity and outliers simultaneously. This will 
dampen the effects of both problems in a classical linear 
regression model. The robust ridge regression estimate 
is given as follows:

   (11)

where k is called the robust ridge parameter by employing 
Hoerl and Kennard technique,
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JACKKNIFE RIDGE REGRESSION

The Jackknife ridge regression (JRR) technique was 
originally proposed by Quenouille (1956) in order to 
reduce the bias of an estimation (Asrkin & Montgomery 
1980; Lawrence & Arthur 1990; Li & Chen 1985). 
Singh, Chaubey and Dwivedi (1986) developed an 
approach to circumvent the biasing in ridge regression 
which depends upon Jackknife technique, which is 
formulated as:
                    
  (13)

where ε(i) is an error term with ith coordinate deleted and 
y(i), X(i) denote the vector y with its ith value deleted and 
the matrix X with its ith row deleted, respectively. The 
matrix X(i) is not necessarily to be full column rank. 
Hence, the ridge regression estimator in this reduced 
model is given as,
 

(14)

Following Hinkley (1977) and Singh, Chaubey and 
Dwivedi (1986), the JRR solution is the same as given 
in Equation (14) in which y is replaced with y(i)and X is 
replaced with Z(i). Let B = (Λ + kIp), Λ = diag(λ1, λ2, 
..., λp) be the matrix of eigenvalues, then the coefficients 
of JRR are given by

 (15)

where k is stated as in Equation (12). Let zi and yi being 
the ith column vector of Z and the ith coordinate of y, 
respectively, then:

 (16)

The simplified model for JRR estimates can be written as

(17)

From Equation (17) we can obviously see that the JRR 
estimators are obtained by shrinking the 
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JRR) is obtained by:
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The bias and variance for Jackknife ridge regression 
estimates are, 

 (19)

 (20)

where Λ = diag(λ1,  λ2,  . . . ,  λp) are the matrix of 
eigenvalues.

ROBUST JACKKNIFE RIDGE REGRESSION

The robust Jack-knife ridge regression (RJRR) general 
form of the robust Jack-knife estimator based on the 
robust estimation method is discussed by Alguraibawi, 
Midi and Rana (2015), Batah, Ramanathan and Gore 
(2008), and Jadhav and Kashid (2011). If α~  is the vector 
of robust ridge regression based on some robust methods 
such as M-estimator or MM-estimator, the coefficient of 
RJRR is given as,

 
(21)

whereα~  is the vector of robust coefficients and B 
= (Λ + kIp), Λ = diag(λ1, λ2, ..., λp) be the matrix of 
eigenvalues. The coefficient of RJRR is given as,
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where ~  is the vector of robust coefficients and ),...,,(),( 21 pp diagkIB =+= be the 
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where   is the vector of true coefficients. The variance of RJRR estimator is given by 
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The bias is defined as follows:
 

(23)

where α is the vector of true coefficients. The variance 
of RJRR estimator is given by

 

(24)
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THE GENERALZED M ESTIMATOR BASED ON FAST 
IMPROVISED 

GENERALIZED MT

Midi et al. (2021) summarized the algorithm of 
Generalized M estimator based on Fast Improvised 
Generalized (GM-FIGMT) as follows: 

Step 1: Calculate the residuals (ri ) based on S estimator 
developed by Rousseeuw (1984). 

Step 2: Calculate the estimated scale (σ) of the residuals 
s = (1.4826) (the median of the largest (n-p) of the | ri |), 
where ri is obtained from Step 1.

Step 3: Compute the standardized residuals (ei), where, 

s
r

e i
i = .

Step 4: Calculate the initial weight, denoted as wi,, 
where 

Step 3: Compute the standardized residuals (𝑒𝑒𝑖𝑖 ), where, 
s
r

e i
i = . 

Step 4: Calculate the initial weight, denoted as iw , where )](,1min[
FIMGT

CP
w FIMGT

i = where 

FIMGT is proposed by Midi et al. (2021) by incorporating ISE in its establishment.  

Step 5: Compute the bounded influence function for bad leverage points, 
i

i
i w

e
t = .  

Step 6: Employ the weighted least squares (WLS) to estimate the parameters of the regression, 

YWXXWX TT 1)(ˆ −= , where the weight iw is reduced for large residuals to get good 

efficiency (In this paper, Tukey weight function is employed).  
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 = (X T W 
X) -1 X T W Y, where the weight wi is reduced for large 
residuals to get good efficiency (In this paper, Tukey 
weight function is employed). 

Step 7:  Calculate the new residuals (ri ) from WLS and 
repeat steps (2-6) until convergence.

THE PROPOSE ROBUST JACKKNIFE RIDGE REGRESSION 
BASED ON GM-FIMGT

Alguraibawi, Midi and Rana (2015) proposed Robust 
Jack-knife Ridge Regression based on MM estimator 
(RJMM) and Robust Jack-knife Ridge Regression based 
on GM2 (RJGM2) estimator to address the combined 
problems of multicollinearity and HLPs. However, using 
the RJMM and RJGM2 methods have shortcomings. 
The RJMM is based on MM estimator which does not 
have bounded influence property in the sense that it 
is not robust in the X-directions (Simpson, Ruppert & 
Carroll 1992). The RJGM2 is based on GM2 or GM6 
estimator. As noted by Lim and Midi (2016), and Midi 

et al. (2021, 2020), any estimator that is based on the 
Minimum Volume Ellipsoid (MVE) such as RJGM2 has 
longer computational running time and less efficient 
since the MVE still suffers from swamping effect.  The 
weakness of these methods has inspired us to incorporate 
the robust Jack-knife Ridge Regression with robust 
method that has bounded influence property. Midi et al. 
(2021) developed GM-FIMGT which is proven to have 
bounded influence property and the algorithm is very 
fast to compute compared to other estimators in their 
study. Motivated by the fact that integrating bounded 
influence property estimator in the algorithm of robust 
Jack-knife ridge regression can remedy both problems 
of multicollinearity and outliers, our main aim was to 
incorporate the GM-FIMGT in the algorithm of RJRR to 
produce more efficient estimates with less computation 
running times. The proposed method is call the robust 
Jack-knife ridge regression based on GM-FIMGT denoted 
as RJFIMGT. The RJFIMGT is expected to be more 
efficient than other methods considered in this study as 
multicollinearity is already handled by RJRR and HLPs 
are handled by GM-FIMGT.

The algorithm for the proposed RJFIMGT can be 
summarized by the following steps:

Step 1: Compute the GM-FIMGT estimates following 
Midi et al. (2021).

Step 2: Calculate the correlation matrix rxy as follows:
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Step 4: Calculate the estimated scale )ˆ(s of the residuals 
obtained from Step (1) .

Step 5: Using the estimated parameter (

)()()( iii Xy  +=                                                (13) 
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p
t 1)(ˆ −+=  (14) 
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𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
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The bias and variance for Jackknife ridge regression estimates are,  
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) from Step (1) 
and the estimated residuals ( )ˆ(s) from Step (4), compute 
the constant k by using Equation (12) as 

Step 6: Calculate robust Jack-knife estimator as follows:

 (25)

where B = (Λ + kIp), Λ = diag(λ1, λ2, ..., λp) be the 
matrix of eigenvalues and where 
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where ~  is the vector of robust coefficients and ),...,,(),( 21 pp diagkIB =+= be the 

matrix of eigenvalues. The coefficient of RJRR is given as, 
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where   is the vector of true coefficients. The variance of RJRR estimator is given by 
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 is the vector of robust 
coefficients obtained by using our proposed GM-FIMGT 
method.  

 (26)

MONTE CARLO SIMULATION STUDY

A Monte Carlo simulation study that focused on the 
simultaneous presence of multicollinearity and HLPs in a 
data set is thus used to test the credibility of the RJFIMGT 
approach proposed in the present study. To generate 
simulated data with a different degree of multicollinearity, 
we applied a simulation approach similar to Alguraibawi, 
Midi and Rana (2015) and Lawrence and Arthur (1990). 
First, a linear regression model with three explanatory 
variables (p=3) are generated according to the following 
relation:

where β0 = β1 = β2 = β3 = 1 and ri is the error term 
distributed as N(0,1). The explanatory variables are 
generated by, 

   (27)

where vi1,vi2, vi3 and vi4, are independent standard normal 
pseudo random numbers. The explanatory variables are 
standardized so that the design matrix )( XX t  is in the 

canonical form (Brown 1977). The character 2ρ  denotes 
the degree of collinearity between Xij and Xim  for i mi ≠ m. 
In addition, three different values of high collinearity 
were selected that corresponds to 2ρ  = 0.5, 0.9 and 0.99, 
while four different sets of observations were considered 
corresponding to n = 30, 60, 100 and 200.  In order to 
generate HLPs, the first )

2
(100 α percent observations for 

both 1x and 2x  variables were replaced by observations 
generated from N(20,10). Thereafter, y is replaced 
byN(20,10). Different percentages level of HLPs denoted 
as τ are used, i.e., τ = 0.05, 0.10 and 0.15.  Basically, 
seven estimation methods were applied in this study. 
The methods are OLS, JAK, GM-FIMGT, RJRM, RJMM, 
RJGM2, and RJFIMGT. As per Dhhan, Rana and Midi 
(2016) and Midi et al. (2021), the performances of 
the estimators are evaluated based on the Root Mean 
Squared Error (RMSE) and Loss values. According to 
Groβ (2003), since the original parameters are known, 
the loss criterion which is based on the sum of squared 
biases of parameters, may be used. The Loss criterion or 
simply refers to as overall biases is defined as follows: 
 

(28)

where p is the number of parameters. The MSE is given 
as follows:
                          

  (29)
 

where || . || indicates the Euclidean norm. The Root 
Mean Squared Error (RMSE) is given by [MSE]1/2. The 
simulation experiments are repeated 1000 times for all 
possible combinations of n, p and τ. It can be shown that 
the MSE consists of two components; one measures the 
variability (precision) and the other measures its bias 
(accuracy). A good method or the most efficient method 
is one that has the smallest value of RMSE and Bias. The 
term ‘efficient’ here refers to unbiased (very small bias) 
estimator that has smaller variance. An estimator with 
low variance with some bias is more desirable than an 
unbiased estimator with high variance. In this regard, 
the MSE or RMSE is very useful criteria to evaluate the 
performance of the estimators (Dhhan, Rana & Midi 
2016; Midi et al. 2021). All results (RMSE and Loss or 
overall bias) are averaged over 1,000 replications and 
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where 𝛽𝛽0 = 𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 1 and 𝑟𝑟𝑖𝑖 is the error term distributed as ),1,0(N The explanatory 

variables are generated by,  

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑣𝑣𝑖𝑖4 + (1 − 𝜌𝜌2)
1
2𝑣𝑣𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1,2, ⋯ , 𝑛𝑛;  𝑗𝑗 = 1,2, and 3    (27) 

 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + 𝛽𝛽3𝑥𝑥𝑖𝑖3 + 𝑟𝑟𝑖𝑖 

where 𝛽𝛽0 = 𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 1 and 𝑟𝑟𝑖𝑖 is the error term distributed as ),1,0(N The explanatory 

variables are generated by,  

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑣𝑣𝑖𝑖4 + (1 − 𝜌𝜌2)
1
2𝑣𝑣𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1,2, ⋯ , 𝑛𝑛;  𝑗𝑗 = 1,2, and 3    (27) 

 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + 𝛽𝛽3𝑥𝑥𝑖𝑖3 + 𝑟𝑟𝑖𝑖 

where 𝛽𝛽0 = 𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 1 and 𝑟𝑟𝑖𝑖 is the error term distributed as ),1,0(N The explanatory 

variables are generated by,  

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑣𝑣𝑖𝑖4 + (1 − 𝜌𝜌2)
1
2𝑣𝑣𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1,2, ⋯ , 𝑛𝑛;  𝑗𝑗 = 1,2, and 3    (27) 

 

                               Loss(𝛽𝛽, �̂�𝛽) = (�̂�𝛽 − 𝛽𝛽)𝑡𝑡(�̂�𝛽 − 𝛽𝛽) 

                                                        = ∑ (�̂�𝛽𝑗𝑗 − 𝛽𝛽)2𝑝𝑝
𝑗𝑗=1              

 
                                                
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ‖𝑦𝑦 − 𝑋𝑋�̂�𝛽‖2

 

                               Loss(𝛽𝛽, �̂�𝛽) = (�̂�𝛽 − 𝛽𝛽)𝑡𝑡(�̂�𝛽 − 𝛽𝛽) 

                                                        = ∑ (�̂�𝛽𝑗𝑗 − 𝛽𝛽)2𝑝𝑝
𝑗𝑗=1              

 
                                                
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ‖𝑦𝑦 − 𝑋𝑋�̂�𝛽‖2
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are exhibited in Tables 1-4.  Let us first focus on Table 1, 
where the data have multicollinearity but no outlier. In this 
situation, the OLS gives the poor results evident by having 
the largest value of RMSE particularly for higher degree of 
multicollinearity ( 2ρ = 0.9 and 0.99), even though its bias 
is rather small. The performances of other estimators that 
are associated with Jackknife estimator are fairly close to 
each other and their RMSEs are rather small because those 
estimators can remedy multicollinearity alone. However, 
as can be seen from Tables 2-4, the presence of HLPs for 
data having multicollinearity changes things dramatically.
We can clearly observe that the values of RMSEs for all 
estimators increase significantly, as the percentage of 

HLPs and degree of multicollinearity increases.  It appears 
that the variances make up most of the MSEs because the 
biases are rather small.  In this situation, again the OLS 
gives very poor results since it has the largest value of 
RMSE despite of having small bias.  This results are as 
expected because the OLS is easily affected by outliers 
and their standard error of the estimates become inflated 
in the presence of multicollinearity.  The JAK estimator 
seems to be better than the OLS but cannot outperform 
the GM-FIMGT. The RMSE and bias of GM-FIMGT are 
larger than the other estimators that are associated with 
Jackknife estimator combined with robust estimators.   

TABLE 1. RMSE and LOSS for estimation methods with τ = 0%

Method n 30 60 100 200

ρ RMSE LOSS RMSE LOSS RMSE LOSS RMSE LOSS

OLS

0.5

1.726 0.003 1.723 0.003 1.722 0.0028 1.7256 0.0031

JAK 1.718 0.0029 1.7097 0.0029 1.6086 0.0026 1.6137 0.0026

GM-FIMGT 1.7137 0.0029 1.7034 0.0029 1.6764 0.0025 1.6151 0.0027

RJRM 1.7302 0.0029 1.7315 0.003 1.7305 0.003 1.7305 0.003

RJMM 1.7264 0.003 1.726 0.003 1.7058 0.0029 1.7209 0.003

RJGM2 1.7281 0.003 1.7271 0.003 1.7091 0.0029 1.7218 0.003

RJFIMGT 1.7267 0.003 1.7261 0.003 1.706 0.0029 1.7209 0.003

OLS

0.9

1.792 0.003 1.759 0.0033 1.766 0.0032 1.7303 0.0032

JAK 1.7172 0.0029 1.5592 0.0024 1.7159 0.0029 1.6321 0.0026

GM-FIMGT 1.7198 0.0029 1.5801 0.0023 1.7171 0.0029 1.6301 0.0026

RJRM 1.7337 0.003 1.74 0.003 1.7308 0.003 1.7279 0.003

RJMM 1.7209 0.0029 1.6277 0.0026 1.724 0.003 1.6951 0.0029

RJGM2 1.7231 0.003 1.6382 0.0026 1.725 0.003 1.696 0.0029

RJFIMGT 1.721 0.003 1.6282 0.0026 1.724 0.003 1.695 0.0029

OLS

0.99

2.1798 0.0023 1.7455 0.0059 1.865 0.0025 1.7705 0.0026

JAK 1.6046 0.0022 1.727 0.0059 1.6721 0.0025 1.6682 0.0026

GM-FIMGT 2.1747 0.0024 1.7494 0.0059 1.8814 0.0025 1.7703 0.0026

RJRM 1.6437 0.0026 1.7322 0.006 1.7175 0.0029 1.739 0.003

RJMM 1.492 0.0022 1.722 0.0059 1.6089 0.0026 1.6447 0.0027

RJGM2 1.5828 0.0022 1.7258 0.0059 1.6503 0.0026 1.6505 0.0027

RJFIMGT 1.4885 0.0022 1.7219 0.0059 1.6095 0.0026 1.6446 0.0027
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This happens because the GM-FIMGT can only remedy 
the problem of outlier alone.  It can be observed that the 
values of RMSE and bias for RJM, RJMM are larger than 
the RJGM2 and RJFIMGT because they depend on the M 
and MM-estimator, which are known to be less efficient 
in the presence of HLPs. The RJGM2 and RJFIMGT which 
are based on GM2 and GM-FIMGT estimators, respectively 
can do well in the presence of HLPs (Midi et al. 2021). 
Nonetheless, the computational time of RJGM2 is much 
longer than the RJFIMGT because GM2 depend on the 
minimum volume ellipsoid (MVE), while GM-FIMGT is 
based on Index Set Equality (ISE) which has been shown 

by Lim and Midi (2016) that its computation running 
time is much faster than the MVE. Subsequently, the 
computation running time of RJFIMGT is faster than 
the RJGM2. Due to space constraint, the computational 
running times for RJFIMGT are not reported here, but 
one immediately understands that it should be very fast 
because it is based on ISE.  On the other hand, the RMSE 
and the bias of the RJFIMGT estimates are consistently 
the smallest among the other estimators [can be seen 
clearly for sample size of less than one hundred (100) and 
higher degree of multicollinearity ( 2ρ = 0.9 and 0.99), 
irrespective of the percentage of HLPs]. As was to be

TABLE 2. RMSE and LOSS for estimation methods with τ = 0.05

Method n 30 60 100 200

ρ RMSE LOSS RMSE LOSS RMSE LOSS RMSE LOSS

OLS

0.5

2.9513 0.0041 2.1545 0.0038 2.2822 0.0043 2.1391 0.0045

JAK 2.3728 0.0041 1.9955 0.0038 2.139 0.0042 2.0349 0.0041

GM-FIMGT 2.5652 0.0039 1.791 0.003 1.8401 0.0032 1.6077 0.0026

RJRM 2.3948 0.0041 1.975 0.0038 1.9412 0.0037 1.8598 0.0035

RJMM 2.4382 0.0039 1.7514 0.003 1.8292 0.0032 1.6652 0.0028

RJGM2 2.4358 0.0037 1.7515 0.002 1.7922 0.0031 1.6705 0.0026

RJFIMGT 2.0573 0.0039 1.74 0.003 1.7736 0.0031 1.6704 0.0028

OLS

0.9

4.1394 0.0042 2.5994 0.0039 2.7111 0.0044 2.4364 0.0059

JAK 2.7374 0.004 2.0868 0.0038 2.2764 0.0041 2.0613 0.0042

GM-FIMGT 2.9513 0.0037 1.8117 0.0029 1.9138 0.0032 1.6306 0.0027

RJRM 2.0861 0.004 1.9763 0.0038 1.9649 0.0036 1.8585 0.0035

RJMM 2.04 0.0036 1.7455 0.0029 1.8418 0.0032 1.6466 0.0027

RJGM2 2.0361 0.0036 1.7506 0.0029 1.8509 0.0032 1.6466 0.0027

RJFIMGT 1.8536 0.0033 1.7125 0.0028 1.804 0.0031 1.6381 0.0025

OLS

0.99

8.4391 0.0063 4.7764 0.0047 4.7896 0.0053 3.9745 0.0158
JAK 4.4728 0.0044 2.6851 0.004 3.1417 0.0042 2.3842 0.0057

GM-FIMGT 6.9888 0.0044 2.1957 0.0031 2.3652 0.0035 1.9757 0.0039

RJRM 4.0583 0.0045 2.0451 0.0037 2.1495 0.0035 1.9159 0.0037

RJMM 6.2001 0.0088 1.895 0.0028 1.9785 0.0031 1.7959 0.0031

RJGM2 6.2529 0.0088 1.8418 0.0028 1.9801 0.0031 1.7859 0.0031

RJFIMGT 2.8254 0.0069 1.693 0.0025 1.7861 0.0028 1.759 0.003
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TABLE 3. RMSE and LOSS for estimation methods with τ = 0.10

Method n 30 60 100 200

ρ RMSE LOSS RMSE LOSS RMSE LOSS RMSE LOSS

OLS

0.5

2.7275 0.0043 2.5412 0.0043 2.2876 0.0043 2.0903 0.0044

JAK 2.2449 0.0043 2.2347 0.0043 2.0927 0.0042 2.0522 0.0042

GM-FIMGT 1.9556 0.0033 1.8353 0.0032 1.8133 0.0032 1.7267 0.003

RJRM 2.1098 0.004 2.0778 0.004 2.066 0.0042 2.0016 0.0041

RJMM 1.8604 0.0032 1.8536 0.0034 1.8005 0.0032 1.6694 0.0028

RJGM2 1.8574 0.0032 1.8332 0.0033 1.8114 0.0032       1.6693 0.0028

RJFIMGT 1.8124 0.0031 1.8223 0.0032 1.8015 0.0031     1.6690 0.0027

OLS

0.9

4.0301 0.0043 2.4712 0.006 2.7925 0.0043 2.2005 0.0048

JAK 2.6212 0.0042 2.0893 0.0043 2.1721 0.0042 2.0459 0.0042

GM-FIMGT 2.1997 0.0033 1.8178 0.0032 1.8992 0.0033 1.9855 0.0039

RJRM 2.1467 0.0042 2.0569 0.0042 2.0598 0.0042 2.1808 0.0048

RJMM 1.9276 0.0032 1.7705 0.0031 1.8443 0.0033 1.9364 0.0037

RJGM2 1.9382 0.0033 1.7824 0.0031 1.8261 0.0032 1.9342      0.0037

RJFIMGT 1.8381 0.0031 1.7694 0.0031 1.8035 0.0032 1.9344 0.0035

OLS

0.99

8.8865 0.0047 4.008 0.016 5.0821 0.005 4.1142 0.0042

JAK 4.6112 0.0042 2.1046 0.0044 2.671 0.0042 2.7179 0.0042

GM-FIMGT 3.3462 0.003 2.1127 0.0038 2.1857 0.0035 2.1279 0.0039

RJRM 2.4169 0.0042 2.1079 0.0044 2.0566 0.0041 2.0705 0.0043

RJMM 2.2435 0.003 1.8736 0.0032 1.9249 0.0034 2.0004 0.0039

RJGM2 2.1134 0.0029 1.6855 0.0027 1.9057 0.0034 1.9906 0.0039

RJFIMGT 1.8454 0.0022 1.6465 0.0027 1.8397 0.0030 1.9687 0.0030

expected, the RJFIMGT gives the best results followed by 
the RJGM2, RJMM, RJRM, GM-FIMGT, JAK and OLS. The 
results seem to be consistent irrespective of the sample 
size, percentage of HLPs and degree of multicollinearity.  

As already discussed, since RJFIMGT clearly 
outperformed the other estimators, its’ performance is 
further investigated by using the mean squared error 
ratios of the RJFIMGT to other estimators (Jadhav & 
Kashid 2011). According to Alguraibawi, Midi and 

Rana (2015) and Lawrence and Arthur (1990), if the 
ratio is less than one, the numerator (RJFIMGT) is more 
efficient than the denominator, while if the ratio is 
greater than one, the denominator is more efficient than 
the numerator. If the ratio is exactly one, the numerator 
and denominator have the same efficiency. The MSE 
ratios of RJFIMGT to each of the estimators, i.e., RJGM2, 
RJMM, RJRM, GM-FIMGT, JAK and OLS are shown in 
Tables 5-7. It is interesting to observe the results of the 
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MSE ratios from Tables 5-7. Irrespective of sample size, 
degree of multicollinearity and percentage of HLPs, 
the MSE ratios of the RJFIMGT to other estimators 
consistently less than one. This indicates that RJFIMGT 
is more efficient than RJGM2, RJMM, RJRM, GM-FIMGT, 
JAK and OLS estimates which is in agreement with the 
results of using the RMSE and bias criterions as exhibited 
in Tables 1-4.  Summarizing the findings from Tables 

1-7, it can be concluded that the RJFIMGT is the best 
method to overcome the multicollinearity problem in 
the presence of HLPs. Moreover, this method is very 
appealing because it is less time consuming than other 
methods since it is based on ISE. Due to space limitation, 
the computation running time of the RJFIMGT is not 
reported here but one may refer to Lim and Midi (2016) 
for detail discussion on the computational running of 
the ISE.

TABLE 4. RMSE and LOSS for estimation methods with τ = 0.15

Method n 30 60 100 200

ρ RMSE LOSS RMSE LOSS RMSE LOSS RMSE LOSS

OLS

0.5

3.1577 0.0042 2.6551 0.0044 2.5042 0.0042 2.2072 0.0042

JAK 2.4145 0.0041 2.2287 0.0043 2.1663 0.0042 2.0745 0.0042

GM-FIMGT 1.923 0.0033 1.8541 0.0032 1.848 0.0033 1.8607 0.0034

RJRM 1.9761 0.0038 2.1018 0.004 2.0685 0.004 2.0576 0.004

RJMM 1.827 0.0032 1.8504 0.0033 1.8376 0.0033 1.8573 0.0033

RJGM2 1.8395 0.0033 1.8299 0.0032 1.8312 0.0033 1.8488 0.0033

RJFIMGT 1.8155 0.0031 1.8033 0.0032 1.821 0.0033 1.8328 0.0031

OLS

0.9

5.3615 0.0045 4.0407 0.0152 3.3888 0.0042 2.5662 0.0042

JAK 3.2144 0.041 2.4152 0.0056 2.3972 0.0042 2.117 0.0042

GM-FIMGT 2.1314 0.0035 2.2488 0.005 1.9475 0.0035 1.9556 0.0037

RJRM 2.0167 0.0039 2.2124 0.0045 2.0705 0.0043 2.0543 0.0042

RJMM 1.939 0.0036 2.2103 0.0049 1.9237 0.0036 1.9158 0.0036

RJGM2 1.9216 0.0035 2.214 0.0048 1.8918 0.0034 1.9161       0.0036

RJFIMGT 1.876 0.0031 2.2094 0.0046 1.8657 0.0031 1.9047 0.0032

OLS

0.99

12.1555 0.0062 8.4956 0.0047 6.8864 0.0043 4.3358 0.0043

JAK 6.2049 0.0043 3.5511 0.0086 3.6199 0.0042 2.451 0.0041

GM-FIMGT 3.011 0.0036 2.2434 0.0045 2.2603 0.0038 2.1607 0.0041

RJRM 2.1153 0.0039 2.1232 0.0044 2.0867 0.004 2.0598 0.004

RJMM 2.0529 0.0037 2.0915 0.0042 2.0398 0.0039 2.017 0.004

RJGM2 2.0419 0.0036 2.0525 0.0042 2.0388 0.0038 2.0178 0.004

RJFIMGT 1.9262 0.0031 2.0814 0.004 1.9587 0.0035 2.0008 0.0033
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TABLE 5. MSE Ratios of RJFIMGT to other estimates when τ = 0.05

N ρ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 
30

0.5
0.697083 0.867035 0.802004 0.85907 0.843778 0.84461

60 0.807612 0.871962 0.971524 0.881013 0.993491 0.993434

100 0.777145 0.829173 0.963861 0.913662 0.969604 0.989622

200 0.749848 0.788245 0.997699 0.862458 0.963248 0.960192

30

0.9

0.447794 0.677139 0.628062 0.888548 0.908627 0.910368

60 0.658806 0.820634 0.945245 0.866518 0.981094 0.978236

100 0.665413 0.792479 0.942627 0.918113 0.979477 0.974661

200 0.672344 0.794693 0.978788 0.88141 0.994838 0.994838

30

0.99

0.334799 0.631685 0.404275 0.696203 0.455702 0.451854

60 0.354451 0.630517 0.771053 0.827832 0.893404 0.919209

100 0.372912 0.568514 0.755158 0.830937 0.902755 0.902025

200 0.442571 0.737774 0.890317 0.918106 0.979453 0.984938

TABLE 6. MSE Ratios of RJFIMGT to other estimates when τ = 0.10

N ρ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 
30

0.5
0.664491 0.807341 0.926774 0.859039 0.974199 0.975773

60 0.717102 0.815456 0.992917 0.877033 0.983114 0.994054

100 0.787507 0.86085 0.993493 0.871975 0.995276 0.994535

200 0.798641 0.813468 0.966815 0.834033 0.995231 0.999701

30

0.9

0.456093 0.701244 0.835614 0.856244 0.953569 0.948354

60 0.716008 0.846887 0.973374 0.860227 0.999379 0.992706

100 0.645837 0.830302 0.94961 0.87557 0.977878 0.987624

200 0.879073 0.945501 0.974263 0.887014 0.998967 0.997525

30

0.99

0.207663 0.4002 0.551491 0.76354 0.822554 0.87319

60 0.410803 0.782334 0.779335 0.781109 0.878789 0.976861

100 0.361996 0.688768 0.841698 0.894535 0.955738 0.965367

200 0.478513 0.724346 0.925184 0.950833 0.984153 0.988998
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REAL EXAMPLE

A real dataset taken from Penrose, Nelson and Fisher 
(1985) was used to evaluate the performance of our 
proposed RJFIMGT method.  It represents the relationship 
between response variable (the percentage of body fat 
for fifty men) and seven independent variables namely, 
Age (years), Weight (lbs), Height (inches), Neck 
circumference (cm), Chest circumference (cm), Abdomen 
2 circumference (cm) and Hip circumference (cm).  Since 
the values of VIF exceed 10, it indicates that this data set 
has serious multicollinearity problem. Moreover, this 
data set has six HLPs. The performance of the RJFIMGT 
is evaluated based on the standard error of the estimates 
(SE) and RMSE. Since the distribution of the RJFIMGT is 
intractable, bootstrap method is employed to obtain its’ 
SE. Table 8 presents the estimates of coefficient, standard 
errors, VIF and RMSE of RJFIMGT, RJGM2, GM-FIGMT, 
and OLS estimates. Other estimators except the OLS were 

not included because their performances were not good as 
shown in the simulation study. The OLS and GM-FIMGT 
are included because we want to show that both are not 
reliable when multicollinearity and HLPs are present in 
the data.  It can be seen from Table 8 that the OLS gives 
very poor results and the GM-FIMGT is not any better 
either.   The OLS has the largest values of SE and RMSE. 
The GM-FIMGT is a good method when only HLPs are 
present in a data. The performance of RJGM2 is good 
but it cannot outperform the RJFIMGT. It is interesting 
to observe from Table 8 that the values of standard 
errors and RMSE for RJFIMGT is the smallest followed 
by the RJGM2, GM-FIMGT and the OLS. The results of 
the numerical examples agree reasonably well with the 
results of the simulation study that the RJFIMGT is the 
most efficient method compared to other methods in this 
study when both multicollinearity and HLPs are present 
in a data.

TABLE 7. MSE Ratios of RJFIMGT to other estimates when τ = 0.15

N ρ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑂𝑂𝑂𝑂𝑂𝑂  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝐴𝐴𝐴𝐴  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2  

 
30

0.5
0.574944 0.751916 0.944098 0.918729 0.993706 0.986953

60 0.679183 0.809126 0.972601 0.857979 0.974546 0.985464

100 0.727178 0.840604 0.98539 0.880348 0.990966 0.99443

200 0.830373 0.88349 0.985006 0.890747 0.986809 0.991346

30

0.9

0.349902 0.583624 0.880173 0.930233 0.967509 0.97627

60 0.546786 0.91479 0.98248 0.998644 0.999593 0.997922

100 0.550549 0.778283 0.957997 0.901087 0.96985 0.986204

200 0.742226 0.899717 0.973972 0.927177 0.994206 0.99405

30

0.99

0.158463 0.310432 0.639721 0.910604 0.938282 0.943337

60 0.244997 0.586128 0.927788 0.980313 0.995171 0.999472

100 0.28443 0.541092 0.866566 0.938659 0.960241 0.960712

200 0.46146 0.81632 0.925996 0.971356 0.991968 0.991575
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TABLE 8. The VIF, parameter estimates, SE and RMSE of OLS, GM-FIMGT, RJGM2 and RJFIMGT for body fat data
pa

ra
m

et
er

s

VIF

OLS GM-FIMGT RJGM2 RJFIMGT

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

)()()( iii Xy  +=                                                (13) 

 
yXIkXX t

p
t 1)(ˆ −+=  (14) 

 

�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍(𝑖𝑖)
𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
 
 
�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍𝑡𝑡𝑍𝑍 − 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

𝑡𝑡 + 𝑘𝑘𝐼𝐼𝑝𝑝)−1(𝑍𝑍𝑡𝑡𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖)                (16) 
 
 
�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘) = (𝐼𝐼 + 𝑘𝑘𝐵𝐵−1)�̂�𝛼𝑅𝑅𝑅𝑅(𝑘𝑘)  = (𝐼𝐼 − 𝑘𝑘2𝐵𝐵−2)�̂�𝛼𝑂𝑂𝑂𝑂𝑂𝑂                          (17) 
 

 
the  α̂OLS by the amount(𝑘𝑘2𝐵𝐵−2), where ),...,,(),( 21 pp diagkIB =+= be the matrix 

of eigenvalues. The Jackknife ridge regression coefficients (�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅) is obtained by: 

 

�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝑄𝑄�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)                                                                 (18) 
 

The bias and variance for Jackknife ridge regression estimates are,  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)) = −𝑘𝑘2𝐵𝐵−2�̂�𝛼                                          (19) 
 
𝑉𝑉𝐵𝐵𝑉𝑉 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘))   = 𝜎𝜎2(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)Λ−1(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)𝑡𝑡     (20) 

 

1
1.56276 0.02581    0.09638 0.03226 0.088325 0.02887 0.09716 0.002970 0.010015

)()()( iii Xy  +=                                                (13) 

 
yXIkXX t

p
t 1)(ˆ −+=  (14) 

 

�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍(𝑖𝑖)
𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
 
 
�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍𝑡𝑡𝑍𝑍 − 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

𝑡𝑡 + 𝑘𝑘𝐼𝐼𝑝𝑝)−1(𝑍𝑍𝑡𝑡𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖)                (16) 
 
 
�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘) = (𝐼𝐼 + 𝑘𝑘𝐵𝐵−1)�̂�𝛼𝑅𝑅𝑅𝑅(𝑘𝑘)  = (𝐼𝐼 − 𝑘𝑘2𝐵𝐵−2)�̂�𝛼𝑂𝑂𝑂𝑂𝑂𝑂                          (17) 
 

 
the  α̂OLS by the amount(𝑘𝑘2𝐵𝐵−2), where ),...,,(),( 21 pp diagkIB =+= be the matrix 

of eigenvalues. The Jackknife ridge regression coefficients (�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅) is obtained by: 

 

�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝑄𝑄�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)                                                                 (18) 
 

The bias and variance for Jackknife ridge regression estimates are,  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)) = −𝑘𝑘2𝐵𝐵−2�̂�𝛼                                          (19) 
 
𝑉𝑉𝐵𝐵𝑉𝑉 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘))   = 𝜎𝜎2(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)Λ−1(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)𝑡𝑡     (20) 

 

2
27.351 -0.13269    0.08415 -0.1341 0.09324 0.006656 0.04571 0.004934 0.043722

)()()( iii Xy  +=                                                (13) 

 
yXIkXX t

p
t 1)(ˆ −+=  (14) 

 

�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍(𝑖𝑖)
𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
 
 
�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍𝑡𝑡𝑍𝑍 − 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

𝑡𝑡 + 𝑘𝑘𝐼𝐼𝑝𝑝)−1(𝑍𝑍𝑡𝑡𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖)                (16) 
 
 
�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘) = (𝐼𝐼 + 𝑘𝑘𝐵𝐵−1)�̂�𝛼𝑅𝑅𝑅𝑅(𝑘𝑘)  = (𝐼𝐼 − 𝑘𝑘2𝐵𝐵−2)�̂�𝛼𝑂𝑂𝑂𝑂𝑂𝑂                          (17) 
 

 
the  α̂OLS by the amount(𝑘𝑘2𝐵𝐵−2), where ),...,,(),( 21 pp diagkIB =+= be the matrix 

of eigenvalues. The Jackknife ridge regression coefficients (�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅) is obtained by: 

 

�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝑄𝑄�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)                                                                 (18) 
 

The bias and variance for Jackknife ridge regression estimates are,  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)) = −𝑘𝑘2𝐵𝐵−2�̂�𝛼                                          (19) 
 
𝑉𝑉𝐵𝐵𝑉𝑉 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘))   = 𝜎𝜎2(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)Λ−1(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)𝑡𝑡     (20) 

 

3
1.5131 -0.17263    0.12578 -0.16990 0.12448 -0.008264 0.04947 -0.00105 0.024881

)()()( iii Xy  +=                                                (13) 

 
yXIkXX t

p
t 1)(ˆ −+=  (14) 

 

�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍(𝑖𝑖)
𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
 
 
�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍𝑡𝑡𝑍𝑍 − 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

𝑡𝑡 + 𝑘𝑘𝐼𝐼𝑝𝑝)−1(𝑍𝑍𝑡𝑡𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖)                (16) 
 
 
�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘) = (𝐼𝐼 + 𝑘𝑘𝐵𝐵−1)�̂�𝛼𝑅𝑅𝑅𝑅(𝑘𝑘)  = (𝐼𝐼 − 𝑘𝑘2𝐵𝐵−2)�̂�𝛼𝑂𝑂𝑂𝑂𝑂𝑂                          (17) 
 

 
the  α̂OLS by the amount(𝑘𝑘2𝐵𝐵−2), where ),...,,(),( 21 pp diagkIB =+= be the matrix 

of eigenvalues. The Jackknife ridge regression coefficients (�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅) is obtained by: 

 

�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝑄𝑄�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)                                                                 (18) 
 

The bias and variance for Jackknife ridge regression estimates are,  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)) = −𝑘𝑘2𝐵𝐵−2�̂�𝛼                                          (19) 
 
𝑉𝑉𝐵𝐵𝑉𝑉 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘))   = 𝜎𝜎2(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)Λ−1(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)𝑡𝑡     (20) 

 

4
5.343 -0.20133    0.45558 -0.18369 0.323501 0.0080726 0.0791 0.004218 0.041124

)()()( iii Xy  +=                                                (13) 

 
yXIkXX t

p
t 1)(ˆ −+=  (14) 

 

�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍(𝑖𝑖)
𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
 
 
�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍𝑡𝑡𝑍𝑍 − 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

𝑡𝑡 + 𝑘𝑘𝐼𝐼𝑝𝑝)−1(𝑍𝑍𝑡𝑡𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖)                (16) 
 
 
�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘) = (𝐼𝐼 + 𝑘𝑘𝐵𝐵−1)�̂�𝛼𝑅𝑅𝑅𝑅(𝑘𝑘)  = (𝐼𝐼 − 𝑘𝑘2𝐵𝐵−2)�̂�𝛼𝑂𝑂𝑂𝑂𝑂𝑂                          (17) 
 

 
the  α̂OLS by the amount(𝑘𝑘2𝐵𝐵−2), where ),...,,(),( 21 pp diagkIB =+= be the matrix 

of eigenvalues. The Jackknife ridge regression coefficients (�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅) is obtained by: 

 

�̂�𝛽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝑄𝑄�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)                                                                 (18) 
 

The bias and variance for Jackknife ridge regression estimates are,  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘)) = −𝑘𝑘2𝐵𝐵−2�̂�𝛼                                          (19) 
 
𝑉𝑉𝐵𝐵𝑉𝑉 (�̂�𝛼𝐽𝐽𝑅𝑅𝑅𝑅(𝑘𝑘))   = 𝜎𝜎2(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)Λ−1(𝐼𝐼𝑝𝑝 − 𝑘𝑘2𝐵𝐵−2)𝑡𝑡     (20) 

 

5
10.891 -0.06386    0.25141 -0.06832 0.17594 0.04401 0.06945 0.005106 0.039559

)()()( iii Xy  +=                                                (13) 

 
yXIkXX t

p
t 1)(ˆ −+=  (14) 

 

�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍(𝑖𝑖)
𝑡𝑡 𝑍𝑍(𝑖𝑖) + 𝑘𝑘𝐼𝐼𝑝𝑝)−1𝑍𝑍(𝑖𝑖)

𝑡𝑡 𝑦𝑦(𝑖𝑖)                                  (15) 
 
 
�̂�𝛼𝑅𝑅𝑅𝑅(𝑖𝑖) = (𝑍𝑍𝑡𝑡𝑍𝑍 − 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖

𝑡𝑡 + 𝑘𝑘𝐼𝐼𝑝𝑝)−1(𝑍𝑍𝑡𝑡𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖)                (16) 
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25.032 -0.18669    0.30970 -0.16771 0.21116 0.006037 0.0554 0.005128 0.041089

RMSE 4.481382 3.3121 1.12113 0.9314

CONCLUSION

The purpose of this paper was to develop a new robust 
Jackknife ridge regression based on GM-FIMGT denoted 
as JRFIMGT to remedy the combined problem of 
multicollinearity and HLPs in linear regression model. 
The numerical results show that the OLS method 
performed poorly in the presence of multicollinearity and 
outliers. The performance of all methods except the OLS 
are fairly closed to each other when only multicollinearity 
exists in the data. As the degree of multicollinearity closed 
to 0.99, the RMSE values of GM-FIMGT also increased 
because GM-FIMGT can only handles the problem of 
HLPs. The GM-FIMGT and Jackknife (JAK) also perform 
poorly when both multicollinearity and HLPs are present 
in the data. This happens because JAK can only rectify 
multicollinearity problem but not HLPs. It can be 
concluded that the RJFIMGT is the most efficient estimator 
compared to other estimators when multicollinearity 
comes together with the existence of HLPs as it has the 
smallest RMSE and bias irrespective of the sample size, 
degree of multicollinearity and percentage of HLPs. 
However, there are limitations to the current study. The 
RJFIMGT incorporates GM-FIMGT estimator which uses 
Index Set Equality (ISE), in its establishment.  Although 
the ISE had tremendously sped up the computation of 
location and scatter estimator (subsequently sped up the 
computation of RJFIMGT), even much faster than fast 

Minimum Covariance Determinant (MCD) (Rousseeuw 
& Driessen 1999), it is computationally not that stable 
and still suffers from small swamping effect. However, 
the effect is very small and is not serious. 

In the future work we are looking forward to extend 
the robust Jackknife ridge regression estimation method 
by incorporating a new weight function constructed 
from Diagnostic Robust Generalized Potential based 
on  Reweighted Fast Consistent and High Breakdown 
(RFCH) estimators. The weight will be integrated in the 
proposed method with the main aim of reducing the effect 
of vertical outliers and HLPs. We will also consider using 
more robust biasing constant, k in the algorithm of the 
proposed method.  In the current study, we only consider 
the effect of bad HLPs (outlying observations in both 
X-space and Y-space) on the FIMGT estimates. Hence, the 
performance of the proposed method will be extensively 
investigated when vertical outliers as well as both good 
and bad HLPs are present in a data set. 
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