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ABSTRACT

The popular formulations of dual-response optimization are constructed on minimizing a function of bias and system 
variability. This study provides an opportunity to evaluate the dual response surface (DRS) problem from a different 
perspective by adapting two new terms such that internal and external quality forecasts. The background of the 
proposed approach focuses on the relationship between internal and external quality forecasts and discusses the DRS 
problem in regards of skill scores by defining a model quality criterion. Skill is the relative accuracy of the forecast 
and defines a correspondence between forecast of interest and reference forecasts. The reference forecast does not 
require any knowledge or modelling; thus, it is an unskilled forecast. In this context, skill score is a measure of this 
relative improvement and widely used in evaluating the performance of operational and experimental forecasts. An 
alternative version of mean square error (MSE) which is reconstructed by skill scores and model quality criterion is 
proposed as an objective function for the DRS problem. Integrating the relationship between internal and external 
quality forecasts into such a response function can improve the effectiveness and cooperation of the applied technique. 
The proposed approach has a flexible structure and provides decision makers alternative solutions for different values 
of the model quality criterion. The proposed procedure is discussed by conducted a simulation study and demonstrated 
in an engineering process.
Keywords: Dual response optimization; mean square error; model quality criterion; robust parameter design; skill scores

ABSTRAK

Formulasi popular pengoptimuman gerak balas dual dibina untuk meminimumkan fungsi bias dan kebolehubahan 
sistem. Kajian ini memberi peluang untuk menilai masalah permukaan gerak balas dual (DRS) dari perspektif yang 
berbeza dengan menyesuaikan dua istilah baharu seperti ramalan kualiti dalaman dan luaran. Latar belakang pendekatan 
yang dicadangkan memfokuskan pada hubungan antara ramalan kualiti dalaman dan luaran dan membincangkan 
masalah DRS dalam hal skor kemahiran dengan mentakrifkan kriteria kualiti model. Kemahiran ialah ketepatan relatif 
ramalan dan mentakrifkan perpadanan antara ramalan kepentingan dan ramalan rujukan. Ramalan rujukan tidak 
memerlukan sebarang pengetahuan atau pemodelan; oleh itu, ia adalah ramalan yang tidak mahir. Dalam konteks ini, 
skor kemahiran adalah ukuran peningkatan relatif ini dan digunakan secara meluas dalam menilai prestasi ramalan 
operasi dan uji kaji. Versi alternatif bagi ralat min kuasa dua (MSE) yang dibina semula oleh skor kemahiran dan 
kriteria kualiti model dicadangkan sebagai fungsi objektif untuk masalah DRS. Mengintegrasikan hubungan antara 
ramalan kualiti dalaman dan luaran ke dalam fungsi tindak balas sedemikian boleh meningkatkan keberkesanan dan 
kerjasama teknik yang digunakan. Pendekatan yang dicadangkan mempunyai struktur yang fleksibel dan menyediakan 
penyelesaian alternatif pembuat keputusan untuk nilai yang berbeza bagi kriteria kualiti model. Prosedur yang 
dicadangkan dibincangkan dengan menjalankan kajian simulasi dan ditunjukkan dalam proses kejuruteraan.
Kata kunci: Kriteria kualiti model; pengoptimuman gerak balas dual; ralat min kuasa dua; reka bentuk parameter 
teguh; skor kemahiran
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INTRODUCTION

Robust parameter design (RPD), introduced by Taguchi 
(1986), is a methodology that involves the use of 
efficient experimental designs and modeling of factors 
that affect the quality of a system. RPD, along with 
Taguchi’s philosophy, has received considerable attention 
for more than thirty years in different industrial fields. 
However, his experimental methodology and analysis 
techniques have been exposed to a lot of criticism from 
the statistical community – e.g., Box (1985), and Vining 
and Myers (1990). Consequently, new methodologies 
have been proposed to address these drawbacks.

Response surface methodology (RSM), first 
developed by Box and Wilson (1951), was revisited in the 
early 1990s as an effective approach to RPD and has since 
received much attention from researchers. RSM defines a 
relationship between a quality characteristic and design 
factors, and the resulting relationship is then exploited 
to find optimal operating conditions. DRS approach, 
proposed by Vining and Myers (1990), brought a new 
perspective to off-line quality and many researchers 
focused on improving alternative optimization tools 
for the DRS problem. Most of the existing approaches 
are focused on providing a regular framework which 
optimal solution of the DRS problem can be determined. 
This attempt is typically done by minimizing a function 
of bias and system variability. These novel optimization 
approaches have become sound and widely quoted in the 
current literature. 

This study provides an opportunity to evaluate 
the DRS problem from a different perspective by 
adapting two new terms such that internal and external 
quality forecasts. The background of the proposed 
approach focuses on the relationship between internal 
and external quality forecasts and discusses the DRS 
problem in regards of skill scores by defining a model 
quality criterion. From the perspective of robust design 
optimization, this relationship determines how much 
one can reach the process requirements with the fitted 
response models. Therefore, the model quality criterion 
can be defined as a degree of the sensitive of the fitted 
response surfaces to the process requirements and can 
be used to adjust the measure of the model performance 
for the DRS problem. 

The proposed approach presents an alternative 
version of the MSE criterion which is reconstructed 
by integrating skill scores. The proposed approach 
establishes a degree of the closeness of internal and 
external quality forecasts and determines the best 

operating conditions with a restriction on the model 
quality criterion. Therefore, the proposed approach can 
set how much of the quality requirements can be met by 
adjusting the restriction on the bias. In this context, the 
decision-maker should decide which value of the model 
quality criterion fit the capability of his/her technology. 
Consequently, it generates more alternative solutions 
and provides adjustability to the decision-maker. With 
this respect, it differs from the existing approaches in 
the current literature. 

The remainder of this manuscript is structured 
as follows: In the next section, the DRS problem is 
overviewed, followed by a brief review of the skill 
scores. In the following section, the proposed approach 
is presented. All findings are illustrated based on a 
simulation study and on the well-known printing 
process study, before the manuscript finally ends with 
a conclusion. 

AN OVERVIEW ON THE DRS PROBLEM

Vining and Myers (1990), who are the pioneers of this 
field, conducted one of the earliest research attempts 
to develop an alternative tool for off-line quality. 
They discussed a procedure, called DRS, constructed 
on combining RSM and some effective properties of 
Taguchi’s RPD. The DRS approach is configured by 
separately fitting the system mean and variance response 
surfaces. 

Let �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) and �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) are the fitted system mean and 
standard deviation responses, respectively. Generally,  
�̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) and �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) can be modelled as follows:
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 are obtained by 
using sample point estimators for each design point. X 
denotes the design matrix. 

In the dual-response optimization, one response is 
chosen as a primary response to be optimized subject to 
a pre-defined value of the other. i.e., secondary response. 
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DRS meet the fundamental situations of RPD such as 
larger-the-better (LTB), smaller-the-better (STB), and 
nominal-the-best (NTB). The optimization procedure 
for the NTB case is constructed on minimizing �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) 
while keeping �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) at the target value. In the case of 
LTB/STB, one seeks to maximize/minimize �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) while 
controlling �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) at a pre-defined value. The regular 
DRS optimization assigns the best operating conditions 
subject to an additional constraint (x* ∈ R) which defines 
the experimental region, i.e., -1 ≤ xi ≤ 1, i = 1.… .k for 
cuboidal designs and x'x  ≤ ρ2 for spherical designs, where 
ρ is the design radius.

Further improvement for the DRS problem was 
carried out by Del Castillo and Montgomery (1993) 
which presents an alternative approach using generalized 
reduced gradient algorithm. In this procedure, the system 
responses do not have to be modelled by second order 
polynomials, and the experimental region could be either 
cuboidal or spherical. Due to its flexibility, the GRD 
solution sometimes performs better than Vining and 
Myers (1990)’s approach. Kim and Lin (1998) discussed 
the DRS problem from a different perspective and 
stated that the classical approaches can be misleading 
in nonlinear and asymmetric cases, since RSM give the 
linear change of the degree of satisfaction. They proposed 
a fuzzy modeling approach to tackle the same problem. 
This method offers a balance between the distance from 
the target and variability due to allow the modeling a 
decision maker’s preferences on the estimated responses. 
On the other hand, Köksoy and Doganaksoy (2003) 
claimed that the traditional techniques might be very 
useful for finding ‘one-shot’ optimum solutions, however 
failing to interpret the trade-offs between the mean and 
variance. They proposed an alternative formulation 
based on joint optimization of the system mean and 
standard deviation responses by generating Pareto optimal 
solutions under no constraints/minimally constrained. 

The idea of relaxing zero bias assumption, which is 
configured under the assumption that estimated system 
mean can be located far from the target to achieve a 
smaller variance, is handled by Copeland and Nelson 
(1996) and Lin and Tu (1995). Lin and Tu (1995) 
presented the MSE criterion for the DRS problem. 
Their approach considers the distance of the estimated 
mean response from the target, i.e., bias, along with the 
variability and aims minimizing the MSE criterion to 
determine the optimal factors setting of a given system. 
The MSE criterion-based optimization approach has some 
advantages such as it is not necessarily limited on using 

full second order models and can be conducted under 
no constraints on the secondary response. However, 
this approach has some difficulties in application. For 
example, minimizing MSE does not offer any restriction 
on the bias. To overcome the possible difficulties often 
encountered related to minimizing MSE, Copeland 
and Nelson (1996) discussed a modified version of the 
MSE based optimization procedure. Their technique 
focuses on a restriction on how far the mean response 
could be located from its target and uses direct function 
optimization based on simplex procedure. 

Considering MSE criterion, many methods have 
been improved considering the trade-off between the 
bias and variance. Ding, Lin and Wei (2004) suggested 
the data driven weighted MSE approach. Their approach 
is configured on the idea that the optimal solution lied 
on the efficient curve. Subsequently, Steenackers and 
Guillaume (2008) integrated MSE to the bias-specified 
model of Shin and Cho (2005) to obtain the optimal 
solution of the DRS problem. Further improvements based 
on the MSE model are related to the generalized linear 
mixed models and the inverse problem model (Robinson 
et al. 2006; Truong & Shin 2012). Additionally, Köksoy 
(2006) and Köksoy and Yalcinoz (2006) proposed the 
MSE model as a criterion to solve the multiple-response 
quality problems by assigning the weights to the 
individual MSE functions of each response. Following 
these articles, some studies examining the DRS problem 
is listed as follows: Baba et al. (2022), Del Castillo, 
Colosimo and Alshraideh (2012), Kim and Cho (2002), 
Köksoy and Fan (2012), Lizotte, Greiner and Schuurmans 
(2012), Midi and Aziz (2019), Shaibu and Cho (2009), 
Tang and Xu (2002), Zeybek (2020), Zeybek and Köksoy 
(2020, 2016), and Zeybek, Köksoy and Robinson 
(2020).

AN OVERVIEW ON SKILL SCORES

The term forecast is defined as the prediction of a system, 
while forecast verification is the operation of identifying 
the quality of a forecast. Murphy (1993) focused on three 
types of goodness of a forecast: consistency, quality 
and value. While consistency is defined as the degree of 
correspondence between the forecasts and the decision 
maker’s judgements based upon his/her prior experience, 
quality is a degree to which the forecast corresponds to 
the reality. Finally, value relates to the benefits achieved 
by a decision maker who use the forecasts. 

Traditionally, forecast verification emphasizes 
accuracy and skill which are two features that conduce to 
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the quality of a forecast. Accuracy is the average degree 
of resemblance between forecast and observations, i.e., 
the reality. Since the difference between a forecast and 
observation is defined as error. MSE is a basic measure 
of accuracy:

(3)

where fi and yi represent the ith forecast and ith 
observation, i = 1, …, n. Note that,  fi = yi (for all i) 
indicate MSE(f,y) = 0 which signs the maximum accuracy, 
i.e., the perfect forecast.

Skill is the relative accuracy of the forecast and 
defines a correspondence between forecast of interest 
and reference forecasts. The reference forecast does 
not require any knowledge or modelling; thus, it is 
an unskilled forecast. In this context, skill score is 
a measure of this relative improvement and widely 
used in evaluating the performance of operational and 
experimental forecasts. A skill score can be expressed 
based on the MSE measure of accuracy as follows:

(4)

Here, SS(f,π,y) is a function of forecast of interest (f), 
reference forecast (π) and observations (y) (Gupta et 
al. 2009; Murphy 1988; Weglarczyk 1998; Wheatcroft 
2019).
A decomposition of the MSE measure of accuracy given 
in Equation (3) can be formed as follows:
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, and sf, sy are the sample means and standard 
deviations of the forecasts of interest (simulated/
computed values) and the relevant observations, 
respectively. r is the linear correlation coefficient between 
forecasts of interest and observations. In the context 
of forecast verification, r is a measure of forecasting 
performance and is assessed as a model quality criterion. 
The practitioner must identify exactly the following two 
aspects: 1) what the criterion is sensitive to the process 
requirements, and 2) how the value assigned to the 
criterion is to be interpreted.
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 represents the reference forecast, 
MSE(π.y) is formed as:

(6)

and the skill score defined by Equation (4) can be 
expressed as follows:

(7)
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represent 

the strength of the linear relationship between the 
reference forecast and observations, the conditional bias 
and the unconditional bias, respectively (Murphy 1988; 
Weglarzyk 1998). 

One of the most popular transformations of MSE 
is Nash and Sutcliffe’s (1970) efficiency (NSE). In fact,  
given by Equation (7) is a decomposition of the NSE 
criterion. The NSE criterion is commonly used as a 
measure for comparing model performance. It is a strong 
alternative to MSE due to the better reflection to desirable 
and undesirable features of the model assessed. In fact, 
SS(
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,y) the NSE approach was introduced to the field 
of quality improvement with the study of Zeybek (2018). 
This study presents a reference in which the NSE model 
performance criterion is used for the first time in the 
field of quality and modeled with the response surface 
approach. The approach in Zeybek (2018) is structured 
on optimizing the NSE response surface for the ‘target 
is best’ situation. The approach in this study has been 
referenced in many fields (Edamo et al. 2022a, 2022b; 
Iqbal et al. 2022; Li et al. 2022; Mushore, Mutanga & 
Odindi 2022; Nosratpour, Rahimzadegan & Beikahmadi 
2022; Şen 2021).

An alternative decomposition of MSE is presented 
by Gupta et al. (2009). They proposed using MSE as a 
model calibration criterion and defined MSE measure of 
accuracy based on NSE. This model calibration criterion 
is defined as follows:

(8)
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THE PROPOSED PROCEDURE
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into MSE to solve the DRS problem. In this regard, two 
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internal quality forecast and external quality forecast. 
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and internal quality forecasts, respectively, and take the 
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and model quality criterion, 
r. Therefore, it is suggested to use proposed MSEs.s. 
as an objective function, since optimizing Equation 
(12) is a search for a balanced solution among these 
components.

Finally, the optimization scheme takes the following form 
for the NTB case:

(13)
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quality criterion. In fact, the proposed approach uses a 
degree of closeness of the internal and external quality 
forecasts and determines the optimal factor settings with 
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of the model performance for the DRS problem. In this 
regard, r is defined as a pre-specified constraint for the 
proposed approach, and can range from zero to one, 0 ≤ r 
≤ 1, while r = 0 indicates no restriction, r = 1 displays the 
strict restriction. The value of 1 indicates the restriction 
on the degree of closeness of the external and internal 
quality forecasts is adjusted as the perfect similarity. 
In other words, it means that the system features hit 
the target, the system mean, and variance are achieved 
at the determined targets, and the production will be 
made by meeting the desired targets in this way, and 
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𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                          (13) 

s.t.  𝑥𝑥ϵR Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                          (13) 

s.t.  𝑥𝑥ϵR 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                          (13) 

s.t.  𝑥𝑥ϵR 
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any deviation in the system mean and variance. Thus, 
the best operating conditions to be determined by the 
proposed approach are set to provide mean and standard 
deviation response estimations with perfect proximity 
to the system requirements without any biases. The 
value of zero implies that the optimization is run 
without a restriction about the closeness of the external 
and internal quality forecasts. When r = 0, it means that 
no constraints can be used. This scenario corresponds 
to the method suggested in Lin and Tu (1995). They 
proposed the idea that by adopting MSE optimization, 
the target value can be deviated to reduce the variance. 
While the value of r decreases, the estimated mean 
response moves away from the target, but a smaller 
variance is obtained. On the other hand, r can take any 
value between 0 and 1. r approaching 1 means that the 
estimated mean response estimate is approaching the 
target, and r approaching 0 means that this estimate is 
moving away from the target. The variance response 
estimate will increase as r approaches 1 and decrease 
as r approaches 0. Since in DRS problems there is a 
restriction for the variance to be below a certain value, 
this value shows how much we will sacrifice in the 
mean response estimate. In this regard, the different 
values of r yields a string of solutions and facilities, 
and the decision-maker should decide which values 
of r fits the capability of technology considering the 
structure of the DRS problem. 

EXAMPLES

This section presents two examples: a simulation study 
and an industrial application of the proposed approach 
for the printing process.

A SIMULATION STUDY

In this section, the simulation results are analyzed for 
purposes the effects of the model quality criterion on the 
optimal settings. For the simulation study, the case that 
three controllable factors (x1, x2, x3) affect the response 
(y) is considered. Specifically, let yij~N(μi (x), σi2 (x)) for 
the i = 1, 2, 3, …, 27 design locations and let j denote 
the number of replicates at each design location (i.e., j = 
3 in this study), where  

(14)

(15)

Note that, the models for the mean and variance given 
in Equations (14) - (15) are Park and Cho (2003)’s 

simulation models. Three responses are generated from 
the Normal distribution with μi (x) and σi

2 (x) at each 
design factor settings (xi1, xi2, xi3). The total number of 
iterations is 1000, each having 27 design locations and 
81 responses. The simulation is conducted by using 
MATLAB.

For the external quality forecasts, the assumptions 
are the pre-defined target is τ = 60 and desired standard 
deviation is σd = 10. And the internal forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) 
and �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥), are estimated from the simulated design of 
experiment for each 1000 iteration. In the optimization 
phase, for each 1000 iteration, the proposed 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

, 
given by Equation (13), is minimized to determine the 
optimal factor setting for the values under the cuboidal 
experiment region (-1 ≤ xi ≤ 1, i = 1, 2, …, 27). For the 
purposes to determine the possible effects of the value 
of the model quality criterion, the simulation study is 
performed under  r = 0.00, 0.25, 0.50, 0.75 and 1.00. 

Table 1 gives the results of simulation study for 
r = 0.00, 0.25, 0.50, 0.75 and 1.00. In Table 1, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) 
and �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  represent the average of estimated mean 
and estimated standard deviation across the 1000 
simulations. Additionally, while 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

 represent 
the average of the optimization results of Equation (13) 
across the 1000 simulations, the average of the estimates 
of variability error response, ∑ (𝜎𝜎𝑑𝑑 − �̂�𝝈𝑖𝑖 )1000

𝑖𝑖=1
2 /1000 ∑ (𝜏𝜏 − �̂�𝜇𝑖𝑖 )1000

𝑖𝑖=1
2/1000, and 

bias error response, ∑ (𝜎𝜎𝑑𝑑 − �̂�𝝈𝑖𝑖 )1000
𝑖𝑖=1

2 /1000 ∑ (𝜏𝜏 − �̂�𝜇𝑖𝑖 )1000
𝑖𝑖=1

2/1000, are also given 
in Table 1.

Considering Table 1, in general, as the model quality 
criterion, r,  increases from 0 to 1, the bias between 
internal quality forecasts and external quality forecasts 
decreases. In other words, while the process mean is 
estimated closer to the target value, the standard deviation 
increases, but the optimized MSE value in terms of skill 
scores, 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

,  decreases. For example, when r = 
0.25, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) = 60.11, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) = 6.88, 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

 = 115.27 is 
obtained, while r = 0.75, these values are estimated as 
�̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) = 59.97, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) = 7.96, 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

 = 44.55. 
 Thus, as the model quality criterion increases, 

the variability error response and bias error response 
estimates decrease. In addition, to comparing the effects 
of the model quality criterion on the performance of the 
proposed method, we also use the estimated mean and 
standard deviation at the optimal conditions. Figures 1 
and 2 show the kernel densities of the optimal estimated 
mean and standard deviation, respectively, obtained in 
the simulations under r = 0.00, 0.25, 0.50, 0.75, and 
1.00. Note in both figures that the kernel densities are 
more tightly distributed for the predictions obtained as 
the value of the model quality characteristic increases. 
Table 2 provides the lower 2.5th, median, and upper 97.5th 

𝑦𝑦𝑖𝑖𝑖𝑖~𝑁𝑁 (𝜇𝜇𝑖𝑖(𝐱𝐱), 𝜎𝜎𝑖𝑖
2(𝐱𝐱))

𝜇𝜇𝑖𝑖(𝐱𝐱) = 50 + 5(𝑥𝑥𝑖𝑖1
2 + 𝑥𝑥𝑖𝑖2

2 + 𝑥𝑥𝑖𝑖3
2 )                                                      (14) 

𝜎𝜎𝑖𝑖
2(𝐱𝐱) = 100 + 5((𝑥𝑥𝑖𝑖1 − 0.5)2 + 𝑥𝑥𝑖𝑖2

2 + 𝑥𝑥𝑖𝑖3
2 )                                            (15) 

 
�̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥), are estimated from the simulated design of experiment for each 1000 iteration. In the  
 
optimization phase, for each 1000 iteration, the proposed 𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥), 

, ∑ (𝜎𝜎𝑑𝑑 − �̂�𝝈𝑖𝑖 )1000
𝑖𝑖=1

2 /1000, and bias error response, ∑ (𝜏𝜏 − �̂�𝜇𝑖𝑖 )1000
𝑖𝑖=1

2 /1000, are also 

given in Table 1. 
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percentiles of the estimated mean and standard deviation 
responses at the optimal operating conditions under r = 
0.00, 0.25, 0.50, 0.75 and 1.00.  Note that, as the value 

of the model quality characteristic increases, process 
mean, and standard deviation estimates are characterized 
by lower uncertainty.

TABLE 1. Results of simulation study for r = 0, 0.25, 0.50, 0.75, 1.00

r �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)�̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)𝑟𝑟 �̂�𝜇(𝑥𝑥) �̂�𝜎(𝑥𝑥) 𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) ∑ (𝜎𝜎𝑑𝑑 − �̂�𝜎𝑖𝑖 )2
1000

𝑖𝑖=1
/1000 ∑ (𝜏𝜏 − �̂�𝜇𝑖𝑖 )2

1000

𝑖𝑖=1
/1000 

0.00 60.20 6.71 147.85 1.22 12.46 

0.25 60.11 6.88 115.27 0.64 11.40 

0.50 60.02 7.08 81.10 0.24 10.02 

0.75 59.97 7.96 44.55 0.06 4.72 

1.00 59.98 9.99 0.08 0.01 0.07 

𝑟𝑟 �̂�𝜇(𝑥𝑥) �̂�𝜎(𝑥𝑥) 𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) ∑ (𝜎𝜎𝑑𝑑 − �̂�𝜎𝑖𝑖 )2
1000

𝑖𝑖=1
/1000 ∑ (𝜏𝜏 − �̂�𝜇𝑖𝑖 )2

1000

𝑖𝑖=1
/1000 

0.00 60.20 6.71 147.85 1.22 12.46 

0.25 60.11 6.88 115.27 0.64 11.40 

0.50 60.02 7.08 81.10 0.24 10.02 

0.75 59.97 7.96 44.55 0.06 4.72 

1.00 59.98 9.99 0.08 0.01 0.07 

𝑟𝑟 �̂�𝜇(𝑥𝑥) �̂�𝜎(𝑥𝑥) 𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) ∑ (𝜎𝜎𝑑𝑑 − �̂�𝜎𝑖𝑖 )2
1000

𝑖𝑖=1
/1000 ∑ (𝜏𝜏 − �̂�𝜇𝑖𝑖 )2

1000

𝑖𝑖=1
/1000 

0.00 60.20 6.71 147.85 1.22 12.46 

0.25 60.11 6.88 115.27 0.64 11.40 

0.50 60.02 7.08 81.10 0.24 10.02 

0.75 59.97 7.96 44.55 0.06 4.72 

1.00 59.98 9.99 0.08 0.01 0.07 

0.00 60.20 6.71 147.85 1.22 12.46

0.25 60.11 6.88 115.27 0.64 11.40

0.50 60.02 7.08 81.10 0.24 10.02

0.75 59.97 7.96 44.55 0.06 4.72

1.00 59.98 9.99 0.08 0.01 0.07

TABLE 2. Lower 2.5th percentile, median, and upper 97.5th percentile of the estimated mean and standard deviation responses 
from the simulation study

�̂�𝝁(𝒙𝒙) �̂�𝝈(𝒙𝒙) �̂�𝝁(𝒙𝒙) �̂�𝝈(𝒙𝒙) 

r 2.5th percentile Median 97.5th percentile r 2.5th percentile Median 97.5th percentile 

0.00 56.55 60.70 64.84 0.00 1.78 6.11 10.44

0.25 56.07 59.95 63.83 0.25 2.24 6.66 11.09

0.50 56.93 59.89 62.85 0.50 4.59 8.00 11.41

0.75 57.49 59.68 61.87 0.75 6.47 9.72 12.97

1.00 58.39 59.65 60.91 1.00 7.46 10.18 12.90

THE PRINTING PROCESS STUDY

In this section, the proposed approach is illustrated by 
a well-known printing process study example. This 
experiment is an exercise in Box and Draper (1987) 
and many authors have been used this study to illustrate 
their methods (Copeland & Nelson 1996; Del Castillo 
& Montgomery 2003; Lin & Tu 1995; Köksoy & 
Doganaksoy 2003; Vining & Myers 1990).  factorial 
design with three replicates (Table 3), is performed to 
examine the effect of speed (x1), pressure (x2) and distance 
(x3) on the ability of a printing machine (y) to apply 
colored inks to the package labels. The fitted mean and 
standard deviation responses for the printing ink data are 
obtained by Vining and Myers (1990) as follows:

(16)

and 

(17)

The printing process study requires a situation 
where the target is 500 and the desired standard deviation 
is 60. Note that these values were used in previous 
studies. For the printing process study, while the internal 
quality forecasts are the fitted response surfaces given 
in Equations (15)-(17), the external quality forecasts are 
assumed as the system requirements such that τ = 500 
and the desired standard deviation, i.e., 60. Therefore, 
the proposed DRS problem formulation for the printing 
process problem under the cuboidal constraint is formed 
as:

�̂�𝜇(𝑥𝑥) = 327.6 + 177.0𝑥𝑥1 + 109.4𝑥𝑥2 + 131.5𝑥𝑥3 + 32.0𝑥𝑥1
2

−22.4𝑥𝑥2
2 − 29.1𝑥𝑥3

2 + 66.0𝑥𝑥1𝑥𝑥2 

 +75.5𝑥𝑥1𝑥𝑥3 + 43.6𝑥𝑥2𝑥𝑥3       (16) 

 

 

�̂�𝜎(𝑥𝑥) = 34.9 + 11.5𝑥𝑥1 + 15.3𝑥𝑥2 + 29.2𝑥𝑥3 + 4.2𝑥𝑥1
2 − 1.3𝑥𝑥2

2 

+16.8𝑥𝑥3
2 + 7.7𝑥𝑥1𝑥𝑥2 + 5.1𝑥𝑥1𝑥𝑥3 

              +14.1𝑥𝑥2𝑥𝑥3.                                                     (17) 

 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2(60)(1 − 𝑟𝑟)�̂�𝜎(𝑥𝑥) + (60 − �̂�𝜎(𝑥𝑥) )2 + (500 − �̂�𝜇(𝑥𝑥) )2                 

                s.t.     −1 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.  𝑖𝑖 = 1.2.3    (18) 

 

�̂�𝜇(𝑥𝑥) = 327.6 + 177.0𝑥𝑥1 + 109.4𝑥𝑥2 + 131.5𝑥𝑥3 + 32.0𝑥𝑥1
2

−22.4𝑥𝑥2
2 − 29.1𝑥𝑥3

2 + 66.0𝑥𝑥1𝑥𝑥2 

 +75.5𝑥𝑥1𝑥𝑥3 + 43.6𝑥𝑥2𝑥𝑥3       (16) 

 

 

�̂�𝜎(𝑥𝑥) = 34.9 + 11.5𝑥𝑥1 + 15.3𝑥𝑥2 + 29.2𝑥𝑥3 + 4.2𝑥𝑥1
2 − 1.3𝑥𝑥2

2 

+16.8𝑥𝑥3
2 + 7.7𝑥𝑥1𝑥𝑥2 + 5.1𝑥𝑥1𝑥𝑥3 

              +14.1𝑥𝑥2𝑥𝑥3.                                                     (17) 

 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2(60)(1 − 𝑟𝑟)�̂�𝜎(𝑥𝑥) + (60 − �̂�𝜎(𝑥𝑥) )2 + (500 − �̂�𝜇(𝑥𝑥) )2                 

                s.t.     −1 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.  𝑖𝑖 = 1.2.3    (18) 

 

�̂�𝜇(𝑥𝑥) = 327.6 + 177.0𝑥𝑥1 + 109.4𝑥𝑥2 + 131.5𝑥𝑥3 + 32.0𝑥𝑥1
2

−22.4𝑥𝑥2
2 − 29.1𝑥𝑥3

2 + 66.0𝑥𝑥1𝑥𝑥2 

 +75.5𝑥𝑥1𝑥𝑥3 + 43.6𝑥𝑥2𝑥𝑥3       (16) 

 

 

�̂�𝜎(𝑥𝑥) = 34.9 + 11.5𝑥𝑥1 + 15.3𝑥𝑥2 + 29.2𝑥𝑥3 + 4.2𝑥𝑥1
2 − 1.3𝑥𝑥2

2 

+16.8𝑥𝑥3
2 + 7.7𝑥𝑥1𝑥𝑥2 + 5.1𝑥𝑥1𝑥𝑥3 

              +14.1𝑥𝑥2𝑥𝑥3.                                                     (17) 

 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2(60)(1 − 𝑟𝑟)�̂�𝜎(𝑥𝑥) + (60 − �̂�𝜎(𝑥𝑥) )2 + (500 − �̂�𝜇(𝑥𝑥) )2                 

                s.t.     −1 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.  𝑖𝑖 = 1.2.3    (18) 

 

�̂�𝜇(𝑥𝑥) = 327.6 + 177.0𝑥𝑥1 + 109.4𝑥𝑥2 + 131.5𝑥𝑥3 + 32.0𝑥𝑥1
2

−22.4𝑥𝑥2
2 − 29.1𝑥𝑥3

2 + 66.0𝑥𝑥1𝑥𝑥2 

 +75.5𝑥𝑥1𝑥𝑥3 + 43.6𝑥𝑥2𝑥𝑥3       (16) 

 

 

�̂�𝜎(𝑥𝑥) = 34.9 + 11.5𝑥𝑥1 + 15.3𝑥𝑥2 + 29.2𝑥𝑥3 + 4.2𝑥𝑥1
2 − 1.3𝑥𝑥2

2 

+16.8𝑥𝑥3
2 + 7.7𝑥𝑥1𝑥𝑥2 + 5.1𝑥𝑥1𝑥𝑥3 

              +14.1𝑥𝑥2𝑥𝑥3.                                                     (17) 

 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2(60)(1 − 𝑟𝑟)�̂�𝜎(𝑥𝑥) + (60 − �̂�𝜎(𝑥𝑥) )2 + (500 − �̂�𝜇(𝑥𝑥) )2                 

                s.t.     −1 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.  𝑖𝑖 = 1.2.3    (18) 

 

�̂�𝜇(𝑥𝑥) = 327.6 + 177.0𝑥𝑥1 + 109.4𝑥𝑥2 + 131.5𝑥𝑥3 + 32.0𝑥𝑥1
2

−22.4𝑥𝑥2
2 − 29.1𝑥𝑥3

2 + 66.0𝑥𝑥1𝑥𝑥2 

 +75.5𝑥𝑥1𝑥𝑥3 + 43.6𝑥𝑥2𝑥𝑥3       (16) 

 

 

�̂�𝜎(𝑥𝑥) = 34.9 + 11.5𝑥𝑥1 + 15.3𝑥𝑥2 + 29.2𝑥𝑥3 + 4.2𝑥𝑥1
2 − 1.3𝑥𝑥2

2 

+16.8𝑥𝑥3
2 + 7.7𝑥𝑥1𝑥𝑥2 + 5.1𝑥𝑥1𝑥𝑥3 

              +14.1𝑥𝑥2𝑥𝑥3.                                                     (17) 

 

Min  𝑀𝑀𝑀𝑀�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2(60)(1 − 𝑟𝑟)�̂�𝜎(𝑥𝑥) + (60 − �̂�𝜎(𝑥𝑥) )2 + (500 − �̂�𝜇(𝑥𝑥) )2                 

                s.t.     −1 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.  𝑖𝑖 = 1.2.3    (18) 
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FIGURE 1. Simulated distributions of the estimated mean response under r = 0.00, 0.25, 
0.50, 0.75 and 1.00

FIGURE 2. Simulated distributions of the estimated standard deviation response 
under r = 0.00, 0.25, 0.50, 0.75 and 1.00
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(18)

where �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) and �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) are defined in Equations (14) and 
(15).  

Figure 3 displays the surface plots of the proposed  

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

 for the various values of the model quality 
criterion. r = 1.00, 0.50, 0.00. From Figure 3(a), it is 
clear that if a perfect relevance between the internal and 
external quality forecasts is desired, then the minimum 
value of the 

𝑆𝑆�̂�𝑆𝜏𝜏,�̅�𝑦,𝑦𝑦(𝑥𝑥)  = 1 −
𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥)
𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥)                                                                  (9) 

Here, 𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) and 𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦(𝑥𝑥) are the fitted response surface of measure of accuracy related  

𝑀𝑀𝑆𝑆�̂�𝑀𝜏𝜏,𝑦𝑦(𝑥𝑥) = (𝜏𝜏 − �̂�𝜇(𝑥𝑥))2 + 𝜎𝜎𝑑𝑑
2 + �̂�𝜎2(𝑥𝑥) − 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)𝑟𝑟                                  (10) 

and 

𝑀𝑀𝑆𝑆�̂�𝑀�̅�𝑦,𝑦𝑦 = �̂�𝜎2(𝑥𝑥)                                                                   (11) 

forecasts, �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥)  

𝑀𝑀𝑆𝑆�̂�𝑀𝑠𝑠.𝑠𝑠.(𝑥𝑥) = 2𝜎𝜎𝑑𝑑�̂�𝜎(𝑥𝑥)(1 − 𝑟𝑟) + (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2 + (𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2                     (12) 

This proposed response surface of the decomposition of MSE in terms of skill scores focuses 
on three components: variability error response, (𝜎𝜎𝑑𝑑 − �̂�𝜎(𝑥𝑥) )2, bias error response, 

(𝜏𝜏 − �̂�𝜇(𝑥𝑥) )2, and model quality criterion, 𝑟𝑟. Therefore, it is suggested to use proposed 
𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠.𝑠𝑠. 

 takes the value of zero, and the 
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  for the various values of the 
model quality criterion: (a) r =1, (b) r = 0.5, (c) r = 0
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calibration condition. Therefore, the mean response hits 
the target, and the standard deviation response meets 
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 = 0. However, when the degree

TABLE 3. The printing ink data set

i x1 x2 x3 y1 y2 y3 �̅�𝒚 s

1 -1 -1 -1 34 10 28 24.0 12.49

2 0 -1 -1 115 116 130 120.3 8.39

3 1 -1 -1 192 186 263 213.7 42.80

4 -1 0 -1 82 88 88 86.0 3.46

5 0 0 -1 44 178 188 136.7 80.41

6 1 0 -1 322 350 350 340.7 16.17

7 -1 1 -1 141 110 86 112.3 27.57

8 0 1 -1 259 251 259 256.3 4.62

9 1 1 -1 290 280 245 271.7 23.63

10 -1 -1 0 81 81 81 81.0 0.00

11 0 -1 0 90 122 93 101.7 17.67

12 1 -1 0 319 376 376 357.0 32.91

13 -1 0 0 180 180 154 171.3 15.01

14 0 0 0 372 372 372 372.0 0.00

15 1 0 0 541 568 396 501.7 92.50

16 -1 1 0 288 192 312 264.0 63.50

17 0 1 0 432 336 513 427.0 88.61

18 1 1 0 713 725 754 730.7 21.08

19 -1 -1 1 364 99 199 220.7 133.80

20 0 -1 1 232 221 266 239.7 23.46

21 1 -1 1 408 415 443 422.0 18.52

22 -1 0 1 182 233 182 199.0 29.45

23 0 0 1 507 515 434 485.3 44.64

24 1 0 1 846 535 640 673.7 158.20

25 -1 1 1 236 126 168 176.7 55.51

26 0 1 1 660 440 403 501.0 138.90

27 1 1 1 878 991 1161 1010.0 142.50
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1.00 (0.291. 0.700. 0.220) 500.00 60.00 0.00

0.95 (0.363. 0.657. 0.142) 500.00 57.00 351.00

0.90 (0.653. -0.038. 0.287) 500.00 54.00 684.00

0.85 (0.589. 0.418. -0.005) 500.00 51.00 999.00

0.80 (0.949. -0.315. 0.174) 500.00 48.00 1296.00

0.75 (1.000. 0.121. -0.261) 499.99 45.10 1575.01

0.70 (1.000. 0.117. -0.260) 499.63 45.05 1845.46

0.65 (1.000. 0.113. -0.259) 499.28 45.01 2115.66

0.60 (1.000. 0.107. -0.257) 498.93 44.97 2385.60

0.55 (1.000. 0.107. -0.258) 498.57 44.93 2655.28

0.50 (1.000. 0.102. -0.256) 498.22 44.89 2924.72

0.45 (1.000. 0.101. -0.257) 497.86 44.84 3193.89

0.40 (1.000. 0.098. -0.256) 497.51 44.80 3462.82

0.35 (1.000. 0.095. -0.256) 497.16 44.76 3731.49

0.30 (1.000. 0.092. -0.255) 496.80 44.71 3999.90

0.25 (1.000. 0.089. -0.255) 496.45 44.67 4268.07

0.20 (1.000. 0.086. -0.254) 496.10 44.63 4535.98

0.15 (1.000. 0.083. -0.254) 495.74 44.59 4803.63

0.10 (1.000. 0.080. -0.253) 495.39 44.55 5071.03

0.05 (1.000. 0.077. -0.252) 495.04 44.50 5338.18

0.00 (1.000. 0.074. -0.252) 494.69 44.43 5605.08
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Vining and Myers (1990) reported the point x* = 
(0.614,0.0228,0.1000) with �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) = 51.78 and �̂�𝜇(𝑥𝑥) and �̂�𝜎(𝑥𝑥) 
= 500 as the optimal solution of the printing process 
study. This stationary point is almost obtained with the 
proposed approach under r = 0.86 (Table 5). Additionally, 
the best operating conditions found by Del Castillo and 
Montgomery (1993) and Köksoy and Doganaksoy 
(2003) also can be achieved with approximately r = 
0.75 and r = 0.18, respectively, using the proposed 
formulation. On the other hand, r = 0 means that there 

is no restriction on the model quality criterion. Thus, 
the obtained stationary point under r = 0 is same as the 
solution of Lin and Tu (1995). The fact that the solution 
set obtained from some values of r between 0 and 1 gives 
results close to the solution sets of some approaches 
already existing in the literature shows that the proposed 
method is actually a valid method. Because the proposed 
method is in harmony with the existing and fundamental 
approaches in the literature in terms of its philosophy and 
the criteria it advocates.
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Vining and Myers (1990) 500.00 51.78 0.86 919.08

Del Castillo and Montgomery 
(1993)

500.00 45.10 0.75 1567.15

Köksoy and Doganaksoy 
(2003)

495.99 44.62 0.18 4617.58

Lin and Tu (1995) 494.68 44.43 0.00 5605.08

CONCLUSION

Various approaches have been proposed in the current 
literature to solve the DRS problem. As previously 
discussed, most of them focus on minimizing a response 
function of the bias and variability. This study is an 
important alternative to the earlier formulations of the MSE 
criterion that seek a unique optimum solution in a single 
shot. The proposed approach discusses MSE in regards 
of skill scores and defines a new decomposition of the 
MSE criterion for the DRS problem. In fact, the proposed 
method adopts the relaxing zero bias assumption, but 
unlike the existing approaches, it imposes a restriction 
on the relationship between internal and external quality 
forecasts. Additionally, it allows the decision-maker to 
adjust the model performance. With different values of 
the model quality criterion, a different set of optimal 
parameters will have different result. For the larger 
values of , the optimal set of process parameters predicted 
would be closer to the system requirements. While the 
value of  decreases, the estimated mean response moves 

away from the target, but a smaller variance is obtained. 
Consequently, the proposed approach provides a flexible 
formulation of the problem and generates more alternative 
solutions. This study therefore offers a useful reference 
for practitioners and benefit of providing alternatives for 
assessing process performance. While current approaches 
focus on a single result, the proposed method offers many 
alternative results to the practitioner. Depending on the 
production performance and features, the practitioner 
decides how much to sacrifice the goals and chooses the 
solution.
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