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ABSTRACT

The outlier issues in circular regression models have recently received much attention. The presence of outliers 
may cause the sign and magnitude of regression coefficients to vary, resulting in inaccurate model development 
and incorrect prediction. Many methods for detecting outliers in a circular regression model have been proposed in 
previous studies such as COVRATIO, D, M, A, and Chord statistics, but it is suspected that they are not very successful 
in the presence of multiple outliers in a data set since the masking and swamping is not considered in their studies. 
This study aimed to develop an outlier detection procedure using DFBETAc statistic for circular cases, where this new 
statistic will investigate and identify multiple outliers in the Jammalamadaka and Sarma circular regression model 
(JSCRM) by considering masking and swamping effect. Monte Carlo simulations are used to determine the corresponding 
cut-off point and the power of performance is investigated. The performance of the proposed statistic is evaluated 
by the proportion of detected outliers and the rate of masking and swamping. The simulation procedure is applied at 
10% and 20% contamination levels for varying sample sizes. The results show that the proposed DFBETAcIS statistic 
for JSCRM successfully detect the outliers. For illustration purposes, this process is applied to wind direction data.
Keywords: Circular regression model; DFBETAc; outlier  

ABSTRAK

Isu data terpencil dalam model regresi bulat baru-baru ini banyak mendapat perhatian. Kehadiran data terpencil boleh 
menyebabkan tanda dan magnitud pekali regresi berubah, mengakibatkan pembangunan model yang tidak tepat dan 
ramalan yang salah. Banyak kaedah untuk mengesan data terpencil dalam model regresi bulat telah dicadangkan 
dalam kajian sebelum ini seperti statistik COVRATIO, D, M, A dan Chord tetapi dipercayai bahawa kaedah tersebut tidak 
begitu berjaya dengan kehadiran berbilang data terpencil dalam set data kerana litupan dan limpahan tidak diambil kira 
dalam kajian mereka. Kajian ini bertujuan untuk membangunkan prosedur pengesanan data terpencil menggunakan 
statistik DFBETAc untuk kes bulatan dengan statistik baharu ini akan mengkaji dan mengenal pasti berbilang data 
terpencil dalam model regresi bulat Jammalamadaka dan Sarma (JSCRM) dengan mengambil kira kesan litupan dan 
limpahan. Simulasi Monte Carlo digunakan untuk menentukan titik potong yang sepadan dan kuasa prestasi dikaji. 
Prestasi statistik yang dicadangkan dinilai oleh perkadaran data terpencil yang dikesan dan kadar litupan dan limpahan. 
Prosedur simulasi digunakan pada tahap pencemaran 10% dan 20% untuk sampel saiz yang berbeza. Keputusan 
menunjukkan statistik DFBETAcIS yang dicadangkan untuk JSCRM berjaya mengesan data terpencil. Untuk tujuan 
ilustrasi, proses ini digunakan pada data arah angin. 
Kata kunci: Data terpencil; DFBETAc; model regresi bulat
 

INTRODUCTION

An outlier is a data point that differs so much from 
the rest of the sample that neglecting it can lead to 

significantly inaccurate estimations (Chambers, Hentges 
& Zhao 2004). Outliers are common in real-world data, 
yet they typically go unrecognized since so much data 
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is now handled by computers without proper review or 
filtering. Keypunch mistakes, missed decimal points, 
recording or transmission problems, unusual events such 
as earthquakes or strikes, or individuals of a distinct 
group sneaking into the sample can all cause outliers. A 
single observation that is also significantly different from 
all others can have a significant impact on regression 
analysis findings. Outliers in regression can result in 
an overestimation of the coefficient of determination, 
erroneous slope, and intercept values, and, in many 
cases, incorrect model conclusions. Outliers in regression 
are typically found using graphical approaches such 
as residual plots with erased residuals. The common 
methods for identifying outliers can misidentify good 
samples as outliers and fail to find true outliers when 
there are multiple outliers. 

There are often two problems with methods of 
detecting outliers which are masking and swamping 
problems. Masking is the inability of the procedure to 
detect correct outliers and swamping is the identification 
of inliers as outliers. It is now evident that the presence 
of outliers causes misleading conclusions to be drawn 
from the results. Thus, researchers are interested in 
improving the ways of detecting outliers in statistical 
data. In linear regression models, many researchers 
have proposed methods to identify outliers. However, in 
circular regression models, there are only few methods 
in the study that develop methods for detecting outliers.

Circular regression is used to represent the 
connection between a circular dependent and a 
collection of circular independent variables. Circular 
regression methods have been used in a variety of fields, 
including crystallography by MacKenzie (1957), vector 
cardiography by Downs (1974), making a prediction of 
the direction of ground movement during an earthquake 
by Rivest (1997), and research of circadian biological 
rhythms, where a 24-hour clock has deemed a circle 
(Binkley 1990; Downs 1974; Moore-Ede, Sulzman & 
Fuller 1982). Medical imaging (Jones & Silverman 
1989; Weir & Green 1994) and circadian timing of 
cancer therapy to reduce the number and severity of 
toxic side effects (Hrushesky 1985) are two examples 
of medical applications. According to recent studies 
on the genetic and molecular aspects of mammalian 
circadian rhythms, stronger circular regression models 
are required (Lowrey et al. 2000; Shearman et al. 2000). 
According to new studies on the genetic and molecular 
aspects of mammalian circadian rhythms, stronger 
circular regression models are required (Lowrey et al. 
2000; Shearman et al. 2000). 

One of the first angular-linear regression models 
was proposed by Gould (1969). Mardia (1975) devised 
a nonparametric rank correlation coefficient for 
circular data. Johnson and Wehrly (1978) modified the 
Gould model by limiting the range of the independent 
variables to the half-open interval (0, 2π ). They may 
be found in a variety of scientific domains, including 
meteorology and biology. To analyze data from spatial 
rock magnetism, Stephens (1979) employed a directed 
regression strategy. By mapping the real line onto the 
unit circle, Fisher and Lee (1992) employed a link 
function to generalize Johnson and Wehrly’s model. 
Follman and Proschan (1999) employed correlated 
successive seizure timings on the same persons to test 
for circadian circular uniformity of epileptic seizure 
durations, whereas Lund (1999) proposed a regression 
model with one circular variable and a set of linear 
variables as independent variables. 

Jammalamadaka and Sarma (1993) investigated 
the conditional expectation of the vector eiv given u, 
describing it in terms of Fourier series expansions 
with errors assumed to follow a normal distribution. 
In the meanwhile, Hussin, Fieller and Stillman (2004) 
proposed a simple approach for determining the linear 
relationship between two circular variables. Outliers 
in bivariate circular data, like outliers in linear data, 
can make parameter estimation and forecasting more 
difficult. By studying the changes in the covariance 
matrix of parameters obtained by deleting one data at 
a time, Abuzaid et al. (2012) discovered outliers in a 
simple circular regression model. Mohamed et al. (2016) 
suggested a new discordancy test approach based on the 
A, C, M statistics and the idea of spacing to find outliers 
in circular data and patches of outliers. 

Meanwhile, a single-case deletion statistic, such 
as DFBETAS, DFFITS, externally studentized residual, 
Cook’s distance, and the criterion (Belsley, Kuh & 
Welsch 1980; Barnett & Levis 1994; Chatterjee & Hadi 
1988; Cook 1977), are one of the conventional ways 
for detecting outliers. However, a single-case deletion 
method is possible to have masking or swamping 
problems, and tests based on it will disappear their 
power significantly when there are multiple outliers in 
the data set. Outlier detection in circular data requires 
a different method than outlier detection in linear 
data. Two previous works, Ibrahim et al. (2013) and 
Abuzaid, Mohamed and Hussin (2009) focus on the 
detection of outliers in circular regression models using 
COVRATIOc, DMCEc and DMCEs statistics. Ibrahim 
(2013) and Ibrahim et al. (2013) explored the issue of 
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outliers in JSCRM. Then, Alkasadi et al. (2019, 2018, 
2016) investigated these issues and proposed various 
statistics for detecting outliers in multiple circular 
regression models (MCRM). Abuzaid (2020) extends the 
local outlier factor (LOF) application to the detection of 
potential outliers in circular samples, where the angles 
of the circular data are represented in two Cartesian 
coordinates and treated as bivariate data. Recently, 
Meilán-Vila, Crujeiras and Francisco-Fernández 
(2021) considers a spatial regression model with a 
circular response and several real-valued predictors 
and proposes nonparametric estimators of the circular 
trend surface that account for spatial correlation. Jha, 
Biswas and Cheng (2022) propose a paper that uses the 
Möbius transformation-based link function to address 
robustness issues in circular-circular regression. An 
exact polynomial time algorithm is then suggested for 
calculating the maximum trimmed cosine estimator in 
this context, as well as the estimator’s breakdown point. 
However, there is a lack of study on the problem of 
numerous outliers in JSCRM. The DFBETAc of MCRM is 
extended in this work to detect possible outliers in the 
JSCRM. The main goal of this study is to identify outliers 
for a single independent circular variable using the 
DFBETAc statistic that has not been investigated before.

The focus of the study was on the effect of outliers 
and detection methods on circular regression models. 
The circular regression model is discussed, as well as 
the least-squares approach for parameter estimation. The 
DFBETAc statistic for the JSCRM is then demonstrated. 
The cut-off points are then obtained, and the suggested 
statistic’s performance is examined. Detecting outliers 
in a real-world data set is crucial for increasing the 
quality of the original data and reducing the impact of 
outliers. Finally, identifying outliers in wind direction 
data is discussed as an example.

THE JAMMALAMADAKA AND SARMA REGRESSION 
MODEL (JSCRM)

In circular regression, there are a variety of methods for 
detecting outliers. Ibrahim (2013) introduced JSCRM for 
two circular random variables U and V. To predict v for 
a given u, consider the conditional expectation of vector 
eiv given u	
				  

(1)

where eiv = cos v + i sin v, µ(u) is the conditional 
mean direction of v given u and ρ(u) is the conditional 

concentration parameter. Then, estimate the parameter 
µ(u) and ρ(u) such

		

(2)

The values of g1(u) and g2(u) estimated using the 
following trigonometric polynomials of a suitable degree 
(m),
					   

(3)

So, the following two observational regression-like 
models according to equation (3);

						    

(4)

where 1 2ε ε= +ε  is the vector of random error following 
the bivariate normal distribution with mean 0 and the 
unknown dispersion matrix Σ . The generalized least-
squares method can be used to estimate the parameters 
Ak, Bk, Ck and Dk for k = 0, 1, ..., m, the standard error, as 
well as the dispersion matrix Σ . Assume that A0 = C0 
= 0 to ensure identifiability.
Therefore, the summary of observational equation (4) as
						    

(5)

Thus, the least-square estimation turns out to be given by 
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where the matrix combination cosine and sine came from 
U. The covariance matrix Σ  is estimated as follows:
							     
	

  (7)
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According to Belsley, Kuh and Welsch (1980), any 
observation is considered an outlier if it meets certain 
conditions, such as 

 ,
2

IS j iDFBETAc
n

>  where n is 

the sample size (Cousineau & Chartier 2010; Rousseeuw 
& Leroy 2005).

DFBETACIS STATISTIC IN JSCRM

There are numerous techniques for identifying outliers 
in circular regression, such as the DFBETAS statistic, 
which shows how much the regression coefficient, would 
change if the ith observation were deleted. Belsley, Kuh 
and Welsch (1980) proposed a measure for calculating 
how much an observation changed the estimation of 
the DFBETAS regression coefficient in a linear case. In 
the circular case, the DFBETAcIS statistic is presented 
as follows:
					   

(8)

For i = 1, 2, ..., n, where ˆ
jλ  is the prediction from the 

full regression model for the ith observation, and ( )
ˆ

j iλ  
when the ith observation is deleted. ( )

2
iS denoted the 

standard error computed without the point i and Cjj is 
the jth diagonal element of (U'U)-1 where matrix U is the 
combination of cosine and sine functions,

				    (9)

The relationship between a circular independent variable 
and a circular dependent variable is examined in this 
study (Ibrahim 2013). The row deletion approach was 
used to construct the procedure for detecting outliers 
in JSCRM. If there are outliers in the data, the character 
of parameter estimates, the variance of the residual and 
covariance matrix, and the standard error will be impacted 
in regression.

DETERMINATION OF CUT-OFF POINT BY DFBETACIS 
STATISTIC 

The cut-off points of the DFBETACIS  statistic to identify 
the outliers in JSCRM were obtained by simulation study 
using SPlus statistical software. In this section, the 
number of simulations is set to 1000 for each sample 
size, n, and standard deviation (σ1, σ2). Let’s consider 
the case when m = 1 to obtain the parameter estimates. 
Fifteen different sample sizes of n = 10, 20, 30, 40, 50, 
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the combination of standard deviation (σ1, σ2)  in the 
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of random errors from the bivariate Normal distribution 
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simulated study. There are six sample sizes to consider: 
n = 20, 30, 40, 50, and 130. To create the data, the same 
process is used as in the previous section. Then, at 
position d, say vd the observation becomes contaminated 
as follows:
		                      

   (12)

where dv∗  denotes the value after contamination and 
τ denotes the degree of contamination, which can 
range from 0 1λ≤ ≤ . The parameter estimates of 

0 1 1 0 1
ˆ ˆ ˆ ˆˆ, , , ,A A B C C and 1D̂ was ca lcula ted  us ing  the 

generated data of U and V. |DFBETAcIS j,i|is also 
determined using an Equation (8). As a result, j = 1, ..., 
n remove the jth row from the sample and fit the remaining 
data using Equation (1). If the |DFBETAcIS j,i| values are 
larger than the cut-off points calculated from the relevant 
cut-off point, the product has effectively detected the 
outlier in the data. 1000 times the process is repeated. 
By calculating the percentage of the correct detection 

of the contaminated observation at position d, the 
procedure’s power performance is evaluated. Table 1 
presents the cut-off points of 5% upper percentile for 
different n with standard deviation (σ1, σ2) = (0.3, 0.3) 
at α = 2.

Figure 1 shows the DFBETAcIS detection method’s 
power of performance for n = 70 and four different 
values of (σ1,σ2) = (0.03, 0.03), (0.05, 0.05), (0.1, 0.1) 
and (0.3, 0.3). The procedure’s performance improves as 
σ1 and σ2grow smaller. This is predicted because when σ1 
and σ2are approach zero, V1j and V2j in Equation (4) move 
closer to the horizontal axis, increasing the chance of 
detecting the outlier even when λ  is small.

On the other hand, Figure 2 shows a plot of the 
DFBETAcIS detection method power of performance for 
fixed (σ1, σ2) = (0.1, 0.1) and different values of n = 
30, 50, 70, 100, 120, 150. When n is high enough, the 
performance increases as a function of n, but the curves 
are quite near to each other. Similar trends may be seen 
in other cases as well. 

( )     mod 2d dv v   = +  

dv  

0 1 1 0 1
ˆ ˆ ˆ ˆˆ, , , ,A A B C C  and 1D̂  

 ,IS j iDFBETAc  

TABLE 1. The 5% upper percentiles of |DFBETAcIS j,i|statistics for(σ1, σ2) = (0.3, 0.3) at α = 2

Sample size, 
n 0Â 1̂A 1B̂ 0Ĉ 1Ĉ 1D̂

20 2.0980 1.7896 3.0366 3.4346 2.7441 4.3725

30 2.1954 1.6869 2.7129 3.5201 2.8039 4.5642

40 2.6095 2.2507 2.6054 3.6402 3.0005 4.6363

50 2.8614 2.4148 2.7564 4.8738 4.1269 4.5967

60 3.1022 2.6265 2.9515 4.3298 3.4112 4.7651

70 2.9871 2.6772 3.0660 4.9623 4.2618 4.8137

80 3.0021 2.6065 3.2255 4.2042 3.5514 4.5776

90 2.9236 2.4559 3.2702 4.7140 3.9039 4.6479

100 3.1213 2.6280 3.1146 4.7774 4.0793 5.1480

110 3.5851 3.0646 3.2382 4.4520 3.6242 5.0003

120 3.8318 3.1921 3.2617 5.1182 4.2121 5.1819

130 3.3899 2.8531 2.5251 4.3032 3.5472 4.3054

140 3.5386 2.9997 2.8332 4.9036 4.1402 5.0691

150 3.5165 2.9737 2.8610 4.6200 3.8163 4.7701
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FIGURE 1. Power performance of the|DFBETAcIS j,i| statistic for n = 
70  at α = 2

FIGURE 2. Power performance of the |DFBETAcIS j,i|for (σ1, σ2) = 
(0.1, 0.1) at α = 2
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Multi-Outlier
Two contamination ratios (10% and 20%) were chosen, 
repeated 1000 times for the same combinations of sample 
sizes and concentration parameters, with 5% of the 
DFBETAcIS statistics cut-off points were used to assess 
the performance of statistics for various contamination 
ratios. Three measurements are taken into consideration 
to determine the performance of all the statistics: 
the proportion of detected outliers, the masking and 
swamping rates. In every replication cycle, it is noted 
that the number of real outliers is found. As a result, the 
proportion of outliers is determined as follows:

where P is the percentage of contamination. Similarly, to 
calculate the rate of masking and the rate of swamping, 
it is observed that the number of generated outliers 
detected as inlier (clean observation) and the number 
of inliers detected as outlier, respectively as follows:

The approach with the lowest rates of masking 
and swamping and the highest rate of outlier detection 
is considered the good method. In Figures 3(a)-3(f) and 
4(a)-4(f), the proportion of detected outliers is displayed 
together with the rate of masking and swamping with 
a 5% upper percentile for n = 70 and 100. For all 
statistics, the rates of swamping are zero or very nearly 
zero, according to Figures 3 and 4. However, for every 
combination of sample sizes, degree of contamination, 
and outlier proportion, the rates of masking of the 
DFBETAcIS statistic are very high and the proportions 
of outliers detected are very low. It was notice that 
the proportion of outliers detected of the DFBETAcIS 
statistics is low when the λ  less than 0.6 with 10% 
contamination and this proportion significantly decrease 
with 20% contamination. Consequently, it has a high 
rate or masking. The (σ1,σ2) = (0.03, 0.03) relatively 
has a higher proportion of outliers detected than the 

(σ1,σ2) = (0.1, 0.1) and the proportion increase with the 
λ  but it is low at 20% contaminated. The proportion 
of outliers detected of the proposed (σ1,σ2) = (0.03, 
0.03) is relatively low for small value of the λ . This 
is acceptable as when the λ  is low, the circular data 
will be dispersed over the circle’s circumference. 
Consequently, it is very difficult to identify outliers in 
this case (Collett 1980). The (σ1,σ2) = (0.03, 0.03) gives 
a greater proportion of outliers detected than the others 
(σ1,σ2), as expected. The proportion is an increasing 
function of the λ  and increase to 100% for values of 
the λ  greater than 0.4. Therefore, the rate of masking 
is very low and is a decreasing function of the λ , 
decreasing down to 0%.

In general, the proposed DFBETAcISstatistics is 
very successful in detection of outliers. The (σ1,σ2) = 
(0.03, 0.03) is the best when compared to the other 
three measures. It has the highest proportion of 
outliers detected and the lowest rate both masking and 
swamping. 

PRACTICAL EXAMPLE: WIND DIRECTION DATA

In Hussin, Fieller and Stillman (2004), 129 observations 
of wind direction were recorded using two different 
instruments: an HF radar system and an anchored wave 
buoy along the Holderness coastline (the Humberside 
coast of the North Sea, United Kingdom). The least-square 
estimates of the parameters are 0
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  1ˆ 0.3σ =  

and 2ˆ 0.3σ =  and thus the fitted model gives 1
ˆ 0.9762,D =  1ˆ 0.3 =  and 2ˆ 0.3 =  and thus the fitted model gives ( )1ĝ u  and ( )2ĝ u  areand 
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and the concentration parameter ρ(u) is obtained using 
Equation (5). The estimated concentration parameter is 
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FIGURE 3. (a-f). The proportion of outliers detected and rate of masking and 
swamping with 5% cut-off points and 10% contamination for n =70 and 100
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FIGURE 4. (a-f). The proportion of outliers detected and rate of masking and 
swamping with 5% cut-off points and 20% contamination for n=70 and 100
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DFBETAcIS STATISTIC

The DFBETAcIS statistic is used to detect outliers in 
wind direction data in this case. The cut-off point for 
this was constructed again and utilized the simulated 
program since the wind direction data was 129. Table 2 
summarizes the 5% upper percentile cut-off points for 
wind direction data.

A part of simulation results are displayed in 
Appendix. The table last two columns show the number 

of outliers and the percentage of observations that 
exceed the cut-off point, indicating outlier possibilities. 
The observation numbers 38 and 111 are identified as 
outliers using the |DFBETAcIS j,i| statistic since the test 
values are more than 0.176 percent. Figure 5(a), 5(b), and 
5(c) indicates that the equivalent value for observation 
number 38 is different from the others, but the line for 
observation 111 in Figure 5(d), 5(e), and 5(f) cuts at the 
parameter estimates of 0 1

ˆ ˆ,C C and 1D̂ .

TABLE 2. The cut-off point value for wind direction data

Parameter estimate 0Â 1̂A 1B̂ 0Ĉ 1Ĉ 1D̂

Cut-off point value 3.8318 3.1921 3.2617 5.1182 4.2121 5.1819

FIGURE 5. DFBETAcIS for parameter estimate of wind direction data with 5% cut-off points
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Table 3 shows performance measures for the 5% 
cut-off points and the 10% and 20% contamination for 
wind direction data. From the table, two observations that 
seem to be outlier from the other observations, namely 
observations 38 and 111. In addition, no observations 
were identified in the data set. Therefore, the percentage 
of contamination unsuccessfully identify outliers based 
on swamping and masking methods in wind direction 
data set.

Then, the effect of deleting outliers on parameter 
estimations is shown in Table 4. The removal of 
observations 38 and 111 has a significant impact on 
certain of JSCRM’s estimate parameters. For clean data, 
the standard error for parameter estimates 0 1

ˆ ˆ,A A and 
1B̂ does not very much, but the values of 0 1

ˆ ˆ,C C and 1D̂  
are less than for contaminated data. The concentration 
parameter, ρ̂  on the other hand, increased from 0.9322 
to 0.9474.

Figure 6 shows the Q-Q plots of the resulting 
residuals corresponding to the observational regression-
like models after eliminating observations number 38 
and 111 from the wind direction data set. The points on 
the plots 1ε  are now closer to the straight line than they 
were in Figure 6(b). Deleting observations 38 and 111 
from the analysis allows the reduced data to be better 
fitted using the JSCRM, though it does point out that there 
is a point in Figure 6(b) that needs to be investigated 
further. This result show better than CORATIO statistic 
(Ibrahim et al. 2013) when only one outlier is detected 
(observation 38) in the wind direction data using the 
same model. 

However, it is also supported that the COVRATIO 
statistic in Rambli et al. (2015) and Mokhtar et al. 
(2019), D, M, A, and Chord Statistics (Abuzaid 2010) 
show the same results when applied to wind direction 
data. Therefore, the exclusion of these two observations 
from the original data set improves the goodness-of-fit 
for the model.

TABLE 3. Performance measure for 5% cut-off points with 10% and 20% of contaminations for wind direction data

Percentage of 
contamination

Outlier observation in 
the data

Outlier observations 
being identified

Number of observations 
swamped

Number of 
observations masked

10
38 and 111

0 0 0

20 0 0 0

TABLE 4. DFBETAcIS statistic of wind direction data without observations number 38 and 111, n = 117

Parameter 
estimates Contaminated data Standard error Clean data

(case 38 and 111 deleted) Standard error

0.0674 0.0361 0.0633 0.0365

0.7557 0.0598 0.7609 0.0602

-0.0948 0.0323 -0.0974 0.0325

-0.0470 0.0291 -0.0114 0.0196

0.1049 0.0483 0.0620 0.0324

0.9762 0.0261 0.9981 0.0175

0.3000 0.2849 0.2800 0.2853

0.3000 0.2300 0.1500 0.1533

0.9322 - 0.9474 -

0Â

1Â

1B̂

0Ĉ

1Ĉ

1D̂

1σ̂

2σ̂

ρ̂
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CONCLUSION

The aim of this study was to extend DFBETAc statistic 
in multiple circular case to identify multiple outliers 
in JSCRM. The DFBETAcIS statistic was developed to 
determine how much observation has influenced the 
JSCRM estimate of the regression coefficient. Simulation 
studies are used to determine the cut-off points and 
assess the power’s performance for single and multi-
outlier. The proposed method performance is evaluated 
using the proportion of detected outliers and the rate 
of masking and swamping. The results show that the 
proposed DFBETAcIS statistic is very successful in 
identifying genuine outliers for different sample sizes 
and with very low masking and swamping. Furthermore, 
the performance improves when the sample size gets 
larger and the residual dispersion small. 

This study also found that all DFBETAcISstatistics 
using JSCRM successfully detected all outliers in wind 
direction data with low rate of masking and no rate of 
swamping effect at 5% cut-off point. Moreover, the 
proposed DFBETAcIS statistics can detect outliers in real 
data with a high level of λ . Also, the proposed statistic 
is successful in detecting outliers in a large data set.

When the DFBETAcIS statistic is applied to wind 
direction data, observations 38 and 111 are identified as 
outliers, which similar observations detected as found 
in Abuzaid (2010), Mokhtar et al. (2019) and Rambli 
et al. (2015). The exclusion of these two observations 
from the original data set improves the fitted JSCRM. 
In conclusion, the proposed DFBETAcIS statistics using 

JSCRM is a practical and promising approach for detecting 
outliers in circular data. 
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APPENDIX

 The value of the |DFBETAcIS j,i| statistic for wind direction data, n = 129 and the number of influenced parameters

Obs.
Parameter Estimate Influenced Parameter

0Â 1̂A 1B̂ 0Ĉ 1Ĉ 1D̂ Number of 
outliers

Percentage 
detection

1 0.0567 0.1527 0.3903 0.1075 0.2893 0.7393 0 0
2 0.0411 0.2337 0.5024 0.0722 0.4109 0.8834 0 0
3 0.1245 0.0887 0.4029 0.0322 0.0230 0.1043 0 0
4 0.0339 0.0251 0.1115 0.1329 0.0981 0.4365 0 0
5 0.2752 0.1724 0.8447 0.0954 0.0597 0.2928 0 0
6 0.0572 0.0674 0.2352 0.0596 0.0703 0.2455 0 0
7 0.0531 0.0473 0.1896 0.0748 0.0666 0.2673 0 0
8 1.2789 0.5659 0.9878 0.4249 0.1880 0.3281 0 0
9 0.0160 0.0044 0.0193 0.2202 0.0599 0.2660 0 0

10 0.0510 0.0215 0.0425 0.3821 0.1606 0.3185 0 0
11 1.1892 0.5131 0.9549 0.0125 0.0054 0.0101 0 0
12 0.0976 0.0481 0.0610 0.6741 0.3320 0.4215 0 0
13 0.2048 0.0905 0.1587 0.3992 0.1763 0.3093 0 0
14 0.3949 0.1845 0.2768 0.5997 0.2803 0.4204 0 0
15 1.7575 0.8474 1.1547 0.6462 0.3115 0.4245 0 0
16 1.2399 0.5438 0.9711 0.4095 0.1796 0.3207 0 0
17 1.0324 0.4171 0.9058 0.2853 0.1153 0.2503 0 0
18 2.0360 0.7969 1.8544 0.2317 0.0907 0.2110 0 0
19 0.5710 0.0981 0.8218 0.0110 0.0019 0.0158 0 0
20 0.0351 0.0027 0.0692 0.1355 0.0103 0.2675 0 0
21 0.6606 0.1005 0.9798 0.1948 0.0296 0.2890 0 0
22 0.1186 0.0288 0.2747 0.1802 0.0438 0.4173 0 0
23 0.0864 0.2824 0.0478 0.0935 0.3055 0.0517 0 0
24 0.0190 0.2579 0.2399 0.0223 0.3030 0.2819 0 0
25 0.0222 0.2577 0.2466 0.0265 0.3083 0.2950 0 0
26 0.0322 0.0309 0.0864 0.0328 0.0315 0.0881 0 0
27 0.0093 0.3082 0.2571 0.0194 0.6456 0.5385 0 0
28 0.0150 0.2669 0.2380 0.0329 0.5867 0.5231 0 0
29 0.0267 0.0730 0.1115 0.0197 0.0539 0.0823 0 0
30 0.1690 0.1333 0.4273 0.1790 0.1412 0.4526 0 0
31 0.1578 0.0916 0.3683 0.1384 0.0803 0.3230 0 0
32 0.1815 0.0972 0.4159 0.1749 0.0936 0.4007 0 0
33 0.2368 0.1135 0.5297 0.2719 0.1303 0.6081 0 0
34 0.0667 0.0566 0.1723 0.0109 0.0093 0.0282 0 0
35 0.0883 0.0404 0.1957 0.0344 0.0157 0.0763 0 0
36 0.0037 0.0020 0.0085 0.0620 0.0338 0.1427 0 0
37 0.1763 0.0102 0.3179 0.1369 0.0079 0.2467 0 0
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38 0.8847 0.3914 0.6833 14.3172 6.3349 11.0576 3 0.5
39 0.0025 0.0030 0.0073 0.0731 0.0858 0.2100 0 0
40 0.1605 0.1527 0.4295 0.2056 0.1957 0.5502 0 0
41 0.1279 0.0860 0.3097 0.0958 0.0644 0.2318 0 0
42 0.1772 0.2184 0.5182 0.2149 0.2649 0.6284 0 0
43 0.6009 0.6668 1.6924 0.2814 0.3122 0.7925 0 0
44 0.0321 0.0550 0.1071 0.0245 0.0420 0.0818 0 0
45 0.1511 0.0824 0.3476 0.1250 0.0682 0.2876 0 0
46 0.0723 0.0321 0.1593 0.0151 0.0067 0.0332 0 0
47 0.0102 0.0022 0.0200 0.0583 0.0124 0.1148 0 0
48 0.4971 0.2662 1.1389 0.3257 0.1744 0.7463 0 0
49 0.3067 0.1642 0.7027 0.2733 0.1463 0.6262 0 0
50 0.3958 0.0888 0.7843 0.5431 0.1219 1.0761 0 0
51 0.0807 0.0674 0.2075 0.0302 0.0253 0.0777 0 0
52 0.0639 0.0472 0.1586 0.0057 0.0042 0.0142 0 0
53 0.0029 0.0048 0.0095 0.0705 0.1178 0.2326 0 0
54 0.0594 0.0464 0.1497 0.0003 0.0002 0.0007 0 0
55 0.1055 0.0482 0.2338 0.0562 0.0257 0.1245 0 0
56 0.0546 0.0087 0.1045 0.0055 0.0009 0.0106 0 0
57 0.2525 0.1627 0.6045 0.2521 0.1625 0.6037 0 0
58 0.0647 0.0316 0.1454 0.0059 0.0029 0.0132 0 0
59 0.0326 0.0196 0.0768 0.0321 0.0193 0.0754 0 0
60 0.2180 0.1867 0.5647 0.3167 0.2711 0.8201 0 0
61 0.0455 0.0350 0.1142 0.1145 0.0881 0.2876 0 0
62 0.1793 0.0557 0.3712 0.1513 0.0470 0.3132 0 0
63 0.0238 0.0160 0.0577 0.0923 0.0620 0.2233 0 0
64 0.0204 0.0054 0.0411 0.0714 0.0188 0.1443 0 0
65 0.4179 0.0370 0.6824 0.2254 0.0200 0.3681 0 0
66 0.7798 0.1193 1.2115 0.2736 0.0419 0.4251 0 0
67 0.5082 0.1392 0.7076 0.1497 0.0410 0.2085 0 0
68 1.3334 0.2340 2.0333 0.2229 0.0391 0.3399 0 0
69 0.6702 0.0478 1.1084 0.2934 0.0209 0.4852 0 0
70 1.3622 0.0312 2.3304 0.2347 0.0054 0.4014 0 0
71 0.1640 0.0584 0.2083 0.0244 0.0087 0.0310 0 0
72 0.9858 0.3679 1.2257 0.8532 0.3184 1.0608 0 0
73 1.0410 0.4300 1.2253 0.8166 0.3373 0.9611 0 0
74 0.4173 0.1761 0.4846 0.0186 0.0079 0.0216 0 0
75 0.3344 0.1805 0.3076 0.2107 0.1137 0.1938 0 0
76 0.1870 0.1048 0.1618 0.1474 0.0827 0.1276 0 0
77 0.3351 0.2005 0.2505 0.0568 0.0340 0.0425 0 0
78 0.0301 0.0174 0.0244 0.0897 0.0519 0.0728 0 0
79 0.0038 0.0022 0.0031 0.0984 0.0568 0.0805 0 0
80 2.7892 1.6010 2.3066 1.3056 0.7494 1.0797 0 0
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81 0.3239 0.2085 0.1631 1.4157 0.9112 0.7130 0 0
82 0.8271 0.5331 0.4085 0.6851 0.4416 0.3384 0 0
83 1.6165 1.0011 1.0671 0.5637 0.3491 0.3721 0 0
84 1.3014 0.8261 0.7465 0.1361 0.0864 0.0781 0 0
85 0.1512 0.1691 0.4271 0.1763 0.1972 0.4979 0 0
86 0.0559 0.0640 0.1591 0.0008 0.0010 0.0024 0 0
87 0.0077 0.0297 0.0391 0.0385 0.1486 0.1955 0 0
88 0.0025 0.0253 0.0249 0.0221 0.2246 0.2209 0 0
89 0.0144 0.2484 0.2226 0.0150 0.2583 0.2314 0 0
90 0.0008 0.0054 0.0059 0.0359 0.2429 0.2643 0 0
91 0.0370 0.3018 0.3123 0.0719 0.5866 0.6070 0 0
92 0.0068 0.2756 0.2266 0.0088 0.3566 0.2932 0 0
93 0.0238 0.2177 0.1098 0.0028 0.0258 0.0130 0 0
94 0.4403 0.0625 0.9289 0.2318 0.0329 0.4890 0 0
95 0.8897 0.2896 2.2069 0.1626 0.0529 0.4033 0 0
96 0.7410 0.0215 1.3894 0.2021 0.0059 0.3789 0 0
97 1.0970 0.0617 1.8576 0.0925 0.0052 0.1567 0 0
98 0.8610 0.4013 2.3748 0.1588 0.0740 0.4379 0 0
99 1.0906 0.2949 2.5851 0.0824 0.0223 0.1953 0 0

100 0.0725 0.5334 0.7577 0.2002 1.4737 2.0933 0 0
101 0.0859 0.2858 0.2403 0.0755 0.2513 0.2113 0 0
102 0.1098 0.3841 0.3521 0.0359 0.1255 0.1151 0 0
103 0.1230 0.4107 0.3476 0.0844 0.2820 0.2386 0 0
104 0.0934 0.2810 0.1443 0.1581 0.4758 0.2443 0 0
105 0.1137 0.3462 0.1263 0.0332 0.1011 0.0369 0 0
106 0.1017 0.3438 0.2979 0.0141 0.0475 0.0412 0 0
107 0.0185 0.3403 0.5545 0.0067 0.1224 0.1994 0 0
108 0.0014 0.1008 0.1806 0.0030 0.2162 0.3875 0 0
109 0.1271 0.4311 0.3759 0.3081 1.0454 0.9115 0 0
110 0.1720 0.0196 0.3207 0.1326 0.0151 0.2473 0 0
111 10.5281 6.8163 4.8585 0.6872 0.4450 0.3171 3 0.5
112 0.8281 0.4116 0.5063 0.2998 0.1490 0.1833 0 0
113 0.8633 0.3988 0.6186 0.1937 0.0895 0.1388 0 0
114 0.3444 0.1604 0.2429 0.4230 0.1970 0.2984 0 0
115 0.8286 0.3398 0.7135 0.1538 0.0631 0.1325 0 0
116 0.1177 0.0246 0.1595 0.2093 0.0438 0.2835 0 0
117 0.6177 0.0789 0.9498 0.2036 0.0260 0.3131 0 0
118 0.1638 0.0217 0.2500 0.1322 0.0175 0.2017 0 0
119 0.5348 0.0888 0.7766 0.2084 0.0346 0.3026 0 0
120 0.4690 0.0161 0.8846 0.2269 0.0078 0.4280 0 0
121 0.3010 0.0391 0.6277 0.0101 0.0013 0.0210 0 0
122 0.0820 0.0338 0.2175 0.0841 0.0347 0.2231 0 0
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123 0.4866 0.3592 1.5979 0.4649 0.3432 1.5267 0 0
124 0.1756 0.1060 0.5313 0.0011 0.0007 0.0034 0 0
125 0.2564 0.0858 0.6407 0.0250 0.0084 0.0625 0 0
126 0.0644 0.1692 0.4356 0.0104 0.0273 0.0704 0 0
127 0.0211 0.0791 0.1852 0.0735 0.2759 0.6459 0 0
128 0.0054 0.0894 0.1443 0.0286 0.4709 0.7599 0 0
129 0.0043 0.0219 0.0275 0.1007 0.5179 0.6486 0 0


