Jurnal Pengurusan 3, Julaz 1984, 3-23

THE CONCEPT OF AND DESIGN STRATEGY FOR
DECISION SUPPORT SYSTEMS

Abdul Barri Md. Mokhtar
Universiti Kebangsaan Malaysia

SYNOPSIS

Decision Support Systems (DSS) have become an increasingly important type of computer-based
information systems. Unlike Electronic Data Processing (EDP) or Management Information
Systems (MIS), DSS is spectfically oriented towards the kind of information processing activity
that constitute a decision pracess. It serves to increase the effectiveness of the managers in making
decisions pertaining to the management of an organisation. This article begins by examining the
concepts of DSS, focussing on the various definitions given in the literature so that a unified view
of what DSS really is and how it differes from other computer-based information systems,
can be formulated. The paper then discusses briefly the hardware and software requirements
of DSS. Following this, a generic framework for designing DSS is presented. Finally, the
stralegies for designing DSS are proposed and discussed. The paper argues that the appropriate
strategy depends on the objective and decision situation a particular DSS 15 meant to support.

SINOPSIS

Sistem Sokongan Keputusan (SSK) telah mula ditertma umum sebagai salah satu daripada sistem
rmaklumat berkomputer yang terpenting di dalam organisasi perniagaan. lanya berbeza daripada Ststem
Pemprosesan Data Elektrontk atau Ststem Maklumat Pengurusan kerana orientasi SSK adalah
khusus kepada aktibiti pemprosesan maklumat bagt maksud membuat keputusan. Ianya bertu-
Juan untuk meningkatkan lagi keberkesanan seseorang pengurus di dalam membuat keputusan-
keputusan pengurusan organisasi perniagaan. Artikel ini bermula dengan meneliti konsep SSK
dengan meruwjuk kepada definasi-definasi yang telah dibert oleh penyelidik-penyelidik di dalam
bidang ini supaya suatu pandangan wmum dapat dirumuskan mengenai apakah sebenarnya
SSK dan bagaimanakah tanya berbeza jika dibandingkan dengan sistem-sistem maklumat berkomputer
yang lain. Kemudian, satu rangkakerja umum bagi mereka-bentuk SSK dibincangkan. Artikel
ant disudahi dengan membincangkan strategi reka bentuk yang sesuai dan releven bagi sesuatu
SSK. Penulis berpendapat bahawa sesuatu strategi reka bentuk yang releven adalah bergantung
kepada keadaan dan matlamat sistem berkenaan.

INTRODUCTION

The early 1970’s witnessed the emergence of a new concept in the
information field called decision support systems (DSS). Numerous
reactions have been given to it ranging from ‘‘a major breakthrough’’
to “‘just another buzzword.’’ A number of writers claimed DSS as an
advancement of the information systems technology starting with elec-
tronic data processing (EDP) to management information systems

P ABDUL BARRI

(MIS) to the current DSS thrust. Some claimed DSS as an important
subset of management science served to complement the parts that
MIS have failed: and there are others that claimed it to be an exten-
sion of management science techniques. The former sees DSS as pro-
viding managers and users access to data and the latter as giving them
access to analytical models. There are the majority who view DSS as
an integrated system giving managers and users access both to data
and models. This is the view that shall be adopted in this paper. And
finally, there are people at the other extreme who believe that DSS
are nothing more than just another buzzword to enhance the
slacking image of management scientist and computer specialist or
just another ploy by the computer vendors to increase the sale of
computers.

The paper begins by examining some of the definitions of DSS,
focussing on the issues highlighted in each definition so that a
general consensus on what DSS is can be formulated. This is impor-
tant in view of the fact that various definitions of DSS has been given
in the literature which could mislead the readers concerning what DSS
really is and how it differs from other types of information systems.
Then the hardware and software requirements of DSS is briefly
reviewed. Following this, a generic framework for DSS design is
presented. Finally, the design strategies for DSS is discussed.

DEFINITION

The concepts involved in DSS were first articulated in the early 1970s
by Scott-Morton under the term “management decision system’ (Scott-
Morton, 1971). In a follow-up article in the same year, Gorry and
Scott-Morton used the term DSS to define information systems that
support managerial decision makers in unstructured and semi-
structured decision situations (Gorry and Scott-Morton, 1971). Struc-
tured decisions on the other hand ‘‘encompass almost what has been
called MIS in the literature, an area that has had almost nothing to
do with real managers or information but has been largely routine
data processing’’ (Gorry and Scott-Morton, 1971, p. 61). The infor-
mation systems warrant distinction because different types and
characteristics of information are needed to support managers in
solving the different types of organisational problems.

There are three key concepts in their definition of DSS. First, DSS
is meant to be an adjunct to the decision maker. It serves as a tool
to extend his capabilities, but not to replece his judgement.

Second, they are aimed to support the decision maker in solving
semi-structured and some parts of unstructured decision situations.

These are decisions whereby managerial judgement alone is inade-
quate to comprehend them, perhaps due to the size of the problems,

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM

(&)

the computational complexities and precision needed to solve them. On
the other hand, it cannot be entirely automated because due to our
limited understanding of the problems, only some algorithm or deci-
sion procedures can be specified and hence, programmed into the com-
puter. Under these conditions, the decision maker together with the
computer can provide a more effective solution than either alone.

Third, though not specifically stated, they implied that the system
should be an on-line computer system incorporating data retrieval
and modelling capabilities.

Keen and Scott-Morton view DSS as representing ‘‘the role of the
computer in the management decision making process. Decision sup-
port implies the use of computers to (i) assist managers in their deci-
sion processes in semi-structured tasks; (1i) support, rather than
replace, managerial judgement; and (ii1) improve the effectiveness
of the decision makers rather than its efficiency’” (Keen and Scott-
Morton, 1978; p.1). In addition to these, Keen also applies the term
DSS ‘‘to situations where a ‘final’ system can be developed only
through an adaptive process of learning and evolution’ (Keen 1980,
p. 15). In other words, he views DSS as the product of a development
process in which the DSS user, the DSS builder, and the DSS itself are
all capable of influencing one another and resulting in the evolution
of the system and the pattern of its use.

Alter (1980) contrasts DSS to the traditional EDP systems on five
dimensions:

EDP DSS
1/ Use Passive Active
2/ User Clerk Line staff & Management
3/ Goal Mechnical Efficiency Overall Effectiveness
4/ Time Past Present and Future
horizon
5/ Objective Consistency Flexibility

He then proposed a typology for categorising DSS as follows:

File Drawer Systems .
] Data Retrieval

] i Data Oriented

Data Analysis System :
Data Analysis

Analysis Info. Systems

Accounting 5 .

Representational] SHRlaon i

Optimising Models . Model Oriented
Suggestion Models] Suggestion -

FIGURE 1. Categories of DSS
Source: Alter (1977), p. 42.

& ABDUL BARRI

Moore and Chang (1980) also distinguish DSS from MIS and EDP.
They refer to DSS as systems which are:

1/ intrinsically dynamic in terms of design and implementation;

9/ extensible in order to match the decision makers revealed
preference;

3/ wused at irregular or unplanned intervals.

They further argued that the ‘structuredness’ concept, so much
‘a part of the early definition of DSS, is confusing and not meaningful
in general. This is because a problem can be viewed as structured
or unstructured only with respect to a particular decision maker or
group of decision makers.

Bonczek, Holsapple and Whinston (1981) defined DSS as a
computer-based system consisting of three interacting components:

1/ a Language System (LS) — linguistic facilities to provide com-
munication between the user and other components of DSS;
9/ a Knowledge System (KS) — the repository of knowledge,
data procedures, and models to solve particular application
problems; and
3/ a Problem Processing System (PPS) — consisting of software
_ which controls the action taken by the DSS. It is the link bet-
ween the other two components.

And finally, Ginzberg and Stohr (1982) defined DSS as “fa
computer-based information system used to support decision mak-
ing activity in situations where it is rot possible or not desirable to
have an automated system perform the entire decision making
process.’’

In summary, it is difficult to precisely define what DSS is. The
term is used fairly loosely as to include any system that supports deci-
sion making. In other words, all information systems, with the ex-
ception of EDP, are DSS. On the other hand, there are others who
restrict and narrow the term to include certain «characteristics only.
For example, Keen (1980) would exclude any system which 1s not
developed through an evolutionary proces of learning and adapta-
tion: whilst Moore and Chang (1980) would exclude information
systems which are used at regular and planned intervals. Within the
context of definitions given by Keen, Moore and Chang, and some
others, few actual systems can be categorised as DSS.

The key concepts underlying many DSS definitions can be
observed as follows:

DESICGN STRATEGY FOR DECISION SUPPORT SYSTEM 7

TABLE 1. Key Concepts in DSS Definitions

Key Concepts Authors

1. Systems capabilities — Alter (1977, 1978)

— Moore and Chang (1980)

2. Systems objectives — Gorry and Scott-Morton (1971)

— Keen and Scott-Morton (1978)
— Alter (1980)
— Ginzberg and Stohr (1982)

3. Usage Pattern — Alter (1980)

— Moore and Chang (1981)

4. Problem type — Gorry and Scott-Morton (1971)

— Keen and Scott Morton (1978)
— Ginzberg and Stohr (1982)

5. Development Pattern — Keen (1980)

— Bonczek et al (1980)

In general, the following characteristics of DSS can be observed:

1/

2/

3/

4/

5/

DSS aim at the less structured underspecified problems faced
by the middle and senior management.

They combine the use of models and other analytical techni-
ques with the traditional data access and retrieval functions.
Systems design emphasise flexibility and adaptability. The
systems development may follow an evolutionary process of
learning and adaptation.

DSS serve as a tool under the users control to support and
enhance their capabilities in making the appropriate decisions.
As a result, it may ultimately increase the efficiency and ef-
fectiveness of the organisation in general.

Most systems provide on-line real-time interaction with the
users though this is not seen as an essential and distinctive
characteristic of DSS.

DSS VERSUS MIS

How does DSS differ from MIS so as to justify the use of a new term?
DSS and MIS are both concerned with information processing within
organisation. However, unlike MIS, DSS is always specifically oriented
towards that kind of information processing activity that constitutes
a decision process.

a ABDUIL BARRI

Keen and Scott-Morton (1978) argued that DSS differ from MIS
in terms of area of impact on and the payoff to the organisation, and
relevance to managers. These differences can be observed from

Table 2:

TABLE 2. Difference between DSSs and MISs

Key Factors

MIS

DSS

1. Impact:

2. Payoll:

3. Relevance to
Managers:

On structured tasks where
standard operating

procedures, decision rules,
and information flows can

be reliably defined.

Improving efficiency by
reducing cots, turn-around
time, and so on.

Effect on their decision
making is indirect; for
example by providing
reports and access to data.

On decision in which there is
sufficient structure for
computer and analytical aids
to be of value but where
manager's judgement is
essential.

Extending the range and
capabilities of managers’
decision processes to help
them improve their
cffectiveness.

Serve as a supportive tool,
under their control, which
does not attempt to automate
the decision process; pre-

defined objectives; or impose
solutions.

Source: Keen and Scott-Morton, 1978

"One frequently-mentioned difference is that MIS are often report
oriented, in the sense that data is extracted and summarised into
predefined formats, often on a periodic basis, for purposes of
managerial review in reporting exceptions, deviations from standards,
and historial trends. In many situations, DSS subsumes portions of
MIS, especially the data summarisation and extraction capabilities.
In addition to these, however, DSS often provides ad hoc enquiry
capabilities or a personalised system according to the users preference
and experience. The main focus is on flexibility, adaptability, and
quick response.

With regards to the technology that makes up a DSS, like many
other computer-based systems, there is the hardware and the soft-
ware. In terms of hardware, there is no difference from those of MIS
or any other modern-based computer systems. There are no special
hardware requirements in order for a system to qualify as a DSS. In

DESIGN STRATEGY FOR DECISION SUFPPORT SYSTEA 0

terms of software requirements, there are a number of distinctive
features. The most important, drawing upon the various case studies
and reports of DSS systems, is that most DSS include data extraction
and manipulation capabilities (DBMS), or modelling capabilities, or
both.

D55 HARDWARE AND SOFTWARE REQUIREMENTS

DSS HARDWARE CLASSIFICATION

Ther 1s no difference between DSS hardware and the hardware that
supports other computer-based systems. No special hardware is re-
quired for DSS, nor are there any necessary hardware requirements
to qualify a system as DSS (Ginzberg and Stohr,, 1982). However,
further advances in hardware development will certainly contribute
to better and more effective DSS.

The greatest possible impact on DSS will be the introduction of
a new generation of computers to be known as the Fifth Generation
computers which are being developed by the Japanese, Americans,
and others on a nationally coordinated effort. Some of the hardware
features of this generation of computers will be higher central pro-
cessing unit (CPU) speed and larger memory. The Japanese believe
that by using Very Large Scale Integrated (VLSI) technology, it will
be possible in the near future to develop a current large size processor
with a few thousand gates on a single chip. (Moto-oka, 1982). Such
a development can help to extend the range of structurable decision
situations by making more sophisticated heuristic and artificial in-
telligence applications possible; believed to be of greatest potential to
DSSs developments in the future.

This generation of computers may also include microcomputers.
Advances in VLSI technology would enable these generation of micros
to have comparable performance and functions with present day large
size computers. DSS, which in many situations, are characterised by
personalised usage, can be more effective and may increase individual
cffectiveness. Also package systiems of various functions which are
impractical on present day micros will be possible.

DSS SOFTWARE CLASSIFICATION

DSS is very much inter-disciplinary in nature drawing upon the work
of data base management, management science and modelling,
language presentation and processing, artificial intelligence, and so
forth. As such, the DSS software components are diverse. Each system
may emphasise on one or more of the softwave components, depen-
ding on the objectives and the nature of the decision situation the
system 1s designed to support.

10 ABDUL BARRI

Four principal software components can be identified: data base
management system, modelling system, programming languages,
DSS generator.

Data Base Management System (DBMS) DBMS are used to deal with
storage and retrieval, and the way these data are represented.
As such, it constitutes an important tool for building DSS, par-
ticularly data oriented DSS. Alter (1977), based on his studies of 56
DSS, dichotomised them into two main types: data-oriented DSS and
model-oriented DSS. As implied by its name, the former mainly use
 DBMS or other data management techniques to support efficient
retrieval, manipulation, and/or analysis of data; while the latter uses
models — simulation, optimisation, and/or suggestion to support and
aid the users in the decision making process.

The complexity of a DBMS depends on the emphasis for data
storage and retrieval, and the way these data ar represented. In many
DBMS, data is represented in terms of a logical structure called a data
model. The main purpose for this is to spare users concern over the
details of dealing with various kinds of hardware storage devices. The
way a DBMS generally works is as follows: Logical data model 1is
represented in a schema. Raw data is independently represented in
various storage devices. A user states his request with the logical data
in the schema which is then mapped by the DBMS into the physical
data..In this respect, users need not have to know the details of how
the physical data is actually stored. An additional advantage in
using DBMS is what is known as ‘physical data independence,’ that
is, the DSS builder can change the physical structure of the data base
without effecting the logical structure perceived by the users.

Commercially available DBMS are based on some version of three
main data models: the relational model, hierarchical model, and net-
work model. Each of these models has certain strengths and
weaknesses and its choice by a DSS builder should be considered
within the objectives and requirements of the DSS.

Model Management System. The concept of a Model Management
System (MMS) is an innovative product of DSS. Its purpose is to
facilitate the development and management of various models. Like
DBMS, the complexities and tools used may vary widely. Some MMS
may incorporate model generators such as modelling packages (e.g.
FCS, PROSPER, AS, ORACLE and others), spreadsheets (e.g.
MULTIPLAN, LOTUS/SYMPHONY, SUPERCALC and others), and pre-
fabricated programs for solving straight forward analytical problems
relating to inventory control, Internal Rate of Return (IRR), and so
forth. Some systems may contain simple management science models

whilst others may incorporate corporate/financial model for corporate
and financial planning purposes.

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM 11

Programming Language. Programming languages such as
APL, FORTRAN, or BASIC have commonly been used to
build DSS. These languages are well suited for implemen-
ting quantitative algorithm but not suitable for represen-
ting qualitative knowledge. Not all aspects of a decision
making process involve quantitative data. In fact, many aspects of
the less structured problems, which most DSS are designed to sup-
port, use qualitiative data. In such situations, they involve making
inference rather than numeric computation. Furthermore, models in
some application areas are more concerned with logical inferences than
numeric computations. This implies that programming languages
oriented towards logical inference can be a valuable tool for building
DSS. Two frequently mentioned languages are PROLOG and LISP.

PROLOG is a high level and general-purpose programming
language based upon the procedural interperatation of definite clauses
known as Horn clauses (Horn, 1951) of predicate logic (Kowalski,
1979; Bonczek et al 1981; and Coelho, 1983). PROLOG, in contrast
with languages like BASIC or FORTRAN, does not have assignments
as the basic underlying operation. Instead, a PROLOG program is
composed of a collection of axioms, each of which is a Horn clause
based on first-order predicate logic. Hence, the execution of a PRO-
LOG program attempts to prove a theorem, and the way it is carried
out is specified partly by the logical declarative semantics of PROLOG,
partly by what new facts it can ‘infer’ from the given ones, and part-
ly by explicit control information supplied by the programmer (Coelho,
1983; Bonczek et al, 1981).

DSSs Generator. DSS generator are used to facilitate the building,
maintenance, and extension of DSS efficiently and effectively in the
shortest possible time. It may consist of various tools such as com-
pilers and editors, or prefabricated software such as spreadsheet,
modelling systems, DBMS and so forth.

Decision situations, in general, consist of two types: institu-
tional/recurring DSS and ad hoc DSS. (Donovan and Madnick,
1977). Institutional DSS deals with decisions of a recurring nature
such as portfolio management system, inventory management system,
etc., while ad hoc DSS deals with specific problems that are neither
anticipated nor recurring. Their relationship can be viewed as in Figure 2.

The design of an ad hoc DSS must focus on responding quickly
on a one-time basis. The concern to the designer must be on rapid
assimilation and integration of seemingly incompatible computer pro-
grams and data series; whilst the concern in an operational DSS is
on operational costs and timing. (Donovan and Madnick, 1977). In
institutional DSS, the problem is well understood and the usage pat-

Operational Management Strategic

Control Control Control
Structured ||
Semi-structured
|
Unstructured
Institutional Ad hoc
DSSs D5Ss

FIGURE 2. Institutional DSSs and Ad Hoc DSS5s

Source: Donovan and Madnick, (1977)

tern known (perhaps through many years of using it or through bet-
ter understanding of the problem algorithm); but in ad hoc DSS, these
cannot be pre-determined. Hence, it becomes necessary to have a
generalised DSS to facilitate building ad hos DSSs as quickly as possi-
ble. The generalised DSSs described by Donovan and Madnick (1977)
is called Generalised Management Information System (GMIS). It has
been designed to allow for the rapid assimilation and integration of
incompatible computer programs and data series.

" A classification scheme with similar implications is proposed by
Sprague and Carlson (1982). They identified three levels of DSS hard-
ware/software technology: specific DSS, DSS Generators, and DSS tools.
Their relationship can be viewed as follows:

Specific DSS (conceptually similar to institutional DSS 1In
Donovan and Madnick’s classification) are built to support a particular
application or tasks. Sprague and Carlson (1982) view DSS generator
as a ‘package’ of related hardware and software which provides a set
of capabilities to build specific DSS quickly and easily. The package
may consists of a set of interpreters, and data creation utilities such
as modelling system, spreadsheet, file handling package, statistical
subroutines, etc. DSS tools are the hardware and software elements
that facilitate the development of a specific DSS or to modify the DSS
generators. This includes programming languages, special purpose

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM 13

Specific Decision Support System

Q

D&5 Generator

Decision Support System Tools

FIGURE 3. Levels of DSS Technology

Source: Sprague and Carlson, 1982; p. 12

interpreters, editors, and data creation utilities. (Sprague and Carlson,
1982).

Naylor and Schauland (1976) found a marked growth in the use
of fabricated DSS generators in the U.S. A, particularly for building
corporate financial planning models. Commercially available DSS
generators include Executive Information System (EIS) by Boeing
Computer Services; Interactive Financial Planning System (IFPS) by
Execucom System of Austin, Texas; and SIMPLAN by SSI, EPS-FCS;
and Lotus 1 -2 — 3/Symphony.

An important consideration in using these prefabricated packages
is the degree of integration with other software components of the
DSS. As noted by Bonczek et al (1981), the degree of integration
varies from one system to another. They cited MDBS’s Knowledge
Man as providing very high integration, incorporating speradsheet,
relational data base management (with SQL ad hoc inquiry), struc-
tured programming language, screen management, and statistical
analysis functionalities into a single system.

FRAMEWORK FOR DSSs DESIGN

Beyond the definitions, a generalised framework of DSS can serve
as a useful basis for further understanding and research of the sub-
Ject matter. However, like its definition, there seems to be little con-
sensus among researches on a common generic framework of a DSS.

14 ABDUIL BARRI

A common form, based on research and the various case studies
reported by Alter (1977), Keen (1980), Sprague and Carlson (1982),
Ginzberg and Stohr (1982) and others, is depicted in Figure 4:

Data Base Management

Systems
(DBMSs)

—— —— ———————— — ——————— —————— —

System

—————— ——————— — . ———— — ————— — —

Model Mgn. System
(MMSs)

FIGURE 4: Generalised Framework of a DSS

A DSS is generally viewed as having four principal components:
User Interface System, Data Base Management Systems, Model
Management Systems and Language Interface System.

The use of a User Interface System as a separate layer of software
between the end users and the DSS serves to eliminate the need for
special application programming to generate displays and control
dialogues; and to provide a variety of interface facilities that are
familiar to the users.

The Language Interface System consists of the compilers and
interpreters that translate the statements and commands used for speci-
fying retrieval requests and defining models. An important considera-
tion is its ability to provide integration between data representation
in Data Base Management Systems and Model Management Systems
so that the output of an analysis can be used as input to another. The
language used in the system has an important effect on the ease of
use of the system. Programming languages such as APL, BASIC, or
FORTRAN can be well suited for implementing quantitative algorithm
but not suitable for representing qualitative knowledge. On the other

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM 15

hand, PROLOG or LISP are well suited for representing qualitative and
heuristic knowledge but inefficient in performing mathematical com-
putation or manipulation of large quantities of quatitative data.

As discussed above, DBMS are used to deal with the storage,
maintenance, and retreival of large volumes of interrelated data whilst
MMS is to facilitate the development and management of various
models.

Another form of DSS framework stems from a growing interest
in DSS research to incorpoate the techniques and methods of Artificial
Intelligence, especially in the area of knowledge and expert systems.
Drawing upon this background, Bonczek, and Whinston (1981) pro-
posed a generic framework of DSS comprising of three principal com-
ponents: a Language System (L.S); a Knowledge System (KS); and a
Problem Processing System (PPS). Their relationship can be viewed
as follows:

User Request -y Language _-.’I Problem Knowledge
o System Processing &= System
(LS) System (KS)
__________ (PPS) -
Response

FIGURE 5. Generalised Framework of DSS Incorporating
Knowledge-based Representation

Source: Bonczek et al, 1981.

A Language System (LS) is the total of all linguistic facilities made
available to the user of a decision support system. (Bonczek et al, 1981).
A user states requests in terms of the DSS’s language system. They
are typical requests for data retrieval and/or requests to carry out
some computation (eg. modrl execution).

The complexities and orientation of the LS for data retrieval and
model execution vary, depending on the decision situation the DSS
serves to support. For data retrieval, the LS covers a range of two

16 ABDUL BARRI

extremes. At one extreme are languages in which a user explicitly
states how the data is to be retrieved. In other words, retrieval is pro-
cedural. On the other extreme, a user retrives by merely stating what
data is desired. The user is not required to know about logical or
physical data organisation. Between these two extremes are those LS
that allow a user to invoke one of a number of report generation pro-
grams, which have been predefined to meet the anticipated needs of
users. By allowing conditional retrieval, such languages need not be
entirely inflexible.

LS for directing numerical computations also covers range of two
extremes. At one extreme are programming languages with which
a user explicitly specifies all computations on a step-by-step basis. At
the other extreme are LS with which a user merely states the problem
to be solved in terms of the data desired. Between these two extremes
are LS that enable a user to invoke a model or a number of models
by name. Here, the models have been predefined to meet the an-
ticipated needs of the users.

A Knowledge System (KS) is the DSS’s body of knowledge about
some problem domains. As pointed out by Bonczek et al, knowledge
is the key factor in the performance of a knowledge-based DSS.
Knowledge is of two types: the first is the facts of the problemn domains
which includes the model knowledge and the data used by these models
(Bonczek et al, 1981); and the second type 1s called heuristic knowledge
— the knnwledge of good practice and judgement in the problem do-
main which is acquired and experienced through the years. (Feigen-
baum, 1984).

The knowledge in the KS must be stored in some organised man-
ner. The main consideration must be efficiency, integrity, and ease
of design. In this respect, depending on the object of the DSS, the
knowledge can be represented as relations or tables of data (flat files).
Though a DSS builder can choose from various knowledge represen-
tation methods, the choice is largely determined by the tools used to
build the DSS. (Bonczek et al, 1981). For instance, if a spreadsheet
package is used as a tool for DSS construction, both empirical and
formula knowledge are represented in the form of a spreadsheet. In
this case, however, the resultant DSS contains no lingustic or represen-
tation method since all of these are incorporated in the spreadsheet.
Apart from spreadsheet, other common knowledge representations in-
clude file structures, data base structures, and axiomatic systems.
Thus, it is important to select tools that provide knowledge represen-
tation methods which are appropriate for the specific decision applica-
tion to be supported.

At the heart of DSS is its Problem Processing System (PPS). Unlike
the LS and the KS, which are systems of representatio, the PPS is a

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM 17

dynamic system consisting of software that bridges the gap between
the LS and the KS. (Bonczek et al, 1981). Given a problem (stated
with the LS) and problem domain knowledge (represented in the KS),
the PPS software attempts to derive a solution which supports
(enhances, facilitates, or makes possible) a decision making process.
Ideally, the PPS should possess data collection, problem recognition,
automatic model formulation capabilities, and others but the extent
of each ability of a given processor varies widely. As recognised by
Bonczek et al and others, present day problem processors have limited
capabilities particularly for problem recognition and automatic model
formulation.

In considering this form of framework, the question arises as to
the difference between a knowledge-based DSS which uses artificial
intelligence type knowledge representation and an artificial in-
telligence expert system using a similar mechanism. The basic distine-
tion is in the system’s objectives and usage patterns. An expert system
seeks to replicate, hence replace the abilities of a human expert in
a specific problem domain. Its use in solving a particular problem
does not require any knowledge from the human user (since any known
knowledge of a problem domain will be stored in the KS). In addi-
tion to this, the system does not generate any learning process to the
user and vice versa. A knowledge-based DSS on the other hand seeks
to assist a human user by taking over the more structured parts of
a larger, only partially formulised tasks, of a problem domain.

DSS DESIGN STRATEGY
There are three main agents that are integral to the development of
a DSS:

1/ the client/initiator, who initially solicits the development of the
system, specifies the overall performance criteria, and often pays or
authorises payment for the system;

2/ the managers/users, who actually use the DSS and to whom
the support aspects are tailored; and

3/ the designer/toolsmith, who specifies the detailed structures
and capabilities of the system and is responsible for its implementation.

An addition, Bonczek et al argued the need for a DSS ad-
ministrator to maintain the DSS especially in larger organisations. All
these functions may be performed by the user if he has the expertise
to do so.

This section shall look into DSS from the perspective of a pro-
spective DSS designer or toolsmith. Compared with other aspects of
DSS, little has been written about DSS design methodology. Three ap-
proaches have been proposed in designing DSS: the traditional ap-

18 ABDUL BARRI

proach, commonly known as the development life-cycle approach;
phototyping; and evolutionary approach.

Development life-cycle approach. This approach was mainly used
in designing MIS and other traditional computer-based systerms.
Under this approach, systems development follows an invariably stan-
dard pattern or procedure. It normally starts with an exhaustive
analysis of users requirements, which is then specifically spelt out in
the systems design, and finally impleinented, often initially hand in
hand with the existing systems. This approach has a number of fun-
damental deficiencies that makes it inadequate for the tasks of building
succesful DSS.

Firstly, the development lifé-cycle approach presumes that the users
can specifically spell out their requirements and the designer can unders-
tand their needs. As argued by many (Ackoff 1967: Moore and Chang
1980; and Keen 1980), this is an idealised abstraction. In practice,
pre-specification of systems requirements are far more difficult to
achieve. In many circumstances, the designer and/or users cannot
provide functional specifications or are unwilling to do so. More im-
portant is the focus of DSS, that is, on the less structure tasks
whereby pre-specification of functional requirements is uncertain or
difficult to define.

Proponents of the development life-cycle approach argued that
all systems evolve, during which various processes of iteration takes
place, that is, the designer must cycle through feasibility assessment,
information analysis, and systems design several times before con-
verging to a final system. During these iterations, all the inconsistencies
and ambiguities can be resolved; and permit the users to express their
true preferences. [t has been argued that even then, the final specifica-
tion is difficult to achieve, particularly with regards to solving the less
structured tasks, because the user may take too long to understand
‘and have the knowledge to lay out procedures and requirements. In-
deed, Keen argued that with most management problems, a final
specification can never be made by the users. (Keen, 1980).

Secondly, directly related to the first point is what Moore and
Chang termed as **problem migration.’” What this means is that the
decision context within DSS, by virute of the problem type, modifies
itself and is modified by the very attempt to obtain specification for
its design. In the words of Moore and Chang, *“... the decision pro-
cess itself is migrating in the minds of both the decision makers and
the designers’” (Moore and Chang, 1980). Under these circumstances,
the development life-cycle aproach would be ineffective because it im-
plicitly assumes that decision making problems requiring the
capabilities of a computer-based system is essentially static, and that

DESIGN STRATEGY FOR DECISION SUFPORT SYSTEM 19

the process of iterations within the life cycle phases can finally lead
to a convergent. In DSS, however, there is no guarantee that the pro-
cess will be convergent.

Thirdly, understanding the decision rules of the less structured
problems may take a long time and to create such understanding,
the system must be capable of stimulating learning to the users which
in turn stimulates new uses. The traditional life cycle approach even
if iterated, has its ultimate goal of *‘freezing the spec’’ and to proceed
with actual systems design in a procedural and efficient manner (Moore
and Chang, 1980). As such, they argued that such an approach is
not possible in an ‘‘unstructured setting without intimidating the deci-
sion makers themselves, forming premature closing on problem solving
approaches, and inhibiting learning and search processes that are esset-
nial for the managers to undertake in addressing less ‘structured’ plan-
ning oriented tasks’ (Moore and Chang, 1980; p. 11).

And finally, the approach is inappropriate in designing systems
to support ad hoc usage patterns. The procedural nature of the ap-
proach inhibits a quick response in solving the many business pro-
blems that require urgent consideration.

Hence, two alternative approaches have been proposed for
designing DSSs:

— Prototyping; and

— Evolutionary/Adaptive process.

Prototyping. Prototyping, like the life cycle approach, requires a
systematic approach to designing, but prototyping avoids exhaustive
analysis of users requirements and detailed design which is greatly
emphasised in the life-cycle approach. ‘Efficiency goals are replaced
by effectiveness goals’’. (Henderson and Ingraham, 1982). With pro-
totyping, users interaction with the systems is provided at the earliest
possible moment. This is in contrast with the life cycle approach where
exhaustive efforts and resources are almost wholley concenrated in
processes prior to users interaction/implementation. It is often men-
tioned that about 70% of the project effort and costs are spent before
any actual usage by the users.

In prototyping, the process of iterations is also used but the feed-
back time is relatively fast. The focus is on timely feedback so that
it can effectively support learning (Henderson et al, 1982). Encourag-
ing learning is the key requirement, and as such prototyping greatly
emphasise user(s) participation in the design and implementation pro-
ccsses to ensure success. Indeed, user participation is important
regardless of the approach under which a system is designed.

Finally, with prototyping, the development costs of the project
can be better controlled. In the life cycle approach, costs often ex-

20 ABDUL BARRI

ceeded budget because major errors are normally discovered during
the last stage of the exercise, that is, during implementation when
a considerable proportion of the budget has been spent. This can be
overcome by prototyping.

Evolutionary/Adaptive Process. The evolutionary process can be
represented as in Figure 6 below:

USER
facilitate
implementation ——)
User learning — middle-out-
) —— pcrsonahsed design
pressure for

evolution

SYSTEM A BUILDER/

, DESIGNER
evolution of
system functions

FIGURE 6. An Evolutionary Framework for DSS
Source: Keen, 1980

The arrows represent a direction of influence. For example,
SYSTEM---2USER indicate that learning is stimulated by the DSS
while USER-===-SYSTEM refers to the personalised, differenciated
mode of use that evolves. Keen pointed out that the evolutionary/adap-
tive processes work together, that is, an effective DSS encourages users
to explore new alternatives and approaches to the problem/task
(SYSTEM=----*USER). This in itself stimulates new uses of the system,
often unanticipated and idiosyncratic (Keen, 1980; p. 16).

The arrows in Figure 6 are not merely conveniently
schematic. According to Keen, they help clarify whether
a particular system should be called a DSS or not. For
example, an airline reservation system is technically similar to

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM 27

many retrieval-based DSS. However, it is not intended to stimulate
learning (SYSTEM --/-—- USER), nor are there personalised modes of
usage; there is a ‘right’ way to use the system and the user must ad-
just to it, not vice-versa. Hence, Keen argued that a system can only
be called a DSS if it evolves from adaptive development.

Moore and Chang argued that an evolutionary process is often
necessary because of what they called “‘problem migration’’, that is,
the users problem or problem view is constantly changing in the minds
of the users as well as the designer. Hence, the system must evolve
to remain relevant and useful (Moore and Chang, 1980; p. 24). The
design strategy they proposed is called ‘‘subset evolution’’; an ap-
proach almost similar to prototyping. It involves developing expan-
ding subsets of system capabilitics based on an initial extensible
nucleus. Using this method, the initial requirement analysis is minimal
and geared towards providing sufficient information to build only the
nucleus of the system in the shortest possible time. In Moore and
Chang’s word, ‘‘the implementation is the feasibility study’’ (Moore
and Chang, 1980; p. 12).

The evolutionary approach is not without criticisms. Ginzberg and
Stohr (1982) argued that any system that represents an initial ef-
fort is likely to evolve, both in form and usage pattern. This may result
from learning or past experience. Hence, they argued, evolutionary
design and usage does not appear distinct to DSS. ‘‘It fails to
distinguish DSS from other computer-based systems, and ascribes to
all DSS something which is characteristic only to some”’ (Ginzberg
and Stohr, 1982; p. 21).

Despite this, the approach seems to be acceptable to many peo-
ple because in situations where substantial uncertainty exists about
users needs or probable usage patterns, an evolutionary design pro-
cess may well be the most appropriate and effective method. But where
litle uncertainty exist about users requirements and a fairly stable usage
pattern can be projected, prototyping may well suit the situation. The
key decision is to match and design approach to the needs of the
situation.

CONCLUSION

DSS is designed to support the less structured decision situation usually
faced by the management. It serves to extend the range and capabilities
of the managers decision processes to help them improve their effec-
tiveness in making decisions, financial or otherwise. It is intended
to be a supportive tool under the manager’s and other user’s control,
which does not attempt to automate the decision process or impose
solutions.

22 ABDUL BARRI

The nature of a DSS depends on the type of decision situation it
is meant to support. It may use extensive Data Base Management
System for data-retrieval and data analysis — data oriented DSS, or
use various forms of analytical and decision models — model oriented
DSS.

Three main approaches have been proposed for designing DSS:
the traditional development life cycle approach often used in
designing management information systems; prototyping: and evolu-
tionary approach. The relevant approach in a particular situation
depends on the need and level of uncertainty (about user needs and
usage pattern) of the situation.

Despite some carly success of DSS, continued research and pro-
gress need to be made in important avenues such as knowledge
representation to be made in important avenues such as knowledge
representation and related areas of artificial intelligence, modelling
techniques, user interface, and in other related areas, in order to fur-
ther increase its effectiveness and impact on managerial functions.
The introduction of a new generation of computers — the Fifth
Generation, promise greater impact on DSS applications. However,
advancement and development in computer hardware is not enough
to ensure success in information systems development, be it DSS or
other information systems. What is more important and relevant is
the advancement in our understanding of business problems and deci-
sion situation which DSSs are design to support. Without these,
we cannot reap the full potential of computing.

REFERENCES

Ackoff, R.L., 1967. Management Misinformation System. Management Science, Vol.
14, No. 4 Dec. pp. 147 — 156.

Alter, S.L., 1980. Decision Support Systems. Current Practises and Continuing Challenges.
Addison Wesley.

Bonczek, R.H., Holsapple, C.W., and Whinston, A.B., 1981. Foundation of Dectsion
Support Systems. Academic Press.

Coelho, H., 1983. Prolog; Tool For Logical Domain Modelling. /n Sol, H.G. (ed.).
Process and Tools For Decision Support Systems. North-Holland.

Donovan, J.J. and Madnick, S.E., 1977. Institutional and Ad Hoc DSS and Their
Effective Use. Data Base. Vol. 8 No. 3 Winter.

Feigenbaum, E.A. and McCorduck, P., 1984. The Fifth Generation. London: Pan
Books.

Ginzberg, M.]J., and Stohr, E.A., 1982. Decision Support Systemns: Issues and

Perspective. In Ginzberg, M.]. et al. Decision Support Systems: Proceedings of the
NYU Symposium On DSS. New York, May 21 - 22 1981. North-Holland.

DESIGN STRATEGY FOR DECISION SUPPORT SYSTEM 23

Gorry, G.A. and Scott-Morton, M.S., 1971. A Framework For Management In-
formation Systems Sloan Management Review. Vol. 13 No. 1, Fall.

Henderson, J.C. and Ingraham, R.S., 1982. Prototyping For DSS: A Critical Ap-
praisal. /n Ginzberg, M.J. et al. Decision Support Systems: Proceedings of the NYU
Symposium on DSS. N. York May 21 - 22, 1981. North-Holland.

Keen, P.G.W., 1980. Adaptive Design for DSS. Data Base. Vol. 12 No 1/2, Fall.

Keen, P.G.W. and Scott-Morton M.S., 1978. Decision Support Systems: An Organisa-
tional Perspective. Addison-Wesley.

Moore, J.H. and Chang, M.C ., 1980. Design for Decision Support Systems. Data
Base. Vol. 12 No. 1/2, Fall.

Moto-oka, T., 1982. Fifth Generation Computer Systems. Proceedings of the the International
Conference on Fifth Generation Computer Systems. Tokyo. Oct. 19 - 22, 1981. North-
Holland.

Naylor, T.H. and Schauland, H., 1976. A Survey of Users of Corporate Planning
Models. Management Science. Vol. 22 No. 9, May.

Scott-Morton, M.S., 1971. Management Decision Systems: Computer-Based Support for Deci-
ston Making. Div. of Research, Harvard, Camb., Mass.

Sprague, R.H. and Carlson, E.D., 1982. Building Effective Decision Support Systems.
Prentice Hall.

