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Abstract

In this paper, we consider an inverse problem of determining
the corrosion occurring in an inaccessible interior part of a pipe
from the measurements on the outer boundary. The problem is
modelled by the Laplace equation with an unknown term -y in the
boundary condition on the inner boundary. Based on the Maz’ya
iterative algorithm, a regularized BEM method is proposed for
obtaining approximate solutions for this inverse problem. The
numerical results show that our method can be easily realized
and is quite effective.

1 Introduction

Detecting the corrosion inside a pipe is one of the most important top-
ics in engineering, especially in the safety administration of the nuclear
power station. There are several ways to do this. In this paper, we will
discuss the mathematical theory and numerical algorithm for a method of
detecting the corrosion by electrical fields. More exactly, we consider an
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10431030) and Shuguang Project of Shanghai Municipal Education Commission
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inverse problem of determining the corrosion occurring in an inaccessible
interior part of a pipe from the measurements on the outer boundary.
Our goal is to determine information about the corrosion that possibly
occurs on an interior surface of the pipe, which is an ‘inaccessible’ part,
and we collect electrostatic data on the part of the exterior surface of
the pipe, which is an ‘accessible’ part.

In the case that the thickness of the pipe is sufficiently small when
compared with the radius of the pipe and the Cauchy data are given on
the whole outer boundary, this inverse problem can be treated by the
Thin Plate Approximation method (TPA). The algorithm and numerical
analysis can be found in [7]. But this algorithm works only under the
assumption that the thickness is small enough when compared with the
radius of the pipe. The case, in which the Cauchy data are given on
part of the outer boundary and the smallness assumption is abandoned,
has not been studied and it is obvious that it is of great importance for
practice problems.

The main difficulty for this inverse problem is the ill-posedness of the
inverse problem. The measured data are given only on part of the outer
boundary and we want to determine an unknown function in the inner
boundary. Because of the ill-posedness, the errors in measured data will
be enlarged in the numerical treatment if we do not treat it suitably.
In this paper, based on the Maz’ya iterative method, we propose a new
BEM algorithm for this inverse problem. It can be easily realized. The
numerical results show the efficiency of this method.

This paper is organized as follows:

1. Formulation of the inverse problem,

2. The iterative boundary element method,

3. Numerical examples,

4. Conclusions.

2 Formulation of the inverse problem

Suppose a domain Q = {z |7 < |z]| < r2} C R? (see Figure 2.1) and the
boundaries I'; = {z||z| = ry }and I's = {z]||z| = r2}.
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Assume that Q is a metallic body with constant conductivity. In the
domain Q, we consider an electrostatic field. The electric potential u
satisfies the Laplace’s equation in (2, i.e.,

Ay =0, in Q. (2.1)

Let 'y be an open set of the outer boundary I'; of £ which is an
‘accessible’ part. On Iy, the Dirichlet data and the Neumann data of
the electric potential u are given, i.e.,

u(z) = ¢(z), z €Ty, (2.2)
uy (z) = 9(x), z € Lo, (2.3)

where u, is the outer normal derivative of v on the boundary.
We denote the rest part of the exterior boundary of Q by I's,

Iy = Ty \ To.

We assume that the corrosion only happened on the interior boundary
of the domain Q and the corrosion can be described by a non-negative
function v in the boundary condition on the interior boundary. That is,

u, +yu =0, on T}, (2.4)

where v > 0 represents the corrosion damage.
The inverse problem we discuss in this paper is to find the unknown
coeflicient v from the Cauchy data ¢ and ¢ on I's.
We will treat this inverse problem by the following steps:
Step 1: Get the Cauchy data on the interior circle by solving the Cauchy
problem for Laplace’s equations.
We use the iterative boundary element method to solve the Cauchy
problem:
Au(z) =0, z €,
u(z) = ¢(x), z €T, (2.5)
un(z) = Y(x), z € T.

Our goal is to get the Cauchy data on I'y:
'LL(.'II) =¢1(Z’), zely; Un(iL') ='¢/)1(-'17), el

Step 2: Get the impedance v from the Cauchy data on the interior
circle.
For the boundary condition

Uy + yu =0, zon I,

v can be obtained by

e A I L R
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Remark 2.1. It can be proved that the measure of the zero set {¢; = 0}
can not be non-zero. Therefore, our method is valid in the case of ¢; # 0.

3 The iterative boundary element method
for this Cauchy problem

In this section we will give the iterative boundary element method (see
[9], [10],}11]) for the Cauchy problem in Step 1. We will prove the con-
vergence rate only under the regularity assumption. Some numerical
simulation results for the Cauchy problem are also presented.

3.1 Description of the algorithm

In [11], V.A. Kozlov, V.G. Maz’ya and A.V.Fomin proposed the algo-
rithm as follows: _

1. Specify an initial boundary guess ug on I'y and I's.

2. Solve the well-posed mixed boundary value problem:

AU (z) =0, z €9,
’r(LO) = "-/)a z €T, (31)
U© =y, zel Ufg.

to determine U(® (z) forz € Qand go = éo) () forzeT1 U Ts.
3 (i). Suppose that the approximation gy, is obtained. We can solve the
mixed boundary value problem:

AU@HD =0, 1€,
U(2k+1) = ¢a HANS F07 (32)
U7(12k+1) = gk, zelh U fz.

Then we can determine U1 () for 2 € Q and ug4q = U+ (2) for
zeliU fz.

(ii) By ug41, we can obtain U*+2)(z) for z € Q and gpy1 =
Ui+ (z)forz eI UL, by solving the mixed boundary value problem:

AU+ =0,  zeq,
U =y, el (33)
U(2k+2) = Uk+1, zelh U fz.
4. Repeat step 3 for & > 0 until a prescribed stopping criterion is
satisfied.

The stopping criterion we will use in this paper is |[ug41—uk|| L2(r,ur;) <
g, where ¢ is a small positive number.
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Remark 3.1. The mixed boundary value problems (3.2) and (3.3) are
well-posed problems.

We solve the mixed boundary value problems (3.2) and (3.3) by the
boundary element method, which can be found in a lot of guide books
on the boundary element method, for example, [1]. In the following, we
give only the outline of the iterative BEM form.

Consider the following mixed boundary value problem in two-

dimensional case:
Au =0, in €,

u=f, on I'p, (3.4)
Up = G, on I'y.
As we have known, the foundational integral formula of the harmonic
function Bu o
u(M;) =/r‘ (u*gg U ) dr, M; € Q, (3.5)
where u* = 5-ln —— represents the foundational solution of the

Laplace’s equation. And the boundary integral formula is :

LOu ou*

Equation (3.6) can be discretized as follows:

N N
citt; + Z/ ug*dll — Z/ u*qdl = 0. 3.7
j=1"Ts i=17Ts

The values of » and ¢ in the integrands of (3.7) are constant within each
element, and u and ¢ consequently can be taken out of the integrals.
This gives

N

ciui+é</rjq*dr‘) uj—Z(/Fju*dl") g; =0. (3.8

=1

With the given boundary condition, we can rearrange equation (3.8)
with all the unknowns on the left-hand side and a vector on the right-
hand side obtained by multiplying matrix elements with the known val-
ues. This gives

N

ciu,-+§:(/rjq*dr)uj— > (/Fju*dl")qj

1 j=m+1
N

=:=Z <qu*dr>uj—§:</rju*ﬁ)qj.

m+1 i=1

(3.9)
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The whole set of equations can be expressed in a matrix form as

A(%) =5 (o)

where up, qp represent the Dirichlet and Neumann data on I'p and
uy,qy represent the Dirichlet and Neumann data on I'y.

The step 3 of our iterative method can be presented as:

(i) solving the following linear equations :

A(d)k-i-l) =B<¢)
Uk41 dk

and get ug+;1 that will be needed in the next equations.
(ii) With ug41, we can get gg+1 by solving

n(5) (%)
qk+1 Uk+1

Our boundary element method gives a problem about computing
linear equations twice in every iterative. It is easy to realize it by the
technique of Matrix computing,.

3.2 Convergence analysis

In this section we give the convergence analysis under the regularity
assumption on the unknown potential w.

First of all, we simplify the subproblem 1 as the following Cauchy
problem for Laplace equation:

Let Q C R? be an open bounded set and 'y, I'; be two parts of the
boundary 69, satisfying 'y UTy = 9 and 'y N T’y = 0.

Au =0, z in
u=f, z on Ty, (3.10)
Uy = ¢, z on Iy,

where v is the unit outer derivative vector.

Given the Cauchy data (f, g) € HY2(T'\)x Hy,*(T1)', we assume that
there exists an H'-solution of problem (3.10). We are mainly interested
in the determination of the Neumann trace.

The following work is to introduce an operator 7' : Hg({2(1‘2)' —
Hééz (T'y)" and represent the above iterative. Refer to (8].

We can simplify our iterative method as

szo in Q, WIr‘l :f, qull"z =¢a
AV=O iIl Q; VVA|F1 =g V|F2:w'
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We define the operators L, : Hé({z(l"g)l — HY(Q) and Lg: H/2(Ty)
—»lflﬁl)by
Lo(¢) :==w € HY(Q),
La(¥) :=v € HY(Q).

Define the Neumann trace operator v, : H1(Q) — Hé({2(1—‘2)’, (1)
:= u,,|r, and the Dirichlet trace operator 4 : HY(Q) — HY2(Ty),
~a(u) = ulp,.
So we can rewrite the iterative as
w=Ln(¢x); ¥ ="aw),
v="La(¥k); ér+1="mm(v)

If we define T := =, 0 Lg 0 y4 0 Ly, we conclude that T is an affine
operator on Hé({ ?(I'3), which satisfies

b1 = T(dx) = T (o).

That means we are able to describe the iterative with the powers of
the operator T. As L,, and Ly are both affine, we can write

La() = Ln() +ws,  La() = Ly() + vy,

where the H!(Q, P)-functions wy and v, depend only on f and g, re-
spectively.
With these definitions we have

$rt1 = T($k) = 7m0 Lg o 72 © L (dk) + n © Ly 0 v(wy) + (V)
Ti(4) 219
=T (do) + S50 T] (2£,9)-

From [8], we know the operator 7T} is positive, self adjoint, injective,
regularly asymptotic in H&f and non expansive. In [8] the convergence
of this iterative method is presented. Under the source condition which is
not so obvious for the engineers. Here we only use regularity assumptions
in the convergence analysis. Since our problem is in an annular domain,
the following theorems are discussed in the annular domain. But the
results can be extended into a general domain.

Firstly, we define the Sobolev spaces of periodic functions

Hye,(—=m,m) == {$(y) = ) $;¢*| Y (1+°)°¢} < oo}, s € R. (3.11)

J€Z J€Z

Before we give the theorems, we introduce the following logarithmic-
type source conditions:

FO) = {(()l,n(exp(l))\—l))—p, iz 8’ (3.12)
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Theorem 3.2. Set Q be an annular domain, & C R®. Let (f,g) be
consistent Cauchy data and assume that the solution ¢ of the Cauchy
problem (3.10) satisfies

5 - ¢0 € H;era

where ¢o € H is some initial guess. Let u > 2, (fe,g¢) be some given
noisy data with ||z — zp,4]| < €, € > 0 and k(e, z.) be the stopping rule
determined by the discrepancy principle

k(e, z¢) = min{k € N|||ze — (I — T1) % || < pe}- (3.13)
Then there exists a constant C, depending on ¢o only such that
i) |lé— &kl < Clink)™,
i) lze — (I = Tkl < Ck™'(Ink) ™",
for all iteration index k satisfying 1 < k < k(e, 2.).

Theorem 3.3. Set k. = k(e, z.). Under the assumption of Theorem 3.2
we have

i) ke(In(ke)) = O(e™),
i) (¢ — kIl < O((=Inve)™).
The next lemma is most important for the proof of the theorems.

Lemma 3.4. Set Q be an annular domain, Q C R%. Then the solution

¢ of the Cauchy problem (3.10) in this domain satisfies

5 - ¢0 € Hz}erﬁ (314)

where ¢o € H is some initial guess and H,,, is the Sobolev spaces of

periodic functions defined as in (3.11). This regularity assumption is
equivalent to choosing some ¢ € ng, satisfying

where f is the logarithmic-type source conditions (3.12).

Proof. For simplicity, we consider Cauchy problem (3.10) in the annular
domain
' ={(R,0);0 € (—m,m)},R> 1,

I's = {(1,9);0 (S (—71‘,71')},
where f(8) = Z;V=1 a;sin(j0), g(8) = Z;vzl b; sin(j6).
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Given the Neumann data

N
= o,;sin(j8),
j=1
we can get
(Tidho) (8 Z Ajo,; sin(j9),
Jj=1
where X )
(BRI — R

7T (R + R
For ¢ —¢o € H aers there exists aj, (j = 1--- N) satisfying ZJ ) 67 < 00,

N
®—¢o=>_a;j 'sin(jy).
j=1

So we get
N

S (1 + )i~ < oo
j=1
To the logarithmic-type source conditions (3.12), the source condition
is to find some ¥ € H,,,., satisfying

¢ — o= FI—To)p.
So our problem comes into finding this 1.
Set ¢ = ZJ 1 bj sin(jy), then

per ’

oy
b JfA =)

From the estimate

7 - R
In <—?%()1\Jl> >1-lIn (ewp(l) [1 - %4_%])
= —In (—22—)
Ri + R
> 2jlnR~1,
m(?§g>s1+m<;i%3;>
RITR—7

J -3

2R~J
< 2jlnR+1—In2,



10 Jin Cheng, Mourad Choulli, Xin Yang

we have 1
%InR -1 < ——— < 2jInR+ 1 — In2
Fa-2x)
And wichﬁ__1 a2 < oo, we can obtain E;V:I b? < o0, ie., P € HY,p. O

Lemma 3.5. Let (f,9) be consistent Cauchy data and assume that the
solution ¢ of the fixred point equation satisfies the source condition

6—¢o=f(I-T)p, for some ¢ € H,

where ¢9 € H is some initial guess and f is the function defined in
(3.12) ‘with p > 1. Let p > 2, (fe,g¢) be some given noisy data with
|ze — z5,gll <€, € >0 and k(e, zc) the stopping rule determined by the
discrepancy principle. Then there exists a constant C,depending on p
and ||¥||only such that

i) e~ il < Cink)™?,
i) |z — (I = i)kl < Ck~ (Ink) P,

for all iteration index k satisfying 1 < k < k(e, zc).

Lemma 3.6. Set ke = k(e, zc). Under the assumption of Lemma 3.5 we
have

i) ke(in(ke))? = O(e™),
i) ¢~ 5,1l < O((=inVe)™").

The proof of lemma 3.5, lemma 3.6 can be found in [4].

With all the lemmas above, it is easy to give the proof. Theorem
3.2 can be deduced by lemma 3.4 and lemma 3.5. Theorem 3.3 can be
deduced by lemma 3.4 and lemma 3.6.

3.3 Numerical experiment for the Maz’ya iteration

In this section, we will test the previous algorithm to calculate a few
examples with Matlab. For simplicity, we set the domain §2 with interior
radius 1 and outer radius 1+b in the following experiments. The number
of the boundary element is n. Since we use the quadratic elements, we
take n nodes on the outer circle and also n nodes on the interior circle.
And set the number of nodes whose data are given to be m. we consider
a harmonic function:

u(z,y) = log [(x — 0.5)% + (y — 0.5)7].

‘We use the prescribed algorithm to get the unknown data on the bound-
ary, and then use the harmonic basic integral formulation to calculate
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the data on the circle with the radius 1 + a(a < b). In the following
numerical experiment the noise level is 4 noisy. The figures on the left
show the exact solution compared with the approximate solution, and
the dot line represents the approximate solution The real line represents
the exact solution. The figures on the right side are the curves of the ab-
solute errors. We use the stopping rule as ||ug+1 — k|| L2(r,ury) < 1073

Example 1. In this experiment we take n = 100, 200, m = 50, 100,b =
1,a =0.5 and § = 0.01, respectively.
n=100, m=50:

Figure 3.1 Figure 3.2

n=200, m=100:

Figure 3.3 Figure 3.4

So if you want higher precision you should use more element during the
process of this iterative.
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Example 2. In this experiment we set n = 100, m = 30, b = 1,a=05
and 6 = 0.01, 0.001, respectively.
n=100, m=30, 6 = 0.01:

Figure 3.5 Figure 3.6

n=100, m=30, § = 0.001:

Figure 3.7 Figure 3.8

The numerical results show that the subproblem 1 is ill-posed in the
Hadamard sense, i.e., the solution does not depend continuously on the
data, which means the small errors in the measurement of the voltages
on the boundary can produce unbounded errors in the solution.

Example 3. In this experiment we set n = 100, m = 50, a = 0.1, 0.25,
0.5, b=1 and 6 = 0.01 ( @ = 0.5 is shown in the pervious example)
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a=0.25:

01

‘ a=0.1: Figure 3.9 . Figure 3.10
Figure 3.11 Figure 3.12

From the numerical simulation, it can be seen that the precision
decreases as a decreases.

4 Numerical results for the inverse problem

In this section we will use the iterative algorithm to treat our inverse
problem, and give some numerical examples.
In the following test, we choose the ring domain as

Q={(@yll <va?+y? <2}

Example 1. In this test we recover the continuous piecewise linear

function: )
1 when <1,

40 —3 when 1<8<1.5,
—20+6 when 1.5 €6 < 2.5,
¥@) =<1 when 2.5<6 < 4.5,
30 — 22—5 when 4.5<60<5.5,
—66 + 37 when 55<8 <6,

@! otherwise.
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We get the data ¢, 9 from the solution of the direct problem by the
boundary element:

AU =0, z €€,
U, =-1, z eTUThy,
U,+~U =0, ze€Tls.

The follwing are the result figures.
(1)Set m=100, n=100

4 06
’- © approximate g -— absolute error
—— exactg

Figure 4.1 Figure 4.2

(ii)Set m=50, n=100

o approximate g
— exact L
35 9 05

°

~

—— abselute error
N P L s

Figure 4.3 Figure 4.4
Example 2. We consider the harmonic function:
u(z,y) =y° — 2’y +2° ~y* + 6,
whose polar coordinates form is

u(r,6) = r3(sin® @ — cos® @sin §) + r? cos 20 + 6.
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It is easy to know that the coefficient y on the inner circle is

3(sin® § — cos? § sin ) + 2cos26
sin3 6 — cos2 fsinf + cos20 + 6

v(0) =
The figure on the left side is a comparison between the approximate

v and the exact . The right one is the absolute error curve.
(i)Set m=100, n=100

.08
~ o approximate g —— absolute error,
12 — exactg 007

Figure 4.5 ‘ Figure 4.6
(ii)Set m=>50, n=100

o approximate g
12 — exactg 04

—— absolute error

Figure 4.7 , Figure 4.8

(iii)Set m=100, n=100 and add 5% random noisy on the Cauchy
data.

It can be seen from the numerical results that there is a lot of noise in
the numerical solution which means our method to this inverse problem
is so sensitive. Any small error of the data may lead the iterative method
not to converge. Another thing is that, if the Cauchy data is only given
on part of the boundary, we can only obtain the local solution.
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—— absolute error

Figure 4.9 Figure 4.10

5 Conclusions

In this paper, we have investigated an inverse problem in detecting cor-
rosion in a pipe. The problem has be modelled by Laplace equation with
the unknown coefficient in the boundary condition. We deduce a numer-
ical method to solve it and test the result with numerical experiments.
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