
 

 

4 
OPTIMISATION 

 
 
 
 
 
 

 Introduction 

 Single Variable Unconstrained Optimisation 

 Multivariable Unconstrained Optimisation 

 Linear Programming 

 

 



Chapter 4  Optimisation / 2 

4.1 Introduction 

• In an engineering analysis, sometimes extremities, either minimum or 
maximum value, has to be obtained. 
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Global minimum 

Local maximum 
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FIGURE 4.1 Extremities for a single variable function 

• Extremity value can be obtained via optimisation, which is divided into: 

1. Unconstrained optimisation — ( ) 0=′ xf . 
2. Constrained optimisation — linear/non-linear programming. 
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4.2 Single Variable Unconstrained Optimisation 

• Extremities, if any, can be evaluated using either the quadratic interpolation 
method or the Newton method using the condition of ( ) 0=′ xf . 

• For the quadratic interpolation method, consider a second order 
Lagrange interpolation equation as followed: 
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FIGURE 4.2 Evaluation of extremities using a quadratic function 

Eq. (4.1) is differentiated to yield: 
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Thus, it can be rearranged to get an optimised value of : 3xx =
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Eq. (4.2) can be repeated until converged. 
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Example 4.1 

Use the quadratic interpolation method to obtain a maximum value of the 
following function accurate to four decimal places: 

( ) 22.0sin xxxf −=  

using initial values of x0 = 0, x1 = 1 dan x2 = 2. 
Solution 

From the given function: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 1093.022.02sin2

6415.012.01sin1
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Using Eq. (4.2), the value of x3 can be estimated as followed: 
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The overal process is as followed: 

i x0 f(x0) x1 f(x1) x2 f(x2) x3 f(x3) 

1 0 0 1 0.6415 2 0.1093 1.0466 0.6466 
2 1 0.6415 1.0466 0.6466 2 0.1093 1.1057 0.6493 
3 1 0.6415 1.0466 0.6466 1.1057 0.6493 1.1110 0.6493 
4 1.0466 0.6466 1.1057 0.6493 1.1110 0.6493 1.1105 0.6493 
5 1.1057 0.6493 1.1105 0.6493 1.1110 0.6493 1.1105 0.6493 

 
Hence, the maximum value is f(x) = 0.6493 at x = 1.1105. 

 

• An extremity can either be a minimum or maximum value, or otherwise, 
depending on the second derivative ( )xf ′′ : 

1.  — f(x) is minimum, ( ) 0>′′ xf
2.  — f(x) is maximum, ( ) 0<′′ xf
3.  — the coordinate ( ) 0=′′ xf [ ])(, xfx  is an inflection point. 
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• For the Newton method, consider an equation similar to the Newton-
Raphson formula (requiring only one initial value): 
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If f(x) is the first derivative of g(x), i.e. ( ) ( ) 0=′= xfxg , this the root of 
g(x) is an extremity for f(x), or 
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Example 4.2 

Use the Newton method to obtain the maximum value of the function: 

( ) 22.0sin xxxf −=  

using an initial value of x0 = 1.  Use the convergence criterion of an 
approximated error of less than 0.05%. 
Solution 

From the given function: 
( )
( ) 4.0sin

4.0cos
−−=′′

−=′

xxf
xxxf

 

Using Eq. (4.3), the iteration formula is: 

4.0sin
4.0cos

1 +
−

+=+
i

ii
ii x

xxxx  

which produces 

i xi f(xi) f′(xi″) f″(xi) ||εa|| (%) 

0 1 0.64147 0.140302 −1.24147 11.30 
1 1.11301 0.64928 −0.00324 −1.29703 0.250 
2 1.11051 0.64928 −1.4E−06 −1.29593 0.000 
3 1.11051 0.64928 −2.5E−13 −1.29593 0.000 

Hence, the maximum value is f(x) = 0.64928 at x = 1.11051. 
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4.3 Multivariable Unconstrained Optimisation 

• For a multivariable case, extremities can be evaluated using the gradient 
method via the steepest slope condition. 

• For a multivariable case, the gradient vector can be written as 
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FIGURE 4.3 Optimisation for the 2-D case ( )yxfz ,=  

• Consider the equation of two variables: 

 ( )yxfz ,=  (4.4) 

The objective is to obtain a condition where 0=∇f , and for this case: 
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y
f

x
ff

∂
∂

+
∂
∂

=∇  

This vector will guide the solution towards a normal direction (or 
orthogonal) to a contour line of constant f(x,y). 
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If h is the distance needed to reach the extremity, the next approximation to 
x and y are 

 h
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Thus a function g(h) can be formed such that 
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and the relation  gives the optimised h and hence the optimised 
values of x and y. 

( ) 0=′ hg

• For the multivariable cases, the type of extremities is determined using the 
Hessian |H| parameter, which has been defined as 
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The parameter |H| is equivalent to ( )xf ′′  for a single variable case, where: 

1. 0>H  and 022 >∂∂ xf  — f(x,y) has a local minimum, 

2. 0>H  dan 022 <∂∂ xf  — f(x,y) has a local maximum, 
3. 0<H  — f(x,y) has a plateau. 

Example 4.3 

Maximise the following function: 

( ) 22 222, yxxxyyxf −−+=  

using the gradient method of the steepest slope using an initial values of 
x0 = −1 dan y0 = 1.  Get the answer accurate to three decimal places. 
Solution 

In the first iteration: 

( ) ( )

( ) ( ) 6141242
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( ) 2.0723600 =⇒+−==′ hhhg  

Thus after the first iteration: 
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In the second iteration: 

( ) ( )

( ) ( ) 2.12.042.02

2.12.0222.02

=−−=
∂
∂

=−+−=
∂
∂

y
f
x
f

 

( ) ( )
( ) 188.288.20

2.088.244.12.12.0,2.12.0 2

=⇒+−==′
++−=+−+=

hhhg
hhhhfhg

 

( )
( ) 112.12.0

4.112.12.0
=+−=

=+=
y
x

 

The overall process is as followed: 

i xi−1 yi−1 xf ∂∂  yf ∂∂  h xi yi 

1 −1 1 6 −6 0.2 0.2 −0.2 
2 0.2 −0.2 1.2 1.2 1 1.4 1 
3 1.4 1 1.2 −1.2 0.2 1.64 0.76 
4 1.64 0.76 0.24 0.24 1 1.88 1 
5 1.88 1 0.24 −0.24 0.2 1.928 0.952 
6 1.928 0.952 0.048 0.048 1 1.976 1 
7 1.976 1 0.048 −0.048 0.2 1.986 0.990 
8 1.986 0.990 0.0096 0.0096 1 1.995 1 
9 1.995 1 0.0096 −0.0096 0.2 1.997 0.998 
10 1.997 0.998 0.00192 0.00192 1 1.999 1 
11 1.999 1 0.00192 −0.00192 0.2 1.999 1.000 
12 1.999 1.000 0.00038 0.00038 1 2.000 1 
13 2.000 1 0.00038 −0.00038 0.2 2.000 1.000 

Finally, the solution converges at the 13-th iteration where x = 2 dan y = 1 
resulting in a maximum value of ( ) ( ) 21,2, == fyxf . 
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FIGURE 4.4 Propagation of estimated points of Example 4.3 
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4.4 Linear Programming 

• In this topic, only the linear case is considered. 

• The objective of linear programming is to minimise or maximise an 
objective function Z, i.e., 

Maksimumkan: nn xcxcxcZ +++= L2211  (4.8) 

Eq. (4.8) is subjected to several constraints, i.e. 

 ininii bxaxaxa ≤+++ L2211  (4.9) 

If the variable xj represents a positive physical parameter, thus 

  (4.10) 0≥jx

• The simplest approach is via a graphical method. 

Example 4.4 

Use the graphical method to maximise the following objective function: 
yxZ 175150 +=  

where the conditions or constraints are: 
(1) , 77117 ≤+ yx
(2) , 80810 ≤+ yx
(3) , 9≤x
(4) , 6≤y
(5) , 0≥x
(6) . 0≥y

Solution 

From the figure, the optimum point is ( )9
8

9
8 3,4  which produces the 

maximum value of 9
81413=Z .  Noted that condition (3) is redundant. 
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FIGURE 4.5 Linear programming graph for Example 4.4 

• One of the numerical approach is the simplex method, where the searching 
for the optimum point is guided by the slag variable Si, as followed: 

 02211 =−−−− nn xcxcxcZ L  (4.11) 

 iininii bSxaxaxa =++++ L2211  (4.12) 

 0=+ jj Sx  (4.13) 

If this system contains k equations and l variables including the slag 
variables, where usually k < l, hence there are (l–k) variables which has to 
be made zeros (non-basis — a non-zero variable is known as basis). 

The Gauss-Jourdan elimination can be performed to minimise the objective 
function. 

The elimination can be stopped when all the basis variables become zeros.  

Example 4.5 

Repeat Example 4.4 using the simplex method. 
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Solution 

The system can be rewritten as followed: 
Maximise: 0175150 =−− yxZ , 
With conditions: (1) 77117 1 =++ Syx , 
 (2) 80810 2 =++ Syx , 
 (3) 93 =+ Sx , 
 (4) 64 =+ Sy , 
 (5) . 0,,,,, 4321 ≥SSSSyx

Begin with Z = x = y = 0.  Then form the following table: 

61000100
90100010

8000108100
7700011170
000001751501

SolutionBasis

4

3

2

1

4321

S
S
S
S
Z

SSSSyxZ
−−

 

At column x, the element at row S2 can be a pivot, hence x is selected to be 
the inbound variable replacing S2.  Then, perform the Gauss elimination: 

61000100
1011.008.000
21007.014.500
8001.008.010

1200001505501
SolutionBasis

4

3

1

4321

S
S
S
x
Z

SSSSyxZ

−−
−

−

 

The coefficient of y at row Z is still negative, thus Z is still not maximum.  
Hence, y is selected to replace S1: 

111.2101296.01852.0000
111.4012037.01481.0000
889.3001296.01852.0100
889.4002037.01481.0010

889.1413008704.71852.10001
SolutionBasis

4

3

4321

−
−
−

−

S
S
y
x
Z

SSSSyxZ
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Therefore the maximum of Z is 1413.889 which is produced at x = 3.889 
and y = 4.889. 

 

• In linear and non-linear programming, there are four possible outcomes: 

1. Unique solution, 
2. Multiple solutions, 
3. No possible solution, 
4. Unbounded problem. 

For cases 2-4, the simplex method cannot be used. 
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(c)   Unbounded problem  
FIGURE 4.6 Cases where the simplex method is not applicable 
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Exercises 

1. Obtain the minimum value of the following function at  using the quadratic 
interpolation function using the initial values of 0.1, 0.5 and 5.0, and the Newton 
method using the initial value of 0.5: 

0≥x

( )
x

xxf 1
+=  

2. Obtain the maximum value of the following function via the steepest slope with the 
initial value of (x, y) = (0, 0): 

( ) 242 225.3 yyxyxxxxf −+−−+=  

3. A company produces two types of products, A and B.  These products are produced 
during normal working days of 40 hours per week and are marketed on the same 
weekends.  The company needs 20 kg and 5 kg of raw materials for products A and B, 
respectively.  However, the company warehouse can only stores 10,000 kg of raw 
materials per week.  Only one product is produced at one time, where product A 
requires 0.05 hour, while product B requires 0.15 hour.  Nevertheless, the temporary 
storage section can only keep 550 products per week.  Product A is sold at RM45 per 
unit while product B is sold at RM30 per unit.  By using the linear programming using 
the simplex method: 

a. Maximise the company profit. 
b. Which factor where its increase leads to the fastest increase in profit: raw 

materials, capacity of temporary storage section or production time? 
 

 


	4.1 Introduction
	4.2 Single Variable Unconstrained Optimisation
	Example 4.1
	Solution
	Example 4.2
	Solution



	4.3 Multivariable Unconstrained Optimisation
	Example 4.3
	Solution


	4.4 Linear Programming
	Example 4.4
	Solution
	Example 4.5
	Solution



	Exercises

