
Lecture Notes 8

1 Minimax Theory

Suppose we want to estimate a parameter θ using data Xn = (X1, . . . , Xn). What is the

best possible estimator θ̂ = θ̂(X1, . . . , Xn) of θ? Minimax theory provides a framework for
answering this question.

1.1 Introduction

Let θ̂ = θ̂(Xn) be an estimator for the parameter θ ∈ Θ. We start with a loss function

L(θ, θ̂) that measures how good the estimator is. For example:

L(θ, θ̂) = (θ − θ̂)2 squared error loss,

L(θ, θ̂) = |θ − θ̂| absolute error loss,

L(θ, θ̂) = |θ − θ̂|p Lp loss,

L(θ, θ̂) = 0 if θ = θ̂ or 1 if θ 6= θ̂ zero–one loss,

L(θ, θ̂) = I(|θ̂ − θ| > c) large deviation loss,

L(θ, θ̂) =
∫

log
(
p(x; θ)

p(x; θ̂)

)
p(x; θ)dx Kullback–Leibler loss.

If θ = (θ1, . . . , θk) is a vector then some common loss functions are

L(θ, θ̂) = ||θ − θ̂||2 =
k∑

j=1

(θ̂j − θj)2,

L(θ, θ̂) = ||θ − θ̂||p =

(
k∑

j=1

|θ̂j − θj|p
)1/p

.

When the problem is to predict a Y ∈ {0, 1} based on some classifier h(x) a commonly used
loss is

L(Y, h(X)) = I(Y 6= h(X)).

For real valued prediction a common loss function is

L(Y, Ŷ ) = (Y − Ŷ )2.

The risk of an estimator θ̂ is

R(θ, θ̂) = Eθ
(
L(θ, θ̂)

)
=

∫
L(θ, θ̂(x1, . . . , xn))p(x1, . . . , xn; θ)dx. (1)
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When the loss function is squared error, the risk is just the MSE (mean squared error):

R(θ, θ̂) = Eθ(θ̂ − θ)2 = Varθ(θ̂) + bias2. (2)

If we do not state what loss function we are using, assume the loss function is squared error.

The minimax risk is

Rn = inf
θ̂

sup
θ
R(θ, θ̂)

where the infimum is over all estimators. An estimator θ̂ is a minimax
estimator if

sup
θ
R(θ, θ̂) = inf

θ̂
sup
θ
R(θ, θ̂).

Example 1 Let X1, . . . , Xn ∼ N(θ, 1). We will see that Xn is minimax with respect to
many different loss functions. The risk is 1/n.

Example 2 Let X1, . . . , Xn be a sample from a density p. Let P be the class of smooth
densities (defined more precisely later). We will see (later in the course) that the minimax
risk for estimating f is Cn−4/5 for some constant C > 0.

1.2 Comparing Risk Functions

To compare two estimators, we compare their risk functions. However, this does not provide
a clear answer as to which estimator is better. Consider the following examples.

Example 3 Let X ∼ N(θ, 1) and assume we are using squared error loss. Consider two

estimators: θ̂1 = X and θ̂2 = 3. The risk functions are R(θ, θ̂1) = Eθ(X − θ)2 = 1 and

R(θ, θ̂2) = Eθ(3− θ)2 = (3− θ)2. If 2 < θ < 4 then R(θ, θ̂2) < R(θ, θ̂1), otherwise, R(θ, θ̂1) <

R(θ, θ̂2). Neither estimator uniformly dominates the other; see Figure 1.

Example 4 Let X1, . . . , Xn ∼ Bernoulli(p). Consider squared error loss and let p̂1 = X.
Since this has zero bias, we have that

R(p, p̂1) = Var(X) =
p(1− p)

n
.

Another estimator is

p̂2 =
Y + α

α + β + n
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Figure 1: Comparing two risk functions. Neither risk function dominates the other at all
values of θ.

where Y =
∑n

i=1 Xi and α and β are positive constants.1 Now,

R(p, p̂2) = Varp(p̂2) + (biasp(p̂2))2

= Varp

(
Y + α

α + β + n

)
+

(
Ep
(

Y + α

α + β + n

)
− p
)2

=
np(1− p)

(α + β + n)2
+

(
np+ α

α + β + n
− p
)2

.

Let α = β =
√
n/4. The resulting estimator is

p̂2 =
Y +

√
n/4

n+
√
n

and the risk function is

R(p, p̂2) =
n

4(n+
√
n)2

.

The risk functions are plotted in Figure 2. As we can see, neither estimator uniformly
dominates the other.

These examples highlight the need to be able to compare risk functions. To do so, we
need a one-number summary of the risk function. Two such summaries are the maximum
risk and the Bayes risk.

The maximum risk is
R(θ̂) = sup

θ∈Θ
R(θ, θ̂) (3)

1This is the posterior mean using a Beta (α, β) prior.
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Figure 2: Risk functions for p̂1 and p̂2 in Example 4. The solid curve is R(p̂1). The dotted
line is R(p̂2).

and the Bayes risk under prior π is

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ. (4)

Example 5 Consider again the two estimators in Example 4. We have

R(p̂1) = max
0≤p≤1

p(1− p)
n

=
1

4n

and
R(p̂2) = max

p

n

4(n+
√
n)2

=
n

4(n+
√
n)2

.

Based on maximum risk, p̂2 is a better estimator since R(p̂2) < R(p̂1). However, when n is
large, R(p̂1) has smaller risk except for a small region in the parameter space near p = 1/2.
Thus, many people prefer p̂1 to p̂2. This illustrates that one-number summaries like maximum
risk are imperfect.

These two summaries of the risk function suggest two different methods for devising
estimators: choosing θ̂ to minimize the maximum risk leads to minimax estimators; choosing
θ̂ to minimize the Bayes risk leads to Bayes estimators.

An estimator θ̂ that minimizes the Bayes risk is called a Bayes estimator. That is,

Bπ(θ̂) = inf
θ̃
Bπ(θ̃) (5)
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where the infimum is over all estimators θ̃. An estimator that minimizes the maximum risk
is called a minimax estimator. That is,

sup
θ
R(θ, θ̂) = inf

θ̃
sup
θ
R(θ, θ̃) (6)

where the infimum is over all estimators θ̃. We call the right hand side of (6), namely,

Rn ≡ Rn(Θ) = inf
θ̂

sup
θ∈Θ

R(θ, θ̂), (7)

the minimax risk. Statistical decision theory has two goals: determine the minimax risk
Rn and find an estimator that achieves this risk.

Once we have found the minimax risk Rn we want to find the minimax estimator that
achieves this risk:

sup
θ∈Θ

R(θ, θ̂) = inf
θ̂

sup
θ∈Θ

R(θ, θ̂). (8)

Sometimes we settle for an asymptotically minimax estimator

sup
θ∈Θ

R(θ, θ̂) ∼ inf
θ̂

sup
θ∈Θ

R(θ, θ̂) n→∞ (9)

where an ∼ bn means that an/bn → 1. Even that can prove too difficult and we might settle
for an estimator that achieves the minimax rate,

sup
θ∈Θ

R(θ, θ̂) � inf
θ̂

sup
θ∈Θ

R(θ, θ̂) n→∞ (10)

where an � bn means that both an/bn and bn/an are both bounded as n→∞.

1.3 Bayes Estimators

Let π be a prior distribution. After observing Xn = (X1, . . . , Xn), the posterior distribution
is, according to Bayes’ theorem,

P(θ ∈ A|Xn) =

∫
A
p(X1, . . . , Xn|θ)π(θ)dθ∫

Θ
p(X1, . . . , Xn|θ)π(θ)dθ

=

∫
A
L(θ)π(θ)dθ∫

Θ
L(θ)π(θ)dθ

(11)

where L(θ) = p(xn; θ) is the likelihood function. The posterior has density

π(θ|xn) =
p(xn|θ)π(θ)

m(xn)
(12)

where m(xn) =
∫
p(xn|θ)π(θ)dθ is the marginal distribution of Xn. Define the posterior

risk of an estimator θ̂(xn) by

r(θ̂|xn) =

∫
L(θ, θ̂(xn))π(θ|xn)dθ. (13)
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Theorem 6 The Bayes risk Bπ(θ̂) satisfies

Bπ(θ̂) =

∫
r(θ̂|xn)m(xn) dxn. (14)

Let θ̂(xn) be the value of θ that minimizes r(θ̂|xn). Then θ̂ is the Bayes estimator.

Proof.Let p(x, θ) = p(x|θ)π(θ) denote the joint density of X and θ. We can rewrite the
Bayes risk as follows:

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ =

∫ (∫
L(θ, θ̂(xn))p(x|θ)dxn

)
π(θ)dθ

=

∫ ∫
L(θ, θ̂(xn))p(x, θ)dxndθ =

∫ ∫
L(θ, θ̂(xn))π(θ|xn)m(xn)dxndθ

=

∫ (∫
L(θ, θ̂(xn))π(θ|xn)dθ

)
m(xn) dxn =

∫
r(θ̂|xn)m(xn) dxn.

If we choose θ̂(xn) to be the value of θ that minimizes r(θ̂|xn) then we will minimize the

integrand at every x and thus minimize the integral
∫
r(θ̂|xn)m(xn)dxn.

Now we can find an explicit formula for the Bayes estimator for some specific loss func-
tions.

Theorem 7 If L(θ, θ̂) = (θ − θ̂)2 then the Bayes estimator is

θ̂(xn) =

∫
θπ(θ|xn)dθ = E(θ|X = xn). (15)

If L(θ, θ̂) = |θ− θ̂| then the Bayes estimator is the median of the posterior π(θ|xn). If L(θ, θ̂)
is zero–one loss, then the Bayes estimator is the mode of the posterior π(θ|xn).

Proof.We will prove the theorem for squared error loss. The Bayes estimator θ̂(xn)

minimizes r(θ̂|xn) =
∫

(θ − θ̂(xn))2π(θ|xn)dθ. Taking the derivative of r(θ̂|xn) with respect

to θ̂(xn) and setting it equal to zero yields the equation 2
∫

(θ− θ̂(xn))π(θ|xn)dθ = 0. Solving

for θ̂(xn) we get 15.

Example 8 Let X1, . . . , Xn ∼ N(µ, σ2) where σ2 is known. Suppose we use a N(a, b2) prior
for µ. The Bayes estimator with respect to squared error loss is the posterior mean, which is

θ̂(X1, . . . , Xn) =
b2

b2 + σ2

n

X +
σ2

n

b2 + σ2

n

a. � (16)
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1.4 Minimax Estimators

Finding minimax estimators is complicated and we cannot attempt a complete coverage of
that theory here but we will mention a few key results. The main message to take away from
this section is: Bayes estimators with a constant risk function are minimax.

Theorem 9 Let θ̂ be the Bayes estimator for some prior π. If

R(θ, θ̂) ≤ Bπ(θ̂) for all θ (17)

then θ̂ is minimax and π is called a least favorable prior.

Proof.Suppose that θ̂ is not minimax. Then there is another estimator θ̂0 such that
supθ R(θ, θ̂0) < supθ R(θ, θ̂). Since the average of a function is always less than or equal to

its maximum, we have that Bπ(θ̂0) ≤ supθ R(θ, θ̂0). Hence,

Bπ(θ̂0) ≤ sup
θ
R(θ, θ̂0) < sup

θ
R(θ, θ̂) ≤ Bπ(θ̂) (18)

which is a contradiction.

Theorem 10 Suppose that θ̂ is the Bayes estimator with respect to some prior π. If the risk
is constant then θ̂ is minimax.

Proof.The Bayes risk is Bπ(θ̂) =
∫
R(θ, θ̂)π(θ)dθ = c and hence R(θ, θ̂) ≤ Bπ(θ̂) for all

θ. Now apply the previous theorem.

Example 11 Consider the Bernoulli model with squared error loss. In example 4 we showed
that the estimator

p̂(Xn) =

∑n
i=1Xi +

√
n/4

n+
√
n

has a constant risk function. This estimator is the posterior mean, and hence the Bayes
estimator, for the prior Beta(α, β) with α = β =

√
n/4. Hence, by the previous theorem,

this estimator is minimax.

Example 12 Consider again the Bernoulli but with loss function

L(p, p̂) =
(p− p̂)2

p(1− p) .

Let p̂(Xn) = p̂ =
∑n

i=1Xi/n. The risk is

R(p, p̂) = E

(
(p̂− p)2

p(1− p)

)
=

1

p(1− p)

(
p(1− p)

n

)
=

1

n

which, as a function of p, is constant. It can be shown that, for this loss function, p̂(Xn) is
the Bayes estimator under the prior π(p) = 1. Hence, p̂ is minimax.
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What is the minimax estimator for a Normal model? To answer this question in generality
we first need a definition. A function ` is bowl-shaped if the sets {x : `(x) ≤ c} are convex

and symmetric about the origin. A loss function L is bowl-shaped if L(θ, θ̂) = `(θ − θ̂) for
some bowl-shaped function `.

Theorem 13 Suppose that the random vector X has a Normal distribution with mean vector
θ and covariance matrix Σ. If the loss function is bowl-shaped then X is the unique (up to
sets of measure zero) minimax estimator of θ.

If the parameter space is restricted, then the theorem above does not apply as the next
example shows.

Example 14 Suppose that X ∼ N(θ, 1) and that θ is known to lie in the interval [−m,m]
where 0 < m < 1. The unique, minimax estimator under squared error loss is

θ̂(X) = m

(
emX − e−mX
emX + e−mX

)
.

This is the Bayes estimator with respect to the prior that puts mass 1/2 at m and mass 1/2

at −m. The risk is not constant but it does satisfy R(θ, θ̂) ≤ Bπ(θ̂) for all θ; see Figure 3.

Hence, Theorem 9 implies that θ̂ is minimax. This might seem like a toy example but it is
not. The essence of modern minimax theory is that the minimax risk depends crucially on
how the space is restricted. The bounded interval case is the tip of the iceberg.

Proof That Xn is Minimax Under Squared Error Loss. Now we will explain why
Xn is justified by minimax theory. Let X1, . . . , Xn ∼ N(θ, σ2I) be multivariate Normal with

mean vector θ = (θ1, . . . , θd). We will prove that θ̂ = X is minimax when L(θ, θ̂) = ||θ̂−θ||2.
For simplicity, I will take n = 1 and σ = 1. You should do the more general case. The

calculations are essentially the same.
Take the prior to be π = N(0, c2I). Then the posterior is

θ|X = x ∼ N

(
c2x

1 + c2
,

c2

1 + c2
I

)
. (19)

The Bayes risk for an estimator θ̂ is Rπ(θ̂) =
∫
R(θ, θ̂)π(θ)dθ which is minimized by the

posterior mean θ̃ = c2X/(1 + c2). Direct computation shows that Rπ(θ̃) = dc2/(1 + c2).
Hence, if θ∗ is any estimator, then

dc2

1 + c2
= Rπ(θ̃) ≤ Rπ(θ∗) (20)

=

∫
R(θ∗, θ)dπ(θ) ≤ sup

θ
R(θ∗, θ). (21)

We have now proved that Rn ≥ dc2/(1 + c2) for every c > 0 and hence

Rn ≥ d. (22)

But the risk of θ̂ = X is d. So, θ̂ = X is minimax.
Potential Test Question: fill in the details of the above proof for general n

and σ2.
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Figure 3: Risk function for constrained Normal with m=.5. The two short dashed lines show
the least favorable prior which puts its mass at two points.

1.5 Maximum Likelihood

For parametric models that satisfy weak regularity conditions, the maximum likelihood es-
timator is approximately minimax. Consider squared error loss which is squared bias plus
variance. In parametric models with large samples, it can be shown that the variance term
dominates the bias so the risk of the mle θ̂ roughly equals the variance:2

R(θ, θ̂) = Varθ(θ̂) + bias2 ≈ Varθ(θ̂). (23)

The variance of the mle is approximately Var(θ̂) ≈ 1
nI(θ)

where I(θ) is the Fisher information.
Hence,

nR(θ, θ̂) ≈ 1

I(θ)
. (24)

For any other estimator θ′, it can be shown that for large n, R(θ, θ′) ≥ R(θ, θ̂). So the
maximum likelihood estimator is approximately minimax. This assumes that
the dimension of θ is fixed and n is increasing.

1.6 The Hodges Example

Here is an interesting example about the subtleties of optimal estimators. Let X1, . . . , Xn ∼
N(θ, 1). The mle is θ̂n = Xn = n−1

∑n
i=1Xi. But consider the following estimator due to

2Typically, the squared bias is order O(n−2) while the variance is of order O(n−1).

9



Hodges. Let

Jn =

[
− 1

n1/4
,

1

n1/4

]
(25)

and define

θ̃n =

{
Xn if Xn /∈ Jn
0 if Xn ∈ Jn.

(26)

Suppose that θ 6= 0. Choose a small ε so that 0 is not contained in I = (θ− ε, θ+ ε). By the
law of large numbers, P(Xn ∈ I)→ 1. In the meantime Jn is shrinking. See Figure 4. Thus,

for n large, θ̃n = Xn with high probability. We conclude that, for any θ 6= 0, θ̃n behaves like
Xn.

When θ = 0,

P(Xn ∈ Jn) = P(|Xn| ≤ n−1/4) (27)

= P(
√
n|Xn| ≤ n1/4) = P(|N(0, 1)| ≤ n1/4)→ 1. (28)

Thus, for n large, θ̃n = 0 = θ with high probability. This is a much better estimator of θ
than Xn.

We conclude that Hodges estimator is like Xn when θ 6= 0 and is better than Xn when
θ = 0. So Xn is not the best estimator. θ̃n is better.

Or is it? Figure 5 shows the mean squared error, or risk, Rn(θ) = E(θ̃n−θ)2 as a function

of θ (for n = 1000). The horizontal line is the risk of Xn. The risk of θ̃n is good at θ = 0. At

any θ, it will eventually behave like the risk of Xn. But the maximum risk of θ̃n is terrible.
We pay for the improvement at θ = 0 by an increase in risk elsewhere.

There are two lessons here. First, we need to pay attention to the maximum risk. Sec-
ond, it is better to look at uniform asymptotics limn→∞ supθ Rn(θ) rather than pointwise
asymptotics supθ limn→∞Rn(θ).
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Figure 4: Top: when θ 6= 0, Xn will eventually be in I and will miss the interval Jn. Bottom:
when θ = 0, Xn is about n−1/2 away from 0 and so is eventually in Jn.
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Figure 5: The risk of the Hodges estimator for n = 1000 as a function of θ. The horizontal
line is the risk of the sample mean.
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