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Preface

This internet publication is the second edition of Structural Reliability Methods and is a corrected
and slightly revised version of the first edition published by Wiley, Chichester 1996 (ISBN 0-
471-96086-1). The Appendixes 4 and 5 about the reliability software packages PROBAN and
STRUREL are not included in the second edition. Instead some web addresses are listed at the
reading path diagram below. Peter and Elena Friis-Hansen are acknowledged for help with recov-
ering of text files (typed by Annette Bærentzen as the publishers basis for the first edition) and
figure files (worked out by former Ph. D. students).

This is the second web edition 2.2.5 [June-July 2005 (several corrections), January 2005 (minor
corrections), March 2004 (minor corrections), Ed. 2.2 is of May 2003, Ed. 2.1 is of September
2002] with correction of a large number of typos present in edition 2.1. The authors welcome any
further corrections and remarks received from the readers.

The book is a revised and extended translation of a Danish text: SBI-rapport 211: Bærende
Konstruktioners Sikkerhed, 1990, published by the Danish Building Research Institute. The first
Danish textbook on structural reliability written as a basis for lectures given at the Department
of Structural Engineering at the Technical University of Denmark is Konstruktioners Sikkerhed
(Safety of Structures) by C. Dyrbye, S. Gravesen, S. Krenk, N.C. Lind and H.O. Madsen from
1979 (Den private Ingeniørfond ved Danmarks tekniske Højskole). The present book does not
cover as wide a field as Konstruktioners Sikkerhed. Besides introducing the reliability methods
the mentioned book contains much material about specific strength and action models, that is,
topics only rudimentary considered in the present book. On the other hand, the present book is
considerably more extensive concerning the reliability methods that have become practicable in
the later years mainly due to the development of fast computers.

The textbook Konstruktioners Sikkerhed has been the basis for a more extensive version in En-
glish written by three of the authors: Methods of Structural Safety by H.O. Madsen, S. Krenk and
N.C. Lind from 1986 (Prentice-Hall, Inc.), a monograph that has gained considerable international
recognition. It is recommended as a supplement to the present book, in particular with respect
to detailed strength and action models and with respect to response analysis based on the theory
of random processes. The influence of Konstruktioners Sikkerhed can also be traced in another
English textbook written in a Danish-British cooperation between P. Thoft-Christensen and M.J.
Baker: Structural Reliability Theory and Its Applications from 1982 (Springer-Verlag). This book
is much more elementary and broad-written than Methods of Structural Safety and it has been well
received as a guidance for the first steps into the subject.

The present book Structural Reliability Methods treats both the philosophy and the methods
more deeply. It can be read in several rounds dependent on the amount of detailed knowledge
seeked by the reader. Figure 0.1 shows possible starting points and reading paths. This is not to
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ii Preface

Figure 1: Reading path diagram with several possible starting points and tracks for the reading. It shows
that several chapters can be read separately or in pairs almost independently of the other chapters.

* Commercial reliability software is available on the web addresses:
http:// www.strurel.de

http://info.uibk.ac.at/c/c8/c810/SoftwareDevelopment/index.html
http://www.ce.berkeley.edu/ adk/software.htm



Preface iii

say that cross references to material outside the recommended reading paths do not show up, but
in such cases only limited reading is necessary at these references.

Besides the guidance given by this reading path diagram, several sections are marked by *
indicating that the section in question can be jumped without causing severe difficulties for the
continued reading. These marks are set independently of the reading path diagram. Reading in the
succession of the chapters with jumping of the marked sections is judged to give a sufficient first
introduction to the probabilistic methods for the evaluation of structural reliability including the
philosophy on which the methods are based. The introduction is sufficient for reading Appendix
3 which is a revised reprint of a JCSS Working Document from 1989 exemplifying a proposal for
a code for the direct use of reliability methods in structural design. (JCSS = Joint Committee on
Structural Safety).

The text of the book is organized in main text, examples and remarks. The symbol � at the end
of a text shows that at this place an example or a remark ends.

It is assumed that the reader has an elementary background in probability calculus and statisti-
cal reasoning. Thus it is assumed that words like stochastic and deterministic do not cause trouble
and that concepts as mean value, standard deviation, coefficient of variation, covariance, correla-
tion coefficient, distribution function, density function, probability, sample, etc. are well known to
the reader. As an aid for recalling, special remarks are given at relevant places. These remarks sum
up the definitions and theorems that are most important in the given context. Necessary mathemat-
ical concepts that are judged to be beyond the most elementary general knowledge are introduced
more carefully.

Similar remarks apply concerning the necessary knowledge of strength of materials and struc-
tural analysis. By and large it is only required that the reader know about the equilibrium principles,
the concepts of stress and strain, and is acquainted with elementary elasticity and plasticity theory.

Kgs. Lyngby, July 2005

Ove Ditlevsen
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Chapter 1

INTRODUCTION

1.1 Probabilistic and deterministic models

Probabilistic structural analysis is the art of formulating a mathematical model within which one
can ask and get answer to the question: “What is the probability that a structure behaves in a
specified way when given that one or more of its material properties or geometric dimensions and
properties are of a random or incompletely known nature, and/or that the actions on the structure
in some respects have random or incompletely known properties?”

Probabilistic structural analysis can be seen as a extension of deterministic structural analysis
which is the art of formulating a mathematical model within which one can ask and get answer to
the question: “How is a structure behaving when its material properties, geometric properties and
actions all are uniquely given?”

Probabilistic analysis is an extension of deterministic analysis because deterministic quantities
can be interpreted as random variables of a particular trivial nature. Their density functions are
merely contractions to concentrated probability masses of size 1. If a deterministic model is treated
as a probabilistic model, the answer to the question posed above about the probability will be either
0 or 1. If the answer is 1, the behavior specified in advance is just the answer to the question posed
in the deterministic model. Since events of zero probability are without interest, one looks for the
behavior that has probability 1 of occurring. This is equivalent to the problem of the deterministic
analysis: “What dimensions should the structure be given in order that a specified behavior within
the universe of the model is caused by a given action”.

Probabilistic structural design is a decision problem added to the probabilistic structural analy-
sis. The question can be formulated in the following way: “What dimensions should be assigned to
the structure in order that it has optimal properties in a given well-defined sense within the possi-
bilities of the probabilistic model?” This question can be given the equivalent formulation: “What
value should the probability of occurrence of a specified behavior be in order that the structure in
a well-defined sense is optimally designed with respect to this behavior?”

Engineering judgment is the art of being able to decide whether results obtained from a struc-
tural analysis or design model is sufficiently realistic that the engineer dare base his or her practical
decisions on these results. The formulation of a mathematical model is guided by the wish of get-
ting a realistic description, of cause, but it is also necessary that the model becomes operational in

1



2 Chapter 1. INTRODUCTION

the sense that it is suited for solution, that is, that it can deliver answers to posed questions. An
important aspect of the model formulation process is therefore the art of balancing realism against
operability.

1.2 The safety problem

In this connection the question about the safety of structures makes up a particular type of problem.
In order to appreciate the nature of this problem it is illustrative first to look at the problem in an
experiment of thought in which the world behaves under total deterministic control. We imagine a
project for a structure which relative to a given load configuration has carrying capacity properties
that can be predicted down to the slightest detail. The specified load configuration contains a
free parameter (termed the load parameter) which by its value fix the load level. The larger the
load parameter, the larger the load level. Moreover we imagine that the planned structure has the
following property. For any value of the load parameter it is possible to design the structure such
that it will be exactly at the limit between the situation where the structure can carry the load and
the situation where the structure fails in some sense. If the considered load configuration with
certainty is the only one the structure will experience, and the future maximal value of the load
parameter is known with certainty then, of course, it will be sufficiently safe to design the structure
such that the limit situation just exactly does not occur for the maximal value of the load parameter.

It is obvious that any doubt about the value of the maximal load parameter or any doubt about
the carrying capacity of the structure as expressed by the load parameter value in the limit situation
(the ultimate load value) raises a question about safety. Even within the deterministic world of
this supposition the doubt in the mind of the engineer of his or her knowledge about the exact
parameter values causes a safety problem: How much larger than the maximal load parameter -
assessed according to the best conviction - should the ultimate load value be chosen in the carrying
capacity model in order that the engineer can guarantee that the structure will not fail under service
or, at least, that there is an extremely small risk that a failure will occur. The difference between
the two values is called the safety margin.

The nature of the problem is such that it cannot be answered solely by theoretical considera-
tions. The accumulated experiences of the profession of master builders of old days and, later, of
the engineering profession obtained from practicing the art of engineering must necessarily make
up the basis for value assessment of safety margins. On the other hand, it is clear that the variety
of structures is so large that there is a need for structuring of the information, that is, for rational
analysis and description of these experiences.

The reaction of the society on experienced occurrences of failure will in principle reveal
whether or not the engineering profession has been too daring in its assessment of what are con-
sidered to be needed safety margin levels. At the same time the need for economical compatibility
and also the general resistance against waste of resources counteract a tendency of the profession
to be too cautious.

All together, in order to be able to aim at optimal decision making a rationally structured
model tool must be at hand, possibly not always for each individual engineer who can lean against
an authorized formal set of rules, but for the engineering professions as an entity. This model
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tool must contain elements that allow quantification of different uncertainty types. In our thought
experiment the uncertainties are of the special kind that characterize the doubt in the mind of the
engineer about own knowledge about the exact values of the ultimate load value and the maximal
value of the load parameter. Quantification of such uncertainties can be philosophically debatable
from a usual scientific objectivity point of view. Never the less, it is the human power of judgment
beyond scientific explanation which is the pillar on which all human activity is built. The theory of
structural reliability must necessarily be built on the assumption that the engineering performance
of professional judgment through experience and training can be reflected within a formal model
universe. The model formulation ought to be adaptive in the sense that it can fit the possibilities
of the engineer to exercise reasonable judgments and evaluations. Reversely the engineer must
adapt his or her way of thinking to the language of the model. Simultaneously the model gradually
changes its status from being a more or less arbitrary system of formulation with less objective
value assessments to a system which is well suited for processing and transmitting of essential
engineering information.

1.3 Formal systems of judgment evaluation

There are many formal systems, often mathematical of appearance, that can be used as support for
exercising judgment evaluations and processing of these evaluations. The simplest and most wide
spread system is the grading system of students. For this system the mathematical model formula-
tion consists in the extreme simplification that the universe of human qualities is supposed to have
such properties that it can be mapped as grades on one and the same arithmetical scale. Moreover,
it is often supposed that the rules of the algebra can be used of averaging over incommensurable
qualities with the purpose of characterizing the entity of qualities by a single or some few num-
bers. From a scientific point of view this model seems to be highly debatable. Never the less,
the experience shows that in spite of obvious shortcomings and injustice the practical application
of the grading system mirrors at least some of a person’s qualities making the grading usable for
many purposes. The explanation is that the system is adaptive. It functions in the same way as a
language. If the system contains rules that are too rigid to be adaptive, the system is changed to a
larger degree of flexibility. In spite of obvious scientific shortcomings the use of the system gives
a better processing and transfer of information compared to what is achieved without use of any
system whatsoever.

It seems to be easy to accept that grading statements with imprecise meaning are applicable
on phenomena that in their nature are complex and far away from so-called scientifically exact
phenomena. Sometimes it is considered unscientific to assess by judgment or guess about natural
scientific phenomena with the purpose of letting these guesses be usable or even valuable informa-
tion in decision processes concerning technical matters. This perception of unscientific behavior in
the decision making is peculiar in view of the common belief that the technically-scientific fields
have a less complex structure than in most other fields of human thinking and activity. Therefore
the evaluation model for technical decisions should be more trustworthy. As a matter of fact there
is, all things considered, a substantial difference between ideal-scientific perception and practice.
A simple example in the technical field is the use of tolerance specifications for geometric measures
of building components.
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1.4 The tolerance system

When a geometric measure B of a building component is accompanied by a tolerance specification
T it is thereby usually meant that it is required that the measure of the component should be
within the interval [B − T/2, B + T/2]. Whether or not the requirement is satisfied for a given
building element can be controlled with a large degree of confidence by measurement, of course.
However, it is rare that all produced components of a given type at the factory are subject to
control measurements with the purpose of rejecting elements that do not satisfy one or more of
the tolerance specifications. Such a total control is resource demanding and moreover it is not
necessary. Rather the point of view is held that the production of components with respect to
measure accuracy should be made with such a care that the tolerance requirements only rarely
are violated. On the other hand, the work process should not be refined to such a degree that the
measures are unnecessary accurate in particular if the cost of obtaining such accuracy is significant.
With this point of view in mind the tolerance requirement becomes an adaptive tool of control for
the production process. Thus the tolerance specification becomes analogous to a grading. It is a
label that point at the category of quality corresponding to a specific class of production methods
rather than an exact bounding of the geometric measures. Since the fulfillment of the requirement
can be tested by measurement, it will, of course, in situations of claims, work as an exact concept.
However, usually claims only occur if the use of the building component causes essential problems
in the process of assembly. Often components with measures outside the tolerance interval will
never be identified.

It is natural to use the concepts from the probability calculus for the description of the properties
with respect to accuracy of a production method. By measurement of suitably large samples of
items from the production clear data can be obtained without difficulties of principle. In the form
of histograms or cumulative curves the set of data directly gives information about the frequency
of the occurrence of different measures. The professional judgment exercised by the production
manager of whether or not a given production process is out of control with respect to the given
tolerance specification can be supported on the measurements. However, his or her experience
helps to support the judgment on several not necessarily quantitative indicators.

1.5 Interpretation of the concept of probability

Within more recent time formal mathematical languages different from the probability formalism
have been developed for the purpose of expressing judgment evaluations and their processing.
These are languages that work with degrees of truth (“fuzzy logics”) or degrees of membership
of a set (“fuzzy set theory”). These systems of evaluation seem to have a certain success in par-
ticular within the so-called soft sciences (“non-exact” scientific disciplines). Attempts have been
made to apply these tools also within the type of problems that concern structural reliability. The
dominating opinion is, however, that the probability calculus is the most convenient mathematical
basis for evaluation of the reliability of structures. One reason is that the mathematical theory
of probability allows different for the applications equally useful but never the less very different
interpretations of what a probability means. In the tolerance example it was explained that the con-
cept of probability can be used to model the frequency by which a specified event can be expected
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to occur by a large number of repetitions under controlled circumstances. This is the so-called
relative frequency interpretation of probability. It is obvious that the structural reliability analysis
must consider the unavoidable and ubiquitous random fluctuations of the material properties, the
geometric measures and the loads. These fluctuations are more or less describable in the form of
histograms or cumulative curves based on measured data. Thus they are describable in terms of
probabilities interpreted as relative frequencies. They make up an element of uncertainty of physi-
cal kind on top of the uncertainty attached to the engineer’s knowledge about the structure. By the
inclusion of this physical uncertainty element in the deterministic model of our supposition above
it changes the model from being deterministic to be probabilistic.

However, the probability theory is also interpretable as a system of calculus for professional
judgment in which the probabilities express degrees of belief of whether or not specified events
occur or whether or not posed statements are true. If we return to our supposition with the deter-
ministic model, we may imagine that the engineer possesses sufficient professional experience to
be able to judge not just whether his or her carrying capacity model gives a result that deviates
from the exact carrying capacity but also to give a more or less precise quantitative evaluation of
the deviation. As an example such an evaluation could be that the engineer assesses an interval and
an associated probability that it is a true statement that the exact value is in the assessed interval.
In more detail, he or she may assess the probability that the exact value is larger than the upper
interval border and the probability that the exact value is less than the lower interval border.

Such probabilities can be interpreted as measures of the degree of belief or knowledge of the
engineer about the truth of his or her statement. From a physical point of view these probabilities
are not interpretable as relative frequencies. On the other hand, it may support the considerations
about the probability assessments to think of these probabilities as if they are relative frequencies
in a supposed experiment. He or she can use analogies with situations in which relative frequencies
are at hand or he or she may conglomerate his or her experiences (or rather the reported experiences
of the engineering profession) from many different structures in order to reach an evaluation of the
frequency by which he or she thinks to be right about the statement.

An alternative form of the judgment is to express it by a mean value, a standard deviation and
another quantity, possibly, that expresses skewness. Skewness is a quantitative measure of more
weight on the belief that the exact value rather is on the one side of the mean value than on the
other side.

It is indicated above that this judgment process is a problem for the individual practicing en-
gineer if it should be based on own experiences. In practice guidance should be found in existing
recommendations worked out by a code making authority. This authority is supposed to represent
the profession and to be competent and qualified to conglomerate the experiences of the profes-
sion. The quantification of judgment uncertainties should be given explicitly or implicitly in the
code of practice that regulates the level of reliability of structures designed in practice.

Besides the two mentioned types of uncertainties there are other important types of uncertain-
ties with associated interpretations of the probabilities that quantify the uncertainties. A more
detailed discussion is given in Chapter 3.
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1.6 Compatibility of the probability interpretations

In spite of the different interpretations of the probability concept it always allows a supposition in
which one can imagine situations of repetitions. This gives a mental basis for an interpretation of
the content of information in a probability statement. In this respect the mathematical probability
concept has an advantage as a model of judgment evaluation relative to other models as for example
“fuzzy set theory”.

Another philosophically important and uniting aspect is that it can be shown that the proba-
bility theory in decision situations is superior to all other evaluation models when these decision
situations concern games with gain rules of a specifically simple but commonly relevant type. The
superiority of the probability theory is due to the property that a gambler who applies a game strat-
egy which is based consistently on the rules of probability calculus in the long run will take the
gain from any opponent gambler that does not follow these rules. This property is interesting for
the choice of the basis for a theory about structural reliability because the decision methods in the
structural design process can be seen as a game strategy in a game against the nature.

A probabilistic model for structural reliability must necessarily mix probabilities with seem-
ingly different possible interpretations. Objections of philosophical kind have been raised and are
still raised against such mixing claiming that they are not allowable because probabilities of differ-
ent interpretations are incommensurable. It is a general experience that it is almost always difficult
to reach general consensus about the clarification of philosophical problems. However, it has often
been experienced that methods claimed to be philosophically doubtful have turned out to be quite
useful for the solution of practical decision problems. The methods have through their use gained
such a meaning and objectivity as decision tools that the philosophical problems have vanished.
The methods become acceptable because they have turned out to be useful.

The philosophical problem about mixing of “different types” of probabilities may be solved,
possibly, for some of the skeptical readers if they accept the solution of a specific reliability eval-
uation problem as the exercise of a supposition that in a rational way compares and summarizes
all the uncertainties that the engineer imagines can affect the reliability of the structure. In this
supposition all the probabilities are considered as representatives for relative frequencies. Some of
these may be based on data from repeated measurements while others are generated by a mental
process as in the previously considered suppositions. The structural reliability is then evaluated by
a study of the properties of this supposed game of the mind.

Another way of thinking is to imagine all the probabilities of the model to be personalistic
probabilities, that is, the evaluating engineer’s degrees of belief in the truth of his or her state-
ments. It has no influence on the reliability model from where the engineer gets his or her value
assessments. Some assessments are based on precise statistical analyses of measured data, possi-
bly, while other assessments are professional estimates. The information gathering of the engineer
just leads to the input values of the personalistic quantities needed in the reliability model in order
that it can deliver those quantitative values that express the degree of the structural reliability as it
is to the conviction of the engineer in dependence of his or her knowledge. Thus all input values
become of the personalistic type and they will vary among different engineers that try to make
a reliability analysis of the same structure. Those input values that are based on measured data
will just be reproducible from engineer to engineer to a larger degree than the input values that
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fundamentally are based on the judgments of the individual engineer.

1.7 Knowledge related nature of the reliability measure

It follows from this discussion that a computed quantitative measure of the reliability of a structure
cannot be interpreted as a number that solely characterizes a physical property of the structure.
Rather the reliability measure resulting from given knowledge should be interpreted as a measure
of the overall quality of this knowledge about factors that are of importance for the judgment of
the properties of the structure with respect to reliability. If the engineer gathers more information
and takes it into account, the reliability measure will change in general. The measure may change
against smaller reliability if the extra information is about unfortunate not earlier known properties,
or the extra information may increase the reliability. It will be demonstrated in a later chapter that
extra information even being bad news can increase the reliability. This at a first glance surprising
property of the reliability model is due to the fact that lack of information often can imply larger
uncertainty about the properties of the structure and thus about its reliability than sure information
about less good properties.

Updating of the reliability measure is actual by reevaluation of the reliability of an existing
structure. Such a reevaluation may have the purpose to help judging whether or not a reinforcement
of the structure is needed in connection with a changed use of the structure or due to the wear and
deterioration that has taken place since the structure was new. Simultaneously the updating serves
the purpose of establishing a decision basis for the design of the reinforcement in case it is needed.

1.8 Ambiguity problem

It is possible to formulate many different probabilistic models for the evaluation of the reliability
of a structure. These models may be more or less elaborated in their detailing and therefore be
more or less flexible with respect to handling new information. It is common to all probabilistic
reliability models that the measure of reliability with respect to not experiencing some specified
adverse behavior is uniquely related to the probability that the adverse behavior will take place
within a specified time interval as, for example, the assumed time of existence of the structure (the
design life time). This probability is denoted as the probability of failure. The word “failure” is
here only a label on the event that in a given connection is defined to be adverse behavior.

For example, in some connection failure may be defined as a genuine collapse and in another
connection be defined as displacements above some given thresholds. For the same structure, the
same definition of failure and the same information about the structure it is the ideal, of course,
that different models that are not in obvious conflict with the given information by and large give
the same value of the failure probability. However, this ideal turns out to be difficult to maintain
and the more difficult so the less the failure probability.

If from any reasonable conception the failure event can be characterized as a rare event – which
usually is the case for structures in practice – a rational probabilistic reliability model should
be constructed such that it assigns a small probability to the failure event. This is a necessary
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requirement in order to maintain the mental interpretation of the probability as a relative frequency.
Therefore the sensitivity to the choice of model is a problem that cannot be avoided when making
the rules for rational judgment of the reliability of structures. The problem is analogous to the
problems faced in connection with strength testing of materials and also in connection with several
experimental testing methods. The results can only be compared if they are produced by the
same testing method. This fact is the reason that a large number of testing methods have been
standardized.

In order to be able to compare failure probabilities computed for different structural layouts and
different failure definitions all on the basis of given information it is thus necessary that all quanti-
ties are computed within the same probabilistic model. This requirement will be respected by any
rationally thinking engineer who in his or her design work necessarily makes such comparisons.
However, the engineer is left over with a decision problem: Which value should the reliability
measure be given in order that the structure just accurately can be considered to possess sufficient
reliability with respect to the specified failure event? The reliability measure can be changed to the
one or the other side by changing the dimensions of the structure or by changing its layout. Where
should the engineer fix the value? For the individual engineer the answer is given in a set of rules
worked out by the profession with the accept of the society, that is, a code of practice which is
made by a superior evaluation of the problem. Before giving a description of the current codes of
practice the nature of the problem will be analyzed somewhat more closely.

1.9 Determination of the reliability level by optimization

The problem about the choice of the reliability level can be analyzed by the aid of decision theoret-
ical methods. However, these methods do not solve the problem but transform it to a more clearly
interpretable optimization problem which balances costs and gains against each other. By this the
problem is changed from a problem of choice of a target value of the safety measure to the choice
of cost values associated to the failure event. Since some types of failure events can imply the loss
of human lives or be fatal with respect to their consequences for the society, it can not in general
be left to the individual practicing engineer to make the value assessments that are necessary for
the decision process. As mentioned such value assessments are a matter for the entire engineering
professor or rather, possibly, the entire society. The values should directly or indirectly be given in
codes of practice for the profession. Due to the sensitivity with respect to the choice of the model it
is obvious that the cost values cannot be chosen independently of the probabilistic reliability model
used for the analysis unless it is accepted that the dimensions of the resulting structure varies from
model to model. If none of the models are in obvious conflict with the available information, it
seems difficult to find arguments by which the one model should be chosen rather than the other
model.
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1.10 Consequence-calculation principle governing the develop-
ment of the codes

In the past the code formulation work has followed a completely different line of reasoning than the
presented philosophy suggests. The code work has its roots in a step by step historical development
with returning revisions during the last 50-100 years. Naturally the argumentation has been within
the framework of thinking about the reliability problem that has been accepted practice at the
time when the revision work was made. Quantitative probabilistic models were not within this
framework. Probabilistic arguments of qualitative type were more or less in the debate, however,
and they could affect the value assessments. Essentially the basis was a step-by-step cautious
change of the value assessments at each new revision of the code - now and then in connection
with a change not just of the values but also of the format of the code.

The value assessments in the first codes were based on a formalization of practical rules origi-
nating from the traditions of craftsmanship as they have been developing up through the times by
the master builders. The essential argument was that the traditions of craftsmanship were results of
slowly gained experiences about in which way good and safe structures should be designed. This
accumulation of experiences was the necessary basis for a formalized engineering practice that in
steadily increasing extent by application of mathematical models could deviate from traditional
structural solutions by cautious use of the insight that the development of the natural sciences
brought about. It was clear to the code makers that mathematical models give idealized pictures of
the reality and that it is difficult to guarantee that all phenomena of possible essential importance
for the reliability are included or realistically represented in the models. To this the history showed
too many cases of mistakes having more or less catastrophic consequences. Therefore the code was
made such that its value assessments were belonging to a selected class of deterministic and suit-
ably simple models of the behavior of structures, all well known from the engineering education.
Within the defined model universe the values of one or more so-called safety factors could then
be assessed by consequence computations. Safety factors are nothing but dimensionless equiv-
alents to safety margins (ratios instead of differences). These consequence computations served
the purpose to show that the use of the given safety factor values in usual engineering computa-
tions resulted in the same structural dimensions as obtained from the craftsmanship rules. With
the increased degree of problem structuring and understanding of the phenomena brought about
by the mathematical model analysis it became possible slowly to change the value assessment in a
controlled way such that more daring design of structures became possible.

Increasing insight with associated new models and an increasingly broader fan of available in-
formation has occasionally caused a change of the code format in direction of increase of shading.
In this entire sequence of revisions the consequence computation principle has been a governing
element. Whenever the code was given a new format together with the necessary value assess-
ments, it was required that the new code by and large leads to the same dimensions as the old
code for some examples of typical structures to be covered by the code. The change of code thus
gave an initial situation for future more shaded revisions without breaking the continuity of current
practice of what should be good and safe structural dimensions.
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1.11 Optimality postulate

By the introduction of a code that specifies the value assessments for use in a probabilistic relia-
bility model the problem should be handled in the same way. It is the existing structures designed
according to the current codes and practice that specifically show where the reliability level is as it
is presently accepted by society. It can reasonably be claimed that society by its accept of current
practice of design implicitly has assessed the costs associated to the failure event such that the cur-
rent design rules at present are close to be optimal. It not so there would be a need for revision of
the value assessments of the code. If this point of view is taken as a usable postulate, it is possible
to compute the cost of failure for each existing structure and each probabilistic model . Both this
cost and the corresponding optimal failure probability will vary with respect to the applied proba-
bilistic model and the considered structure example but alternative models obviously give the same
dimensions for the same structure example.

It follows from this discussion that a probabilistic code necessarily must standardize at least
those elements of the probabilistic models that otherwise by different arbitrary choices without
clear conflict with the given information lead to groundless variations of the results. The code could
after such standardization specify the costs of different relevant types of failures with associated
consequences. This corresponds to a code that allows the most structured decision procedure based
on optimization. A simpler but also more rigid code is obtained if only acceptable values of the
reliability measure are specified. A code like that may in a weak sense take care of the optimality
point of view by specifying different acceptable values of the safety measure corresponding to
different classes of more or less serious consequences. These so-called safety classes can in their
simplest form be verbally characterized such that the acceptable value of the reliability measure
increases over classes with increasing seriousness of the consequences.

In order that a code committee in a reasonably rational way can be able to assess the acceptable
values of the reliability measures in the different safety classes within a standardized probabilistic
model universe, the code committee must lean against consequence computations using the posed
postulate about optimal dimensioning practice. The result is a probabilistic code of the rigid type
with respect to optimization. On the other hand, such a code is in some essential features much
closer to the format of most current codes of practice. The probabilistic code is therefore well
suited as a basis for running revisions at the safety factor values in current codes in pace with
increased common information and insight.

1.12 The following chapters

Next chapter explains the formal rules for obtaining officially required reliability as contained in
the current Danish code. The rules imply that all computations in principle take place within
models of deterministic form but the value assessments are to some extent based on probabilistic
arguments.

The following chapters develop a probabilistic code format by a step by step introduction of
as few necessary concepts and variables as possible for obtaining a formal reliability evaluation
system that catches the most essential features of the nature of the uncertainties and their interplay.



1.13 Epilogue 11

Such a line of model development is characterized by the property that simple and therefore less
information demanding models come before more structured models. This is not solely of peda-
gogical reasons but just as essentially due to other reasons. One of these is that lack of detailed
information implies that judgment quantities play an essential role in realistic reliability evalua-
tions. The nature of the associated uncertainties and their treatment can hardly carry more than
the simplest possible pragmatically chosen structure which is consistent with the superior model.
(The word “pragmatic” has the meaning here that the model choice should be convenient from a
mathematically operational point of view but also that it should be well suited for quantification of
professional judgments).

1.13 Epilogue

Once in a while the engineering profession needs to analyze the basis for its decision tools. Do we
as engineers act in an objective and rational way? The previous pages of text present an attempt
to discuss some important issues of this question which will be picked up again at the end of
Chapter 3: “Probabilistic Information”. In 1975 one of the pioneers in the field of applications
of probabilistic methods in structural reliability C.A. Cornell gave the following answer [1.1]: “...
Maybe, in fact, we don’t know as engineers how to deal with “too much” realism in our models.
Rather, perhaps progress is no more than a continuous refinement of operational procedures (“rules
for a game”) that capture just enough reality to protect the public and profession from low quality
practice, on one hand, and, on the other, to be supportive of the competent engineering designer
who wants to check himself or to roughly calibrate his new design relative to others where we have
experience.”
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Chapter 2

PARTIAL SAFETY FACTOR METHOD

2.1 Limit states

The concept of limit state related to a specified requirement is defined as a state of the structure
including its loads at which the structure is just on the point of not satisfying the requirement.

Often the requirement is verbally formulated. However, usually the requirement will be inter-
preted and formulated within a mathematical model for the geometric and mechanical properties
of the structure and for the actions on the structure. Let x1, x2, . . . , xn be those variables that
independently contribute to that part of the mathematical model that concerns geometry, strength
properties and actions. The variables are free in the sense that their values can be chosen freely and
independently within a given subset of the n-dimensional space R

n . This subset is the domain of
definition of the model in the same way as a function of n variables has a domain of definition. To
each choice of values corresponds a uniquely defined structure with uniquely defined loads. This
structure with its loads is a pure mathematical object that does or does not satisfy a given limit
state requirement. Possibly it cannot at all be realized as a physical object, for example because
the load exceeds the carrying capacity of the structure.

Example 2.1 Consider the very simple structure that consist of a rope fixed to a hook and carrying
a burden. If the hook is supposed to be much stronger than the rope we have a reliability problem
that corresponds to the requirement that the rope should be able to carry the burden. This problem
can be formulated in terms of two free variables, the tensile strength r of the rope and the weight
s of the burden. Both these quantities are positive per definition. Thus the domain of definition of
the model is the subset R

2+ of R
2.

Clearly this rope structure with its load cannot be realized as a physical object if r and s
are chosen such that r < s. Nevertheless we let the entire R

2+ be the domain of definition for
the structure considered as a mathematical object. If the mathematical model is extended by a
geometric variable a for the cross-section area of the rope, we calculate the stress in the rope as
s/a independent of the value of r . Moreover, if the model is extended by Hooke’s law and with
a length l of the rope, we can calculate the resulting displacement of the burden when its weight
is transferred gradually to the rope under the assumption that the hook is completely rigid. The
displacement becomes ls/(aE) where E is the elasticity coefficient. Hooke’s “law” expresses that

13
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Figure 2.1: Domain of definition and failure limit state of a reliability analysis model for a rope that carries
a load.

the relative elongation (the strain) of the rope is proportional to the stress in the rope.

An analysis of a reliability problem with simultaneous consideration of the requirement that
the rope should be able to carry the burden and the requirement that the displacement should not be
larger than a given value δ thus becomes formulated in terms of the 5 variables a, l, E, r, s, which
per definition all are positive. Thus the domain of definition of the extended model is R

5. �
Here we have assumed that the reliability problem can be formulated in terms of a finite number

of variables x1, . . . , xn . There are relevant reliability problems where the model formulation most
conveniently requires use of an infinity of variables (functions). In particular this is the case when
random temporal and spatial property variations of actions and resistances are relevant. However,
this first part of the reliability theory for structures will almost exclusively deal with models of the
simple type characterized by a finite number of input variables x1, . . . , xn .

A given limit-state requirement divides the domain of definition of the model in two sets, the
safe set and the failure set, in which the requirement is satisfied and not satisfied, respectively. The
boundary of the safe set (which, of course, is also the boundary of the failure set) is called the
limit state. In the models considered herein the limit state is of sufficiently simple structure to be
represented as the set of zero points for a piecewise differentiable function g(x1, . . . , xn) which is
defined everywhere in the domain of definition of the model and which takes positive values in the
internal of the safe set and negative values in the internal of the failure set. Moreover, if the safe
set is simply connected we say that the limit state is regular. Thus the limit state is given as the set
of values of the input variables (x1, . . . , xn) for which

g(x1, ..., xn) = 0 (2.1.1)

It is emphasized that the choice of g is not unique. For example, the function g3 can be used in
place of g in (2.1.1). Parts of or all of the limit state can be chosen to belong to the failure set or to
the safe set according to what in a given problem may be considered convenient.

Limit states can be of different categories. The principal categories are collapse limit states
(ultimate limit states) and serviceability limit states. A collapse limit state usually represents a
situation where the structure is just at the point of loosing its integrity, that is, to pass into an
irreversible state that may have a catastrophic nature and from which the structure only recovers by
repair or reconstruction. A serviceability limit-state corresponds to the limit between an acceptable
and a not acceptable state under normal use. Such a state is with respect to direct damage of the
structure often reversible in the sense that the structure by unloading passes unchanged back to the
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safe set. However, passages of a serviceability limit-state can also cause permanent damages of
the structure such as formation of cracks or other visible defects. Generally these damages will not
raise a reliability problem of the collapse limit-state category provided the structure is subject to
general running maintenance.

Example 2.2 The collapse limit-state for the rope in Example 2.1 is given by the zero points of
the function

g(r, s) = r − s (2.1.2)

Thus the collapse limit state is given by r = s, the failure set by r ≤ s and the safe set by r > s,
see Figure 2.1.

The requirement that the displacement of the burden at most is a given value δ is of the category
as a serviceability limit state. The function g can here be chosen as

g(a, l, E, r, s) = δaE − ls (2.1.3)

Thus the serviceability limit-state is given by δaE = ls, the failure set by δaE < ls and the safe
set by δaE > ls.

In the reliability analysis the two limit states of different category will be considered separately.
The situation is different if two or more different collapse limit-states can be of importance. In
Example 2.1 it was assumed that the carrying capacity of the hook was much larger than the
carrying capacity of the rope. If this assumption cannot be maintained we must introduce yet
another variable rk for the carrying capacity of the hook. Let rt be the carrying capacity of the
rope. Then we have a composite collapse limit-state that can be defined as the zero points of the
function

g(rk, rt , s) = min{rk, rt} − s (2.1.4)

The safe set is the intersection of the two sets given by rk > s and rt > s while the failure set is
the union of the two sets given by rk ≤ s and rs ≤ s. The limit state is given by min{rk, rs} = s,
see Fig. 2.2. �

Under the specified differentiability conditions for the function g and for n = 3 the equa-
tion (2.1.1) obviously defines a piecewise differentiable surface. The limit state is therefore more
specifically denoted as the limit-state surface or the failure surface. Of practical reasons these
terminologies are used for any n. Typically the piecewise differentiability enters the problem in
situations as in (2.1.4) where more physically different possibilities are relevant.

Among the regular limit-state problems those with convex safe sets make a particularly simple
class that most often is the relevant one in practice. Per definition a convex set is a set with the
property that all points of the straight line piece between any two points of the set are in the set.
In other words, if two structures of a given type are represented by points within a convex safe set,
then any structure designed by linear interpolation (proportioning) between the two structures is
also a safe structure. In particular the convex limit-state problems are suited for application of the
deterministic method of ensuring safety known as the partial safety factor method. This method
is authorized in the present Danish codes as well as in the present codes of many countries. The
European code is also based on the partial safety factor method for ensuring an authorized safety
level.
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Figure 2.2: Composite collapse limit state for a rope fastened to a hook and carrying a burden.

2.2 The safety factor concept and the requirement of formula-
tion invariance∗

The safety documentation for a structure has earlier often been based on the ratio between a calcu-
lated carrying capacity r (resistance) and a corresponding load effect s (stress). This ratio

n = r/s (2.2.1)

was called the safety factor. Since n > 1 if and only if r > s, the statement n > 1 tells that the
structure corresponds to a point in the safe set while the statement n ≤ 1 tells that the structure
corresponds to a point in the failure set. At a first glance one can get the impression that the size of
n is a measure of the safety. Naturally, for a given definition of r and thus also of s an increase of n
will reflect an increased safety given that n > 1. However, it should be noted that the safety factor
depends on how the resistance r is defined. For example, one could just as well consider the ratio
r3/s3 = n3 as a safety factor. Possibly one might claim that there is a “natural” definition of r in
a “natural” physical dimension. This claim cannot withstand a closer investigation. The following
example illustrates this.

Example 2.3 Let r be the bending resistance of a reinforced concrete cross-section in a plane
beam subject to a compression normal force N and a bending moment s . The internal forces are
referred to a given axis in distance a from the reinforcement, see Fig. 2.3. However, the choice of
this axis is arbitrary. A natural choice is an axis through the geometric center of the cross-section.
Just as natural a choice is an axis through the center of the reinforcement. If the bending moment
caused by the action on the beam is s when referred to the axis in the distance a, then the bending
moment with respect to the axis at the reinforcement is given by s1 = s + aN . The safety factor
(2.2.1) can therefore be written as
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Figure 2.3: Two different representations of the internal forces in a plane reinforced concrete beam illustrate
the formulation invariance problem.

n = r1 − aN

s1 − aN
(2.2.2)

where r1 = r + aN is the resistance with which s1 = s + aN must be compared. From (2.2.2) it is
seen that if n > 1 for some choice of a then n > 1 for all a. However, the safety factor can take all
values in the open interval from 1 (for a → ±∞) to ∞ (for a = s1/N ). Only the value n = 1 is
invariant with respect to a. This corresponds to the fact that the limit state is given by the equation

g(r, s) = r

s
− 1 = 0 (2.2.3)

Naturally the corresponding failure surface is independent of a. �
The arbitrary nature of the definition of the resistance r and the consequence of this that the

safety factor has an arbitrary value makes value specifications difficult to handle in the context of
codes. Necessarily a specification of the safety factor n must be accompanied by specifications of
the formulas for the resistance that correspond to the specified safety factor. However, it is highly
inconvenient if the code is required to be formulated on such a level of detailing both because
it easily will lead to confusion and lack of theoretical clearness and because it will deadlock the
development and application of improved or more universal theoretical models in structural me-
chanics. Thus it is a well motivated requirement that the safety specifications of the codes become
independent of arbitrary equivalent formulations of resistances and corresponding action effects.
Of course, these quantities are output variables chosen primarily under consideration of mathemat-
ical convenience. For certain types of reliability analysis problems it is even so that a resistance is
not definable in a clear way by a single scalar quantity. In particular this is seen in soil mechanical
problems. The requirement discussed above can be expressed by saying that the safety system of
the code must be formulation invariant.

2.3 Probability considerations concerning the safety factor∗

In a probabilistic formulation the safety factor (2.2.1) is a random variable

N = R/S (2.3.1)

where R and S are random variables corresponding to the chosen resistance definition. The prob-
ability that the structure is not failing is then

P(N > 1) = P(R > S) (2.3.2)
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Contrary to the safety factor itself this probability is invariant with respect to the definition of R.
Of course it is required that all considered resistance definitions with respect to a given limit state
and corresponding action effects are defined in one and the same probability space.

Example 2.4 Let us assume that R and S are mutually independent and distributed according to
the normal distribution with parameters (µR, σR) and (µS, σS), respectively. ( µ = mean value, σ 2

= variance). Then

P(N > 1) = P(S − R < 0) = �

⎛
⎝ µR − µS√

σ 2
R + σ 2

S

⎞
⎠ (2.3.3)

where � is the distribution function of the standardized normal distribution. This result follows
from the fact that the difference between two jointly normally distributed variables is normally dis-
tributed. If this choice of model has been made, it is naturally not justified by an alternative choice
of resistance definition to assume that the alternative resistance and action effect are mutually in-
dependent and normally distributed. Here the requirement about formulation invariance shows up
in another appearance. Distributional assumptions about R and S depend on the chosen definition
of R. Therefore a probabilistic code cannot be formulated on the basis of output variables as R
and S. �

On the basis of (2.3.1) a so-called central safety factor nc can be defined by

nc = E[R]

E[S]
(2.3.4)

where E[·] is the mean value (expectation). It is noted that nc is not the same as E[N ], see
Example 2.5. A more general safety factor is

n p,q = rp/sq (2.3.5)

which is based on chosen fractile values rp, sq for R and S defined by, see Fig. 2.4,

P(R < rp) = p (2.3.6)

P(S < sq) = q (2.3.7)

Example 2.5 If R and S are assumed to be normally distributed as in Example 2.4, we get

nc = µR/µS (2.3.8)

while E[N ] does not exist. (This is a consequence of the fact that S has a positive probability
density in any neighborhood of zero). Moreover we have

n p,q = µR + kpσR

µS + kqσS
= nc

1 − k1−pVR

1 + kq VS
(2.3.9)
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Figure 2.4: Distribution functions with fractile values for R and S.

where VR = σR/µR , VS = σS/µS are the coefficients of variation for R and S, respectively, and
where kp is defined by �(kp) = p (and correspondingly for kq). Assume now that the structure is
designed such that (2.3.3) takes a given value 1 − pf, that is, such that

µR − µS√
σ 2

R + σ 2
S

= β (2.3.10)

where �(−β) = pf is the failure probability. After some algebra the central safety factor nc can
then be expressed by β through the formula

nc =
1 + β

√
V 2

R + V 2
S − β2V 2

RV 2
S

1 − β2V 2
R

(2.3.11)

It is noted that nc → ∞ as VR → 1/β. From this it follows that the structure cannot be designed to
have the failure probability pf that corresponds to β if VR ≥ 1/β. However, this is due to a model
error of physical inconsistency type. The error is that the normal distribution assigns a positive
probability to the event R < 0. For suitably small values of VR the error has no importance but
the model loses its applicability for values of VR or β for which VR is not considerably less than
1/β. A typical choice of order of size for β will be 4 or 5. The normal distribution model for R is
therefore hardly reasonable for VR larger than about 0.15 ≈ 1/6.7.

The large variation of nc with VR and VS for given β (for β = 4 we have nc = 1, 1.84, 2.76
for VR = VS = 0, 0.1, 0.15, respectively) illustrates the inconvenience of using the central safety
factor for value assignments in a code that as an ideal tries to keep control on the value of β and
thus on the failure probability within a given safety class.

If nc given by (2.3.11) is substituted into (2.3.9) we get

n p,q = 1 − k1−pVR

1 − βVR

1 + βVS

√
1 + (VR/VS)2 − β2V 2

R

(1 + βVR)(1 + kq VS)
(2.3.12)

Choosing p = 0.05 and q = 0.98 (typical values used for example in the Danish codes) we get
k1−p = 1.645 and kq = 2.054. For β = 4 we get n0.05,0.98 = 1, 1.27, 1.59 for VR = VS =
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0, 0.1, 0.15, respectively. The variation of n0.05,0.98 is for this example seen to be about three times
less than the variation of nc. This property that the safety factor n p,q by suitable choice of p and
q for a fixed value of β shows considerably less variation with the coefficient of variation for R
and S than the central safety factor shows up in an analogous way for the so-called partial safety
factors. These are the fundamental elements of the safety method used in several current codes of
different countries. The partial safety factor method is the topic of the next section. �

Exercise 2.1 Assume that R and S are mutually independent and both with lognormal distribu-
tion. Then

E[log R] = log E[R] − 1

2
Var[log R] (2.3.13)

Var[log R] = log(1 + V 2
R) (2.3.14)

and correspondingly for S. (Introduce the notations µR and µS for E[R] and E[S], respectively).
Derive formulas for the failure probability P(R < S) and the central safety factor nc. Show that
nc is limited for all finite values of VR and VS (that is, that the defect of (2.3.11) does not exist
here). Derive n p,q under the assumption that V 2

R � 1 and V 2
S � 1, which allows the use of

E[log R] ≈ log E[R] (2.3.15)

Var[log R] ≈ V 2
R (2.3.16)

Investigate the variation of nc and n0.05,0.98 in the same way as in Example 2.5. �

2.4 Partial safety factors

The requirement of formulation invariance necessitates that the safety method must be applied to
the input variables of the mechanical model. Instead of the arbitrary splitting in resistance and
corresponding load effect it is necessary to go back to the limit-state equation (2.1.1)

g(x1, . . . , xn) = 0 (2.4.1)

and assign all the safety specifications to the input variables x1, . . . , xn of the model. In code
connection these input variables should therefore be selected from a standardized class of variables
on which the code specifications operate. This does not necessarily mean that these specifications
are independent of the model or class of models in which the selected variables participate.

The partial safety factor method is in its mathematical principles a deterministic method that
acts in the following way. For the sake of simplicity we will consider the case n = 2. Cor-
responding to each point (x1, x2) in the domain of definition of the model the open rectangular
neighborhood of (x1, x2) defined as the cartesian set product

]x1/αm1, x1αf1[ × ]x2/αm2, x2αf2[ (2.4.2)

is considered. The coefficients αm1, αm2, αf1, αf2 are so-called partial safety factors with code
specified values that are larger than or equal to 1 (see later though). If this open neighborhood of
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Figure 2.5: The principle of the partial safety factor method by which a codified definition of the set of
sufficiently safe states is made for a convex limit-state surface.

Figure 2.6: Illustration of the inconvenience of the partial safety factor method for non-convex limit-state
surfaces.

(x1, x2) is a subset of the safe set, then the point (x1, x2) per definition represents a structure that
according to the code is sufficiently safe.

By inspection of Fig. 2.5 it is seen that the partial safety factor method applied to a convex limit-
state problem generates a set of sufficiently safe structures with the property that it is a subset of the
safe set and has a boundary without points in common with the limit-state surface. This property is
not necessarily valid for non-convex limit-state problems. Fig. 2.6 illustrates an imagined situation
where (x1, x2) is a point of the failure set while the four corners of the rectangular neighborhood
(2.4.2) are all in the safe set or on the limit-state surface. Thus the partial safety factor method must
be applied with particular care and consideration for non-convex limit-state problems. However,
these non-convex problems show rarely up in practice in connection with the application of the
partial safety factor method.

As described here the partial safety factor model in itself contains no possibilities for choosing
the values of the partial safety factors such that this choice in a rational way takes care of the
uncertainties that are the reason for having a safety margin. The model is purely deterministic
and its value assessments must therefore be based on a calibration to results obtained by the aid
of a suitably realistic probabilistic model. The situation is the same as for the safety factor in
Section 2.3. After the choice of a suitable failure probability pf the probabilistic model for a given
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structural example leads to a choice of the cross-section dimensions, material strengths, and load
levels such that the input variables x1, . . . , xn modeled as random variables X1, . . . , Xn have a
joint distribution that gives the failure probability

P[ g(X, ..., X) < 0 ] = pf (2.4.3)

The partial safety factor method represents the extreme simplification by representing the random
variables X1, . . . , Xn completely rudimentary replacing each of them by a single or some few
characteristic values in the form of suitable fractile values, Fig. 2.4. In Fig. 2.5 the point (x1, x2)

can be (E[X1], E[X2]) and the partial safety factors αm1, αm2, αf1, αf2 are then analogous to the
central safety factor in Section 2.3. In order to get less sensitivity of the partial safety factors with
respect to varying standard deviations of the random input variables it is in analogy to the factor
n p,q in (2.3.9) preferred to represent each of the random variables by a given upper and a given
lower fractile value. The corresponding probabilities may be given in the code and the fractile
values are denoted as characteristic values. Let the lower and the upper characteristic values be
x1c, . . . , xnc and xc

1, . . . , xc
n , respectively. Then the lower characteristic values are divided by

the partial safety factors γm1, . . . , γmn while the upper characteristic values are multiplied by the
partial safety factors γf1, . . . , γfn . The resulting values

x1c/γm1, . . . , xnc/γmn, xc
1γf1, . . . , xc

nγfn (2.4.4)

are denoted as design values. This is to be interpreted such that the structure is just sufficiently
safe if

g(y1, . . . , yn) ≥ 0 (2.4.5)

for all possible choices of y1, . . . , yn such that yi is either the lower design value xic/γmi or
the upper design value xc

i γfi and with “=” valid for at least one such choice of y1, . . . , yn . The
neighborhood shown in Fig. 2.5 is thus modified by use of characteristic values and partial safety
factors to the neighborhood of (E[X1], E[X2]) shown in Fig. 2.7.

After fixing the fractile probabilities for the characteristic values the partial safety factors
γm1, . . . , γmn and γf1, . . . , γfn are ideally chosen such that the structure in the probabilistic model
has the prescribed failure probability pf. For the given structure type there are in general several
different choices of dimensions or material strength levels that in the probabilistic model give the
same failure probability. After each such choice (of which some are more convenient and eco-
nomical than others) the characteristic values are uniquely fixed. However, there is still a certain
freedom to choose the values of the partial safety factors in an infinity of ways such that the re-
quirement (2.4.5) is satisfied. Therefore it is possible to calibrate the partial safety factor values
such that more structures for the same partial safety factor values have the given failure probability
pf.

The next section gives a first analysis of how, on the basis of a reasonably rational probabilistic
model, a code committee should choose the partial safety factors such that the resulting code gives
results that within suitable well-defined classes of structures are best adapted to the results of the
probabilistic model. A more detailed treatment with examples will be given in Appendix 1 on code
calibration.
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Figure 2.7: Application of the partial safety factors on characteristic values to obtain the design values.

Historically the first applications of the partial safety factors in the codes were only supported
on consequence calculations (see Chapter 1) and qualitative probability considerations. The co-
efficients were applied to central or prudently assessed values for material strengths and loads.
A guiding principle was that the size of the partial safety factors value should reflect the degree
of uncertainty or random variability of that strength or load parameter to which the partial safety
factor was applied. However, this principle is not applicable when the partial safety factors are
defined to be applied on lower and upper characteristic values. Of course, the uncertainties of the
corresponding parameters are then already taken into account to some extent. The partial safety
factors therefore rather have the purpose of taking other sources of uncertainty into account as for
example those that concern the interaction of the uncertainties and those that concern the model
uncertainties. Therefore there is no reason for not having a partial safety factor value less than 1
(exemplified in Fig. 2.7).

In principle the partial safety factor method given by (2.4.4) and (2.4.5) requires a check of
(2.4.5) at 2n points. For increasing n this becomes so large a number of points that it might
be doubtful if there is a saving of effort by the partial safety factor method instead of directly
codifying the probabilistic model. The point is, however, that the function g for most of the usual
structural problems has a strongly simplifying monotonicity property. From a point in the safe
set, g will most often decrease with increasing values of some of the variables x1, . . . , xn and
decreasing values of the rest of the variables. The variables of first category have the character
of load variables, that is, such variables that by increase bring the structure closer to failure. The
variables of the other category have the character of resistance variables, that is, such variables that
by decrease bring the structure closer to failure. It is obvious that the safety check with respect to a
limit state that can be defined in terms of such a function g only requires a check of the inequality
(2.4.5) at a single point

(y1, . . . , yn) = (x1c/γm1, . . . , xrc/γmr , xc
r+1γfr+1, . . . , xc

nγfn) (2.4.6)

Here we have assumed that the r first variables are of resistance type and the n − r last of load
type. The check point (2.4.6) is sufficient for most of the practical problems where the partial
safety factor method is applied.
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2.5 Allowable degree of arbitrariness of the choice of partial
safety factor values*

Assume for simplicity that the limit state has a form that only requires a single check point (2.4.6).
To simplify the notation we will write the point (x1c, . . . , xrc, xc

r+1, . . . , xc
n) of characteristic val-

ues as (x1, . . . , xn) while we will write (1/γm1, . . . , 1/γm r , γf r+1, . . . , γf n) as (θ1, . . . , θn). The
condition (2.4.5) is then just satisfied if

g(x1θ1, . . . , xnθn) = 0 (2.5.1)

For given values of the coefficients (θ1, . . . , θn) and for given values of (x1, . . . , xn−1), for ex-
ample, the value of xn can be determined by this equation. This corresponds to the typical design
situation where the engineer takes the values (θ1, . . . , θn) from the code, chooses (x1, . . . , xn−1)

and finally calculates xn (that for example might be the web area of a steel beam or the reinforce-
ment area of a concrete cross-section). Several different considerations of qualitative nature may
have lead to the choice of (x1, . . . , xn−1) (architectural reasons, manufacturing reasons, traditions
etc.)

The code committee is facing another problem. The values of (x1, . . . , xn) are given for ex-
ample as the result of a calculation within a probabilistic model and on the basis of a given failure
probability. This failure probability might be chosen by comparative consequence calculations,
see Chapter 1. The structure defined by the values (x1, . . . , xn) may also be chosen by the code
committee among the existing structures as a structural example that according to the judgment of
the code committee represents good (optimal) and safe engineering practice. The equation (2.5.1)
can then be considered as an equation with the coefficients θ1, . . . , θn as unknown. Any choice
of θ1, . . . , θn that satisfies (2.5.1) will then give a value set of the partial safety factors such that
x1, . . . , xn define a just sufficiently safe structure.

For a more detailed discussion of this problem of choice it is useful first to make a dimension
analysis of the equation (2.5.1). Since the equation concerns a physical phenomenon the equation
must necessarily be dimension homogeneous. We will only consider the most often appearing case
where all the physical quantities x1, . . . , xn have units that are power products of the basic units
of force and length. The dimension analysis then shows that it is possible to define exactly n − 2
independent dimensionless power products p1, . . . , pn−2 of the quantities x1, . . . , xn . It is next a
consequence of the so-called π -theorem on dimension homogeneous expressions that the equation
(2.5.1) can be rewritten as an equation

G(p1ν1, . . . , pn−2νn−2) = 0 (2.5.2)

between the dimensionless power products such that νi is exactly the same power product of
(θ1, . . . , θn) as pi of x1, . . . , xn and where the function G is a function of n − 2 variables.

It follows from this that for n > 2 two of the coefficients (θ1, . . . , θn) can be chosen freely
between the positive numbers without in any way introducing restrictions that influence the set of
just sufficiently safe structures. If, for example, some arbitrary values are assigned to θ1 and θ2,
and ν1, . . . , νn−2 are chosen such that (2.5.2) is satisfied, then values are assigned to the remaining
n − 2 coefficients (θ3, . . . , θn) by this choice.
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In practice the case n = 2 will often show up. It is then only possible to choose one of the
partial safety factors freely. In the present Danish codes it has been chosen to let the factor on the
permanent load (weight of structural parts, of soil and of ground water) have the value 1. In the
present version of the European code some of these load types are assigned a partial safety factor
larger than 1.

Remark 2.1 It has occasionally been erroneously claimed that this freedom of the code com-
mittee to make any choice of the value of the partial safety factor on the permanent load is only
valid under the condition that the function g is linear, that is, under the condition that the limit
state surface is a hyperplane through the origin. On the other hand, it has also been claimed that
another value than 1 for the partial safety factor on the weight of soil and ground water will lead to
inconsistency in geotechnical calculations. Also this claim is not right noting that the same input
variable everywhere in the model is subject to the same partial safety factor either everywhere by
multiplication or everywhere by division. The error of conception seems to appear due to a more
or less arbitrary splitting of the function g into a resistance and a load effect with the same input
variable appearing in both expressions and in such a way that an increase of the value of the vari-
able is favorable for the safety in the one expression and unfavorable for the safety in the other
expression. �

Remark 2.2 It can be necessary not to fix a partial safety factor to a given value valid universally
for the entire domain of the code. Such a fixing of a value may imply an inconvenient large varia-
tion of other partial safety factors. In the Danish codes, for example, there are two exceptions from
the previously mentioned fixed value 1. The one exception concerns “cases where the permanent
action from structural members is in favor of, and has vital significance to the safety of the struc-
ture, e.g. lifting and overturning of a structure”. The other exception concerns “cases where the
permanent action is large compared to the variable action”. �

For each structure with corresponding limit states considered as just sufficiently safe by the
code committee, an equation as (2.5.2) can be formulated. By the choice of a suitable number
of independent equations (n − 2 if they are all linear) there will be a possibility for a unique
determination of ν1, . . . , νn−2 when all these equations are required to be satisfied. If the values
of the coefficients θ1, . . . , θn obtained in this way are used to define the values of the partial
safety factors in the code, the equation (2.5.1) becomes for any other structure with corresponding
function g a design equation for the determination of x1, . . . , xn . Any such equation can then
be interpreted as yielding an interpolation between those structures that by the code committee
are chosen as being just sufficiently safe. Hereby the code committee claims that all structures
defined in this way within a given class of structural types are just sufficiently safe in the sense
of the code. However, there will be inconsistency with a prescribed failure probability assigned
to the probabilistic model even though the particularly chosen structures all have the given failure
probability. If the deviations are small within the specified class of structural types, as judged by
the code committee, the code may be declared to satisfy the requirement of a specified reliability
level with sufficient accuracy.

This principle where the partial safety factors, when applied to some few chosen structural ex-
amples, correspond exactly to the chosen failure probability is not necessarily the most reasonable
principle for calibration of the partial safety factor code to the results following from a probabilistic
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code. This calibration problem is reconsidered in Appendix 1.

2.6 Action models

Those action models that usually are applied together with the partial safety factor method have
a very idealized nature. Essentially they consist of point actions (single forces) and of surface
actions (blocks of load intensities) the latter usually being of a piecewise linear shape. Occasionally
the variation of the action in space and time is derived deterministically from the geometric and
mechanical model of the structure or from a more extended model that contains smaller or larger
parts of the environment from which the actions are generated.

A load code like the Danish code DS 410 gives a detailed list of many different types of actions
that can be relevant in codified design. For each action type a characteristic value is specified, for
example the 98%-fractile for the yearly maximal load value or just a prescribed value. Moreover,
values of so-called reduction factors are specified. The reduction factors are defined as factors to
be applied on characteristic values to get different types of usual values. DS 410 contains only one
type of usual actions. The current European code contains several types of usual actions. With
respect to the surface actions, an action code usually also gives information about the nature of
the spatial variations and about how large a part of the action that must be considered as a free
action while the rest is considered as a fixed action. Specifying an action to be free in the sense
of DS 410 is the same as requiring that the action must be considered in the safety checking with
values chosen independently from point to point and with any value between zero and a specified
maximal value being possible. A fixed action is assumed to be known all over the structure if it is
known at any single point.

The concept of free action can be illustrated by the following example. Consider a prismatic
beam that spans continuously over four equal bays, see Fig. 2.8. The bending moments of the
beam are supposed to be determinable by the linear elastic beam theory. The beam is subject to
free load with maximal intensity p. Referring to the definition of free action the decisive load
intensity distribution with respect to the safety against failure of a given cross-section can then be
the intensity distribution that in the given cross-section gives the maximal bending moment.

Consider the load intensity distributions shown in Fig. 2.8. In each of the loaded bays there is
a cross-section in which the bending moment takes a local maximal value. Moreover, the bending
moment takes a local minimal value (negative) above the internal supports. All these bending mo-
ments must therefore be calculated in order to determine the largest bending moments in absolute
value. Fig. 2.8 shows 4 of the 15 load intensity distributions that make up all combination possi-
bilities with a constant free load of maximal or minimal value over each of the bays. There are an
infinity of other distributions of the free load that according to the codes should be investigated. An
elasticity theoretical consideration shows, however, that all these other cases with load intensity
at each point between 0 and p will not give larger maximal moments than those obtained from
the mentioned 15 intensity distributions. The fixed load that for example might correspond to the
self-weight of the beam is described by the load intensity variation shown as the first in Fig. 2.8.

For more complicated structures the definition of free action in the sense of the code can imply
that in principle it is necessary to do check calculations for a very large number of load combina-
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Figure 2.8: Illustration of the concept of “free load” as given in DS 410. Continuous beam over several
bays.

tion blocks and point load combinations on the structure. Considering this, it is worth noting that
the corresponding investigations within a probabilistic model for free load not only corresponds to
a more realistic description of the nature of the random load variation across the structure, but can
also imply a considerably less extensive calculation effort. This is because the deterministic model
requires the solution of a difficult problem of extremum search, looking for the absolute largest
action effect that can occur within the model. In contrast to this the problem within a probabilistic
model is to determine a probability distribution of the action effect when the free action within the
model is described by a probability distribution. This problem does not require an investigation for
each of a long series of different specific load formations. Instead only an integration is required
over all the load possibilities as weighted by the probabilities of the model. In its analytical form
the calculation is of a completely different type than the corresponding calculation in the determin-
istic model. Often though, the problem in the probabilistic model can only be solved by so-called
Monte Carlo simulation because analytical solution methods very easily become mathematically
too complicated. By the Monte Carlo simulation method a suitably large sample of typical load
configurations is simulated from the probabilistic action model. This load configuration sample
gives a corresponding sample of load effects at different points of the structure and from this sam-
ple the probability distributions of the load effects can be estimated. By use of these probability
distributions, extreme value studies can next be made. In this sense the probabilistic model uses
typical load configurations in its solution procedure and not difficult choices of “extreme” load
configurations as they are used in the deterministic model.

Except for models of a very simple structure the treatment of probabilistic load models for
spatial variation is outside the scope of this first part of the theory of structural reliability. This first
part rests on descriptions that can be made solely by use of random vectors.

2.7 Load combinations*

Load combination deals with several simultaneously acting loads on the structure. It is the com-
bined effect of these loads that is of interest when studying the structural reliability.

A typical example is a multi-story building supported on columns in which snow load on the
roof, wind load on roof and facades and floor loads from the individual stories all contribute to
the internal forces of the columns. The point is that in general it will be too much to the safe side
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to choose the dimensions of the columns on the basis that all considered loads are represented by
their characteristic values corresponding to the distributions of the yearly maxima. Simultaneous
occurrence of such extreme values can be considered to be an improbable event and the more so
the more contributing relevant loads. The use of unreduced characteristic values imply that the
reliability with respect to a column failure computed within the probabilistic model increases with
the number of stories that the column is designed to carry. It should be noted, however, that this
property is tied to the assumption that the model does not prescribe complete dependency between
the loads on the different stories.

In the following example we will consider a very simple probabilistic model for the column
forces coming from the floor loads. It is emphasized that the assumptions of the model are not
based on statistical investigations of real floor loads and that it is unrealistic in this respect. Its
mathematical form is solely chosen in order to obtain simple algebra and results.

Example 2.6 Suppose that a column carries load from n stories and that each floor load is renewed
after each time unit. Thus from each story there is a column force Xi j , where i = 1, . . . , n is the
story number while j is the number of the time interval, j = 1, 2, . . . , N . In the j th time interval
the column force is

Y j = X1 j + . . . + Xnj (2.7.1)

and the maximal column force after N time intervals is

Z = max{Y1, . . . , YN } (2.7.2)

Assume that Xi j all are mutually independent with the distribution function F1(x), and let F̄1(x) =
1 − F1(x) be the complementary distribution function. Moreover, assume that the characteristic
value xc is given for max{Xi1, . . . , Xi N } as the (1 − ε)-fractile. The assumptions imply that the
characteristic value is the same for all i = 1, . . . , n. Thus we have

[1 − F̄1(xc)]
N = 1 − ε (2.7.3)

or, since F̄1(xc) � 1,

1 − N F̄1(xc) ≈ 1 − ε (2.7.4)

From this it follows that

N ≈ ε

F̄1(xc)
(2.7.5)

The characteristic value of Z is denoted zc and it is given by

[1 − F̄n(zc)]
N = 1 − ε (2.7.6)

or, as before,

N ≈ ε

F̄n(zc)
(2.7.7)
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Here F̄n is the complementary distribution function of X1 j + . . . + Xnj and F̄n is independent of
j . From (2.7.5) and (2.7.7) it follows that

F̄n(zc) ≈ F̄1(xc) (2.7.8)

For n large it can be assumed with reference to the central limit theorem that F̄n can be approxi-
mated by the normal complementary distribution function

F̄n(zc) = �

(
nµ − zc√

n σ

)
(2.7.9)

in which µ = E[Xi j ], σ 2 = Var[Xi j ]. It is used here that Y j in (2.7.1) has the mean value nµ and
the variance nσ 2. The last property follows because the terms in (2.7.1) are mutually independent.
By substitution into (2.7.8) we then get that

zc = nµ + √
n σ�−1[F1(xc)] (2.7.10)

since �−1[F̄1(xc)] = −�−1[F1(xc)].

In the Danish Standard DS 409 (the safety code) it is stated that the design value of the total
load Z can be determined as γ xc + (n − 1)ψnxc, where γ is a given partial safety factor for load
and where ψn is a reduction factor that reduces xc to a “usual value” ψnxc. If it is agreed that the
design value of the total load is γ zc, that is, the same partial safety factor is applied to zc as to xc,
we have that

zc = xc + (n − 1)ψnxc/γ (2.7.11)

which for large n should be consistent with (2.7.10). From this it follows that ψn/γ for large n
becomes

ψn

γ
= µ

xc
+ µ − xc + √

n σ�−1[F1(xc)]

xc(n − 1)
(2.7.12)

showing that

ψ∞ = µ

xc
γ (2.7.13)

Thus the specification of constant values for ψn in the Danish standard DS 410 (the load code) is
only asymptotically consistent with (2.7.12).

As an example assume that Xi j is normally distributed with parameters (µ, σ ), where the
coefficient of variation V = σ/µ is sufficiently small (V < 0.3) that the probability of getting
negative load contributions is vanishing small compared to the probability of getting positive load
contributions. Then

�−1[F1(xc)] = xc − µ

σ
(2.7.14)
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which upon substitution in (2.7.12) and division by (2.7.13) gives

ψn

ψ∞
= 1 + γ − ψ∞

ψ∞
1

1 + √
n

(2.7.15)

for n ≥ 2. (In this special case with normal distribution the formula (2.7.12) is valid for all n ≥ 2).

Example values are ψ∞ = 0.65 and γ = 1.3 giving xc/µ = 2.0. From (2.7.5) it is then seen
that the corresponding number of load renewals N becomes

N ≈ ε

�
(
−µ

σ

) = 0.02

�

(
− 1

V

) (2.7.16)

when it is assumed as in DS 409 that the characteristic value is the 98%-fractile. For V = 0.3 the
formula (2.7.16) gives N ≈ 47, which by and large corresponds to one load renewal per week if xc

is assumed to be the characteristic value of the yearly maximal value of the load contribution from
the individual story. The corresponding reduction factor ratio ψn/ψ∞ can be read from Table 2.1
as a function of the number of stories n.

n 2 4 8 16 ∞
ψn/ψ∞ 1.414 1.333 1.261 1.200 1.000

Table 2.1: Load reduction factor ratio ψn/ψ∞ as a function of the number of stories n for the case µ/xc =
0.5 (= ψ∞/γ ) and normally distributed load pulses with parameters (µ, σ ) (about 47 load renewals per
year).

The model considered here is an excessive simplification of the real load phenomena. For
example, a realistic load model for frequently renewing loads must assign a considerable positive
probability to the event that Xi j = 0. This corresponds to the event that the considered load
type not at all is present on the i th story in the j th time unit. Under such conditions the normal
distribution is unfit as a realistic model for the load pulse distribution. A more realistic model is
considered in Example 10.2.

The deterministic load combination problem concerning load coincidences in time as consid-
ered in this section has the same difficulty as the load combination problem concerning the spatial
variation over the structure of the free load mentioned in the previous section, namely that the
number of combination possibilities may become excessively large. Therefore it is not excluded
that computations within a probabilistic model for load combinations in the time domain also can
be simpler to carry out in specific reliability analysis problems than the deterministic combination
checking. To this adds the advantage of the larger degree of rationality and realism in the model
formulation.

No further details will be given here about the load combinations that are required to be checked
in the safety code DS 409. On the basis of the information given in this chapter the rules in DS
409 and DS 410 should be directly interpretable without problems. �
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2.8 Historical and bibliographical notes

The safety factor principle, naturally, is as old in engineering practice as the use of calculation
models to guide the design of structures. According to A.J. Moe [2.4] there were discussions
as long back as in the middle of the 19th century concerning the practical handling of the safety
question by use of certain types of partial safety factors. A consistent code formulation of a detailed
partial safety factor principle was started in the 1950s in Denmark before other places in the world.
This development got particular support from the considerations of J. Brinch Hansen [2.1] who
applied the principles in the field of soil mechanics.
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Chapter 3

PROBABILISTIC INFORMATION

3.1 Randomness and uncertainty

Let us look at a material property on the basis of measurements on a number of test pieces assumed
to have representative properties. Generally it should be expected that uncontrollable fluctuations
of many different factors during the manufacturing of the considered material lot will show up
as random variations of the material property from test piece to test piece. These variations can
be called physical fluctuations. Hereby it is indicated that the variations are of a type that cannot
be eliminated from the object by extensive measurements on the object. We imagine that these
physical fluctuations are inherent to the object, in the present example the sample of test pieces.

Usually we anticipate that the measuring results obtained directly from the measuring device of
the test equipment are somewhat different from the numbers representing the inherent properties.
This anticipation is based on the experience that two different test equipments applied to a material
with the same inherent random property variation can show significant differences between the two
samples of test results.

The conclusion is that the variation of the obtained results expresses the sum of the physical
fluctuations inherent to the object of observation and the fluctuations inherent to the method of
observation. These last mentioned fluctuations contribute to a type of uncertainty called measur-
ing uncertainty. Besides contributing with zero mean random fluctuations it can contribute with
systematic errors that cannot be eliminated by averaging.

In principle it is not possible to remove the fluctuations generated by the measuring method
directly from the obtained values in order to obtain the inherent physical values. However, the
methods of probability theory make it sometimes possible to formulate statements about the sta-
tistical nature of the physical fluctuations. This is the case if the measuring method can be applied
several times to an object for which the relevant physical property is known to be constant or only
slightly varying from measurement to measurement. By such a series of repeated measurements,
information about the uncertainty of the measuring method is generated in a form that through
statistical methods can be represented by a probabilistic model. When the measuring method
thereafter is applied to an object with inherent physical fluctuations, the measuring uncertainty can
be eliminated within a probabilistic description of the nature of the physical fluctuations. However,
the dependency between the error Y and the physical quantity X must not be too complicated.

33
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Example 3.1 Assume that a physical quantity fluctuates randomly. It is then natural to model the
quantity by a random variable X . Assume that the quantity is measured by a method where the
measuring uncertainty can be represented by a random variable Y which is independent of X . The
measured results are then represented by the sum

Z = X + Y (3.1.1)

Statistical analysis of the measured data gives estimates of the mean value E[Z ] and the variance
Var[Z ]. The uncertainty properties of the measuring method are known in advance and are re-
ported by E[Y] and Var[Y ]. It follows then from (3.1.1) that E[X ] = E[Z ] − E[Y ] and from the
independence between X and Y that

Var[X ] = Var[Z ] − Var[Y ] (3.1.2)

If this formula gives a negative value, the reason is that the assumption of independence between
X and Y is not valid. Without this assumption the formula (3.1.2) should be replaced by, see
Remark 4.1,

Var[X ] = Var[Z ] − Var[Y ] − 2Cov[X, Y ] (3.1.3)

where the right hand side always will be non-negative. However, the formula (3.1.3) is not directly
applicable in this connection. Neither Var[Y ] nor Cov[X, Y ] are known because the measuring
method in this situation is dependent of the object for measurement. We return to this problem in
an example in Chapter 4.

If it is assumed that the measuring uncertainty probabilistically can be described by the normal
distribution and that the statistical analysis of the measured data shows that it is reasonable also to
describe these data by a normal distribution, then it is not in conflict with the given information to
assume that X = Z − Y is normally distributed. However, this assumption is not a consequence
of the assumption that both Z and Y are normally distributed. More is required for such a con-
clusion, namely that the pair (Z , Y ) has a two-dimensional normal distribution. Of course, such
an assumption cannot be verified by measurement and therefore it will not be possible to verify an
assumption that states that X is not normally distributed. �

Example 3.1 illustrates in which sense it is possible to ”clean” the measuring results for mea-
suring uncertainty when the measuring method is well examined. However, as to principle we
face a difficulty. When the relevant material property is of type like a strength it is difficult if not
impossible to perform the necessary repeated measurements on the same test piece. The evalua-
tion of the measuring uncertainty therefore must be based on indirect investigations about the way
of functioning of the test equipment combined with experiences from comparisons of different
measuring methods.

It is hardly possible to make a complete elimination of the measuring uncertainty when deal-
ing with material strengths or other material properties that during the measuring procedure are
changed irreversibly. Therefore it is an important condition for joining such measuring results into
a common sample of comparable values that they are obtained from the same measuring method.
In order that results from different measuring methods can be made comparable the aforemen-
tioned comparisons of measuring methods should lead to a transformation rule (a mapping) from
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the one measuring method to the other. This rule should ideally satisfy the minimum requirement
to be defined such that when it is applied to the set of data from the one measuring method then
a transformed set of data is obtained which in a specified statistical sense can be assumed to be
comparable with the set of data from the other measuring method. However, it is not necessarily
required that a transformed data value from the first measuring method must be almost the same
as the value that would have been obtained by the second measuring method, even though a re-
quirement like this is often set up for measuring methods of small uncertainty. For measurements
of irreversible material properties the compliance with such a requirement cannot be controlled by
measurement, of course. Thus a transformation rule between data coming from different measur-
ing methods should be considered as a general type of a correction rule for removing the systematic
error of the one measuring method relative to the other measuring method.

In general there will be a considerable uncertainty about the truth of a statement that specifies
the value of a systematic error. If this uncertainty can be subject to a quantitative evaluation, e.g. of
character as a bet, then it can also be represented by a probabilistic model that from a mathematical
point of view does not deviate in its principle from a probabilistic model for the ensemble of
physical fluctuations. The uncertainty is of a different nature, however. Contrary to the physical
fluctuations the uncertainty is affected by closer investigations. This fact has motivated a separation
between randomness and uncertainty. The inherent randomness related to the object cannot be
reduced by observation while the uncertainty can. The words ”measuring uncertainty” seem to
cover a mixture of the two concepts. A given measuring method may possess a systematic error
which is only known with some uncertainty, but by more detailed investigations of the measuring
method this uncertainty can be reduced or practically removed. Besides a systematic error, a
measuring method usually shows random fluctuations which normally also is covered by the words
”measuring uncertainty” even though the words ”measuring randomness” possibly would be better.
On the other hand, the measuring randomness can be affected by changing the measuring method.

We see that the classification of the discussed concept of indeterminacy into randomness and
uncertainty is relative to the object. If the object of study is the measuring method itself, then
the physical fluctuations inherent to the object is characterized as randomness. If the object for
measuring is the object of study, then we speak about measuring uncertainty.

For the appreciation of the possibilities of affecting the reliability of a structure by engineering
arrangements, this splitting into randomness and uncertainty is of obvious importance. A reliability
problem contains several indeterminacies of uncertainty type that can be reduced by extended
efforts of collecting information without any change of the structural solution itself (the structural
layout). The indeterminacies of randomness type can only be affected by structural arrangements,
however.

Measuring uncertainty has in this section been discussed as an uncertainty adjoined to the result
of a single measurement. By this it gets the same character as the concept of model uncertainty
which will be a topic of discussion later in the chapter. Measuring uncertainty of a completely
different kind is called statistical uncertainty.
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3.2 Statistical uncertainty

It is the purpose of any measuring method to generate information about a quantity related to the
object of measurement. If the quantity is of a fluctuating nature so that it requires a probabilistic
model for its description, the measuring method must make it possible to formulate quantitative
information about the parameters of the chosen probabilistic model. It is obvious that a measured
value of a single outcome of a non-degenerate random variable X only is sufficient for giving a
crude estimate of the mean value of X and is insufficient for giving any information about the
standard deviation of X . However, if a sample of X is given, that is, if measured values of a
certain number of independently generated outcomes of X are given, these values can be used for
calculating estimates for all parameters of the model. The reasons that such an estimation from a
sample of X is possible and makes sense are to be found in the mathematical probability theory.
The most elementary concepts and rules of the theory of statistics are assumed to be known to the
reader.

To illustrate the role of the statistical concepts in the reliability analysis it is worthwhile to
repeat the most basic features of the description of the information that a sample of X of size
n contains about the mean value E[X ]. It is sufficient for our purpose to make the simplifying
assumption that X has a known standard deviation D[X ] = σ . Besides this the only available
information is given as the sample x1, . . . , xn of X . Then it is obvious that an estimate of the mean
value µ = E[X ] must be calculated as the value of some function µ̂(x1, ..., xn; σ). Remember-
ing that the values x1, . . . , xn are obtained by repeated mutually independent experiments giving
outcomes of X , or more precisely, as a single outcome of the random vector (X1, . . . , Xn), where
X1, . . . , Xn are mutually independent random variables all distributed as X , it is natural to study
the distributional properties of the random variable µ̂(X1, . . . , Xn; σ). For example, it seems to
be appropriate to choose the function µ̂ (the estimator) so that

E[µ̂(X1, . . . , Xn; σ)] = µ (3.2.1)

and so that the variance Var[µ̂(X1, . . . , Xn; σ)] becomes as small as possible. This exercise re-
quires distributional assumptions about X and the determination is in most cases a difficult problem
in variational calculus. If we are content with the class of linear estimators, then no distributional
assumptions are needed and it turns out that the best choice is the average

µ̂ = 1

n

n∑
i=1

Xi (3.2.2)

for which the standard deviation is

D[µ̂] = σ√
n

(3.2.3)

We see that the average x̄ = (x1 + . . . + xn)/n of the sample is an estimate of µ, but also that
the estimate is uncertain. The standard deviation (3.2.3) can with the appropriate interpretation
be taken as a measure of this uncertainty. In particular it is seen that the uncertainty vanishes
asymptotically as n → ∞. In the present formulation it decreases inversely proportional to the
square root of the sample size.
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Uncertainty of this kind is called statistical uncertainty and, as seen, it concerns incomplete
information due to the finite sample size. It can be interpreted as a fluctuation even though it is
usually not observed as such in practice. Only a single value of the average x̄ is obtained from the
sample. However, one can imagine a sequence of repeated outcomes of µ̂ by taking new samples
of size n. Then µ̂ fluctuates exactly as a quantity with indeterminacy of random type from a
distribution with standard deviation defined by (3.2.3).

The quantitative description of statistical uncertainty considered here is not appropriate as input
for a probabilistic model concerning evaluation of structural reliability. This is because such a
model requires that contributions from different sources of randomness and uncertainty can be
joined together in an integrated model following logically consistent rules. Assume that the afore-
mentioned random variable X is contained in a probabilistic structural model. Since the mean
value E[X ] is unknown, it is necessary in order to calculate the failure probability to assume that
E[X ] has a given value µ. Thus the failure probability becomes a function pf(µ) of µ. Then
there is a problem of how µ should be chosen. One possibility is, of course, to be content with
the value pf(µ̂) or with a suitable confidence interval for pf(µ) determined by use of (3.2.2) and
(3.2.3). (Within the aforementioned model for statistical uncertainty a p % confidence interval
of a parameter as µ or as pf(µ) is an interval which has a probability of p % of covering the
”true” value of µ or pf(µ). This probability can be interpreted as a relative frequency related to
the aforementioned imaginary sequence of samples).

It is reasonable to ask for a unique definition of the total unconditional failure probability pf.
Such a probability is needed in a decision model that is based on the principle of maximizing some
measure of utility (Chapter 12). A natural definition is a weighted average of the different values
of pf(µ), that is,

pf =
∫

all µ

pf(µ) f (µ) dµ (3.2.4)

in which f (µ) ≥ 0 is a suitable weighting function satisfying∫
all µ

f (µ) dµ = 1 (3.2.5)

It is seen that f (µ) possesses properties as a density function for a random variable. If µ is
interpreted as an outcome of a random variable M , then pf(µ) is the conditional failure probability
given that M = µ. According to the addition theorem of the probability theory the total failure
probability becomes

pf =
∫

all µ

pf(µ) fM(µ) dµ (3.2.6)

in which fM(µ) is the density function of M . Thus the weighting function f (µ) can be interpreted
as a density function fM(µ) for the parameter µ modeled as a random variable M . As for (3.2.2)
and (3.2.3) the distribution properties of M must be generated in some way from the information
contained in the sample x1, . . . , xn of outcomes of X and the knowledge of the standard deviation
D[X ] = σ .
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The usual way of looking at this problem is that of Bayesian statistical theory: Before the
sample information is available a density fM(µ) (the prior) is adjoined to M . This prior density
is assumed to represent the available knowledge about µ before the sample x1, . . . , xn is known.
Since the random vector (X1, . . . , Xn) according to the multiplication theorem for independent
events has the conditional density

fX1,... ,Xn(x1, . . . , xn | µ) =
n∏

i=1

fX (xi | µ) (3.2.7)

the total density becomes

fM,X1,... ,Xn(µ, x1, . . . , xn) = fM(µ)

n∏
i=1

fX (xi | µ) (3.2.8)

and thus the conditional density

fM(µ | x1, . . . , xn) ∝ fM(µ)

n∏
i=1

fX (xi | µ) (3.2.9)

where ”∝” means proportional to (that is, the two sides are equal, except for a normalizing constant
determined by (3.2.5)). This is the so-called posterior density for M given the sample x1, . . . , xn .
If the right hand side of (3.2.9) is proportional to a density, even if fM(µ) is put to 1, or if fM(µ)

is put to a function of µ which is slowly varying as compared to the variation of

n∏
i=1

fX (xi | µ) (3.2.10)

then such a slowly varying function of µ can replace the prior density and serve as a model for
having no prior information. The product (3.2.10) considered as a function of the parameter µ

is called the likelihood function. This formulation of a model for the description of the statistical
uncertainty and its reduction by updating on the basis of the sample information is called Bayesian
after Thomas Bayes (1702-61). The formula (3.2.9) is at special case of the so-called Bayes’
formula.

If we adopt the Bayesian statistical method as a rational way to model available information,
then as a consequence we should use the most updated posterior density of M as the function f in
the formula (3.2.4).

Example 3.2 Assume that X is normally distributed with the density function

fX (x | µ) = 1

σ
ϕ

(
x − µ

σ

)
, x ∈ R (3.2.11)
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The likelihood function becomes

n∏
i=1

fX (xi | µ) ∝
n∏

i=1

exp

[
−1

2

(
xi − µ

σ

)2
]

∝ exp

[
− 1

2σ 2

n∑
i=1

(x2
i − 2µxi + µ2)

]

∝ exp
[
− n

2σ 2
(µ2 − 2µx̄ + x̄2)

]
∝ ϕ

(
µ − x̄

σ/
√

n

)
(3.2.12)

where x̄ is the average of x1, . . . , xn (compare with (3.2.17)). Thus the likelihood function is
proportional to the normal distribution density with mean value x̄ and standard deviation σ/

√
n.

Therefore the right hand side of (3.2.9) is a density when fM(µ) is replaced by 1. Formally setting
the prior density to a constant is expressed by saying that we have chosen a prior density for M
which is diffuse over all of R. The posterior density of M then becomes

fM(µ | x1, . . . , xn) =
√

n

σ
ϕ

(
µ − x̄

σ/
√

n

)
(3.2.13)

that is, the normal distribution with mean value x̄ and standard deviation σ/
√

n. It is worth noting
the analogy with the estimator µ̂ in (3.2.2).

Since the conditional distribution function of X is

P(X ≤ x | µ) = �

(
x − µ

σ

)
(3.2.14)

the total posterior distribution function is obtained as in (3.2.6) to

P(X ≤ x | x1, . . . , xn) =
√

n

σ

∫ ∞

−∞
�

(
x − µ

σ

)
ϕ

(
µ − x̄

σ/
√

n

)
dµ (3.2.15)

with the corresponding density function

fX (x | x1, . . . , xn) = ∂

∂x
P(X ≤ x | x1, . . . , xn) =

√
n

σ 2

∫ ∞

−∞
ϕ

(
x − µ

σ

)
ϕ

(
µ − x̄

σ/
√

n

)
dµ

= 1

σ
√

1 + 1/n
ϕ

(
x − x̄

σ
√

1 + 1/n

)
(3.2.16)

where the integral can be calculated by use of the standard formulas given in Remark 3.1.

The posterior density of X is seen to be normal with mean value x̄ and standard deviation
σ
√

1 + 1/n. Thus the influence on X of the statistical uncertainty is that X , in stead of the un-
known mean value µ, gets assigned the mean value x̄ and, in stead of the known standard deviation
σ , gets assigned the larger standard deviation σ

√
1 + 1/n. The posterior density of X given the

sample is called the predictive density of X . �
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Remark 3.1 The following formulas are often useful in calculations with the normal distribution
densities:

ϕ

(
x − µ1

σ1

)
ϕ

(
x − µ2

σ2

)
= ϕ

⎛
⎝ µ1 − µ2√

σ 2
1 + σ 2

2

⎞
⎠ ϕ

⎛
⎜⎜⎜⎜⎝

x − µ1σ
2
2 + µ2σ

2
1

σ 2
1 + σ 2

2
σ1σ2√
σ 2

1 + σ 2
2

⎞
⎟⎟⎟⎟⎠ (3.2.17)

1

σ1σ2

∫ ∞

−∞
ϕ

(
x

σ1

)
ϕ

(
z − x

σ2

)
dx = 1√

σ 2
1 + σ 2

2

ϕ

⎛
⎝ z√

σ 2
1 + σ 2

2

⎞
⎠ (3.2.18)

�
The failure probability can be interpreted as the mean value of a special function ψ of the

random input variables. This is the function that takes the value 1 if the input variables take values
that correspond to a point in the failure set and for all other points takes the value 0. For simplicity
assume that X is the sole random input variable. Then we have the conditional failure probability

pf(µ) = E[ψ(X) | µ] =
∫ ∞

−∞
ψ(x) fX (x | µ) dx (3.2.19)

and thus according to (3.2.6) the total failure probability

pf =
∫

all µ

[∫ ∞

−∞
ψ(x) fX (x | µ) dx

]
fM(µ | x1, . . . , xn) dµ

=
∫ ∞

−∞
ψ(x)

∫
all µ

[
fX (x | µ) fM(µ | x1, . . . , xn) dµ

]
dx

=
∫ ∞

−∞
ψ(x) fX (x | x1, . . . , xn) dx (3.2.20)

Thus we can either first calculate the conditional failure probability given M = µ and thereafter
take care of the statistical uncertainty by unconditioning through use of the posterior density for
the parameter M , or we can first include the statistical uncertainty directly in the input variable X
to obtain its predictive distribution before the structural model is considered for the computation
of the failure probability.

This is general and it depends on the mathematical properties whether the one procedure is
more expedient than the other.

Exercise 3.1 Assume that a normal distribution with parameters µ0, σ0 can be assigned to M as
the prior distribution. Use the formulas (3.2.17) and (3.2.18) to show that X has a normal predictive
distribution with parameters

nx̄ + rµ0

n + r
and σ

√
n + r + 1

n + r
(3.2.21)
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where r = (σ/σ0)
2. By comparison with (3.2.16) it is seen that the chosen prior density gives an

information contribution that in Example 3.2 corresponds to a sample of “size” r and with average
µ0. �

Bayesian methods that take care of statistical uncertainty related to structural reliability will be
treated more extensively in Chapter 11.

3.3 Model uncertainty

Besides the randomness and uncertainty adjoined to the input variables of the mechanical model
set up for analysis, the reliability analysis must include the model uncertainty related to the formu-
lation of the relevant limit state within the mechanical model.

The concept of limit state is defined in Section 2.1. Its definition will be repeated here. A
limit state is a relation between the input variables that defines when the structure is just on the
threshold to pass into a considered adverse event. In general a limit state can be defined by an
equation g(x1, . . . , xn) = 0 in which g is some function of the input variables chosen such that
g(x) > 0 for all x in the internal of the safe set, and g(x) < 0 for x in the internal of the adverse
event (the failure set). Since only the boundary between the two sets G = {x|g(x) = 0} is uniquely
defined by the mechanical model and the considered adverse event, the choice of the function g is
not unique. For n = 3 the limit state G is a surface. For general n we also denote G as the limit-state
surface. The particular function g chosen for its definition is called the limit-state function.

In the process of transforming a verbally formulated limit state into a mathematical model,
a choice is made among several physical parameters. These are anticipated as having influence
on the question of whether the structure is, in fact, in the physical state described by the verbal
formulation as being either failure or no failure. If we let n variables x1, . . . , xn take part in the
description of the reliability problem and there are more relevant variables than these, then a given
point (x1, . . . , xn) is not for sure either a point in the failure set or a point in the safe set. By
realizing the structure the neglected variables get values. If this assignment of values is of random
nature, it is also a random event whether the given point (x1, . . . , xn) corresponds to failure or not.
We can imagine that every time the neglected variables get values, the n-dimensional space of the
mechanical model is divided into a safe set and a failure set. Thus the limit-state surface is realized
as a random surface from some population of surfaces. A surface is selected from the population
by the assignment of values to the neglected variables.

The reason that some physical variables are neglected in the model formulation can be either
that they are not known (possibly they are beyond imagination) or if they are identified that they
have quantitatively unknown influence and interplay with other variables. This means that it is not
possible to eliminate the random fluctuations of the limit-state surface from realization to realiza-
tion just by extending the dimensions of the space. In principle, however, it is possible to decrease
the fluctuations of the limit-state surface in this way. Of course, this decrease is counteracted by
the extra variables having random fluctuations from realization to realization.

The mathematical representation of a limit state gives rise to uncertainty beyond the fluctu-
ations caused by the neglected variables. The limit state is formulated in terms of the chosen
variables x1, . . . , xn by use of some more or less extensive set of known mathematical functions.
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Often these functions are generated by use of idealized mechanical models for the structure and
its behavior. Moreover, they may be fitted to experimental observations of the failure behavior of
some example structures. This mathematical idealization process induces a systematic error at any
given location of the failure surface. Perhaps this error can be decreased by a more detailed model
formulation. For the reliability analysis the point is, however, that both time limits and operational
reasons dictate that in practice we must be content with some not too sophisticated level of detail-
ing. Therefore a systematic error of unknown size will always be present. It must be taken into
account quantitatively in the reliability analysis by use of suitable judgemental variables. With
the superior point of view that all uncertainty contributions should be joined together in a rational
and unified way, such judgemental variables are most appropriately given the status as random
variables represented by a joint probability distribution.

The interpretation of a probability distribution that represents an error of a fixed but unknown
value is by a closer look not so fundamentally different from the interpretation of a probability
distribution for a fluctuating quantity. This is because a probability distribution is always inter-
pretable as a set of possibilities weighted relatively by the assigned probabilities. The practical
problem faced when formulating a probabilistic model consists of establishing the knowledge that
allows a choice of this set of possibilities. Updating by use of new information then changes the
weights of those possibilities that are in conflict with the new information. In the statistical prob-
lem about getting knowledge about the mean value µ for a random variable X , we imagine that
we are able to choose a set of possible values of µ representing our knowledge about µ in the form
of the prior density fM(µ). After getting the sample of X available we can reweight the set of
possibilities by use of the rules of the mathematical probability theory to obtain a set of weighted
possibilities described by the posterior density fM(µ | sample).

In the limit-state model-uncertainty problem the choice of the set of possibilities for the sys-
tematic error on the carrying capacity, say, can in experimental situations be reduced to the problem
of assessing the statistical uncertainty. The difference between the calculated carrying capacity by
use of the limit-state model and the observed carrying capacity defines a sample from a popula-
tion, the mean value of which expresses the systematic model error. Such reported experimental
investigations combined with investigations of more refined mechanical models give the basis of
experience and the collective professional insight that in more general situations may allow a rea-
sonable choice of the weighted set of possibilities. With a suitable probabilistic model formulation
(based on certain hypotheses of regularity, of course) it is as for statistical uncertainty possible to
update the model uncertainty of a given limit-state model on the basis of new information about
both the position in the mean and the fluctuations of the “real” limit-state surface.

Remark 3.2 The advocated interpretation of the concept of probability as a weighted set of pos-
sibilities is exemplified in an illustrative way by considering the throw of a die. Obviously the set
of possibilities can be taken to consist of the six numbers corresponding to the pips. However,
the weights are not given a priori. If the die is assumed to be perfect (i.e. the die is fair), these
possibilities are of equal weight. This assumption completely defines the probability distribution
without it being necessary to observe just a single outcome of a throw. The model is completely
given by a symmetry consideration induced by the assumption that the die is perfect.

Assume now that this supposition is not given. Imagine that a physicist gets detailed informa-
tion of physical type about the die such as the variation of the mass density, elastic properties etc.
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Thereupon a single throw with the die is made without the physicist seeing the result. It is noted
by a judge. The physicist is asked to come up with a probability distribution for the six possibili-
ties. Since physical considerations show that the point of gravity of the die has an unsymmetrical
position relative to the geometry of the die, the physicist will hardly suggest equal probabilities on
the six possibilities.

A statistician gets the results from 10 repeated throws with the die and is asked the same ques-
tion as the physicist. The statistician has only got the information that it cannot be taken for granted
that the die is perfect. If the statistician follows a Bayesian approach, he or she will most likely
choose the prior distribution to have equal weight on the six possibilities and then end up with a
posterior distribution by using the results of the 10 throws. The answer will hardly be coincident
with the answer from the physicist. Both answers are a weighted set of possibilities for the result
known by the judge, a result that cannot be changed. Which of the two answers is the best can only
be decided if it has been decided how the correct set of weighted possibilities should be defined.
In a situation as the considered where it is possible to repeat the throw with the same die indepen-
dently a large number of times, it is natural to define the correct weighted set of possibilities as
the distribution toward which the relative frequencies of the different outcomes gradually stabilize
as the number of throws grows. It is, in fact, this distribution of relative frequencies which is the
object of estimation by statistical methods that are based on the mathematical probability theory.
With this definition of the correct weighted set of possibilities one can be mislead to conclude that
the answer from the statistician is the best of the two. However, the results from 10 throws with
the die is only a small sample. Thus the statistical uncertainty is large. The answer of the physicist
can therefore very well be better than that of the statistician. If the distribution assessed by the
physicist is given to the statistician, he or she will no doubt consider the possibility of using this
distribution as the prior distribution instead of the distribution of equal weights that just represents
the lack of prior information.

Those situations are special where a correct set of weighted possibilities can be specifically
defined a priori. Most often the correct weighted set of possibilities is an unknown object related
to a supposed experiment in which repetitions are made over and over again. This supposed ex-
periment leans itself to the properties of the probability theory as being able to lead to asymptotic
probability distributions for sequences of random variables and, in particular, sequences of relative
frequencies.

In the physical reality the possibilities of doing repetitions under equal conditions are usually
very limited or even excluded in principle. In common for the probabilistic description of a fluc-
tuation phenomenon and the uncertain knowledge about a fixed quantity is that the description is
given in terms of a weighted set of possibilities. The difference is in the information on the basis
of which the choice of the relative weights are made. The probability theory is able to predict rel-
ative frequencies and therefore the probabilistic model possesses a particular power of prediction
for randomly fluctuating phenomena against which the goodness of the model can be tested. For
unknown but fixed quantities there is no such direct possibility of comparison with results from
repeated identical experiments.

A verification of the goodness of a method of judgment the results of which are expressed as
a set of weighted possibilities must then necessarily be based on the experiences from repeated
applications of the method: At each single application it can be noted whether an observable event
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occurs or not. The event may be specific to the application and it should be chosen in such a way
that it in accordance with the method gets the probability p. In the sequence of applications of
the method the relative frequency of the occurrence of the event can be observed at any time. The
deviation between p and the observed relative frequency together with the number of applications
then give some evidence about the goodness of the method of judgment in relation to the considered
sequence of observable events. Too large deviations or lack of stabilizing tendency are signs of
less usefulness of the method. When this is recognized through the obtained experiences, the
requirement of rational behavior will in the long run enforce a revision of the method of judgment
(that is, under the hypothesis that there is willingness to learn from experience). We will later refer
to this requirement of rational behavior as “the long run revision principle”.

The discussed comparison of calculated results with observed data is usually called verification
of the model, even though verification (in contrast to falsification) of the strict truth of a model in
principle is impossible. The verification problem for a probabilistic model dealing with uncertain
knowledge about a fixed quantity can be illustrated within the example with the physicist and the
die.

Assume that the physicist several times is put to the considered judgemental problem but every
time with a new die with its individual physical properties. He or she must every time come up with
a probability that the judge has observed six pips in the one throw which is allowed for each die.
Thus the physicist has after the judgment of the n first dice assessed the probabilities p1, . . . , pn .
These are in the model of the physicist the same as the mean values of X1, . . . , Xn , respectively.
Here Xi is a random variable that takes the value 1 if the i th die shows six pips. Otherwise Xi

takes the value 0. Then the relative frequency of the event of getting six pips is represented by the
random variable (X1 + . . . + Xn)/n. It has the mean value

E

[
1

n
(X1 + . . . + Xn)

]
= 1

n
(p1 + . . . + pn) (3.3.1)

and the variance

Var

[
1

n
(X1 + . . . + Xn)

]
= 1

n2

n∑
i=1

Var[Xi ] = 1

n2

n∑
i=1

pi (1 − pi ) ≤ 1

4n
(3.3.2)

since X1, . . . , Xn are mutually independent and

Var[Xi ] = E[X2
i ] − E[Xi ]

2 = E[Xi ] − E[Xi ]
2 = pi − p2

i (3.3.3)

It follows from (3.3.2) that the standard deviation of the relative frequency for any choice of the
probabilities p1, . . . , pn decreases inversely proportional to

√
n. Thus the model predicts that

the relative frequencies considered as functions of n is given by the right hand side of (3.3.1)
asymptotically as n → ∞. By comparison with the observed data it is therefore possible for the
judge to evaluate the goodness of the judgment model of the physicist. �

Example 3.3 Consider a snow loaded roof girder that is supported on two columns as shown in
Figure 3.1. The analysis of this structure is made by an idealized mathematical model. In the
model the girder is assumed to be a simply supported beam subjected to a uniformly distributed
load intensity. This assumption implies two idealizations that influence the internal forces in the
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Figure 3.1: Idealized model for roof girder and snow load.

girder and the forces by which the girder acts on the columns. The one idealization concerns the
assumption about simple support. It implies that the beam gets the axial force zero and that there
is no horizontal action from the beam to the columns. Since the snow load acts vertically the real
horizontal action is usually modest. (Horizontal actions on the columns can occur due to friction
at the supports activated by the deformation of the beam caused by the vertical load). Thus there
seems to be only small model uncertainty associated to the support assumption.

However, the girder of the real structure can be subjected to temperature variations or shrinkage
that imply length changes of the girder. If the assumption about frictionless support is not partic-
ularly good these length changes may give horizontal displacements of the column tops. Without
explicit consideration of the temperature variations or the shrinkage the model with simple support
therefore can have considerable uncertainty. Its size naturally depends on the properties of the real
support, of the rigidity of the columns, of the heat expansion coefficient and the shrinkage proper-
ties of the girder, and the size of the neglected temperature variations. This model uncertainty has
less importance for the reliability of the girder with respect to its own carrying capacity but it is
quite important for the reliability of the columns.

The other idealization concerns the snow load. In the reality the snow is not uniformly dis-
tributed over the roof. The corresponding model uncertainty can be evaluated by comparison with
the results from a more detailed load variation model. For example, the vertical load on the right
column is in the model equal to Lp/2, while the “real” load distribution gives

F = 1

L

∫ L

0
xp(x) dx = 1

2
L(p + Jp) (3.3.4)

where

Jp = 2

L2

∫ L

0
x[p(x) − p] dx (3.3.5)

except for small errors at the lower and the upper integration limit (at each limit an integration is
missing over the half of the wall thickness).

If p is modeled independently of the considered building as a random variable on the basis
of uniformly distributed snow layers on the soil surface, the stochastic properties assigned to p
must be modified with respect to model uncertainty before they can be used in a reliability analysis
carried out inside the universe of the idealized model. This model uncertainty concerns both a
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Figure 3.2: Column models with different degree of idealization.

systematic change of the mean value and the variance from the soil surface to the roof surface and
the non-uniform distribution of the snow on the roof surface. Moreover it depends on the type
of load effect under consideration. If, for example, it is the bending moment in the center of the
beam, the integrand xp(x) in (3.3.4) is replaced by Lxp(x)/2 for x < L/2 and L(L − x)p(x)/2
for x > L/2.

The uncertain knowledge about p(x) and thus about the correction term Jp can be modeled
by letting Jp be a random variable with mean value and variance chosen by a suitable judgment.
This judgment concerns the possibility of uneven distribution of the snow (dune formation) and the
snow drift away from the roof for different wind directions and wind speeds. The judgment may
naturally be supported on calculation of Jp according to (3.3.5) with use of different judgemental
choices of p(x) − p.

In its simplest form the result can be expressed by a mean value E[Jp] , a variance Var[Jp] and
a covariance Cov[p, Jp]. Thereafter the reliability analysis can be carried out inside the simple
model by replacing the given mean value E[p] and the given variance Var[p] of p with E[p] +
E[Jp] and Var[p] + Var[Jp] + 2Cov[p, Jp], respectively. Most often consideration of model
uncertainty has the consequence that the considered input variable (here p) gets a larger variance
assigned to it.

Next let us look at the analysis of the right column in Figure 3.1. The most extensive idealiza-
tion consists in letting the column be a straight centrally loaded column with clamp in support at
the bottom and with free end at the top, Figure 3.2. Moreover it is a common idealization to assume
that the column material has a linear elastic-ideal plastic constitutive law under compression with
coefficient of elasticity E and compression yield stress σy. The theoretical carrying capacity Pu is
then determined by the so-called Euler force π2 E I/L2, if this is less than the force Py = Aσy that
corresponds to compression yielding of the entire column cross-section.

The theory for centrally loaded columns from which this result follows assumes that the col-
umn is straight. If the column initially is just slightly curved (this is almost always the case for real
columns) or it is not exactly centrally loaded, the axial force cannot increase in the column without
simultaneous increase of the bending moments. This has the effect that the column reaches a maxi-
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Figure 3.3: Statistical population of carrying capacity curves for steel columns with given initial curvature,
from [3.2] reproduced by permission of Pitman Publishing Limited, London.

mal carrying capacity at a smaller normal force than the Euler force or the compression yield force.
Moreover the theory assumes that the unloaded column is without eigenstresses. Real columns
have eigenstresses caused by the production method. These eigenstresses cause that the strain-
stress diagram obtained by averaging over the entire cross-section is not linear elastic-ideal plastic,
but that there is a more or less curved transition between the linear elastic domain and the ideal
plastic domain. The cross-section strain-stress curve thus depends on the state of eigenstresses
which therefore also influences the carrying capacity of the column. This is because the carrying
capacity and the derivative of the strain-stress curve at the carrying capacity value (the “effective
coefficient of elasticity”) are closely related (Engesser-Shanley theory). Figure 3.3 indicates the
results of 112 calculations of the ratio Pu/Py as a function of the so-called reduced slenderness
ratio λ (defined in the figure) for steel columns with a series of different cross-sectional shapes and
steel qualities. In all cases the initial curvature of the column axis is given in terms of an arrow
height of 1/1000 of the column length. The Euler force is represented by 1/λ2 (upper curve to
the right hand side). The eigenstress distributions are based on measured data available in 1972.
The calculations are made by R. Bjorhovde [3.1] and are referred in [3.2], from where the figure
originates. The calculation results have been compared with measured results for corresponding
experimental columns. It is stated that most of the measured results deviate less than 5% from the
calculated results, that is, there is an uncertainty that corresponds to half to one unit (0.1) on the
ordinate axis in Figure 3.3. If it is assumed that the 112 calculation results correspond to a repre-
sentative sample of carrying capacity results for steel columns built in practice, the histograms in
Figure 3.3 give an impression of the relevant model uncertainty related to a fixed idealized carry-
ing capacity curve that determines Pu/Py uniquely as a function of λ. Considering the deviations
between the calculated values and the experimental data, the model uncertainty becomes even a
little larger than indicated by the diagrams.
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For the columns there is more to be added about the model uncertainty, however. The quantity
L is the so-called free column length. If the clamp in support at the bottom is infinitely rigid and
the upper end is totally free we have L = 2h as shown to the left in Figure 3.2. If the clamp in
support is just a little bit flexible the free column length becomes larger as indicated to the right
in Figure 3.2. It is seen from Figure 3.3 that this implies a decreased carrying capacity. Thus
the clamp in assumption can cause model uncertainty. The two column ends are connected by
the girder such that displacement of the one column end will affect the other column end if the
assumption of friction free support is not good.

All these model uncertainties necessarily must be considered in the reliability analysis in a
suitable idealized form. The result will be a structure with larger dimensions than required if
resources are used on formulating a less idealized model with associated model uncertainty. It is
a question about economy and other criteria that influences the choice of dimensions whether it is
worth the effort to make such a more detailed analysis.

The considerable model uncertainty associated to the column problem naturally invites for a
more detailed investigation. In the steel structure codes of several countries more column curves
are given. For example, the current Danish steel structure code gives 5 curves where the choice
of the relevant curve depends on the cross-sectional form and the production method (rolled or
welded profile).

The choice of the free column length by simple considerations concerning the support condi-
tions is a source of uncertainty that often dominates the uncertainty associated to the choice of the
column carrying capacity curve. This problem is a source not only to considerable model uncer-
tainty but also to genuine mistakes (radical errors) that are caused by erroneous conceptions of the
deformation and displacement properties of the structure. In general the reliability analysis does
not account for such radical errors because often they are difficult to formulate in terms of a quan-
titative probabilistic model. The occurrence of radical errors will therefore not be characterized as
model uncertainty. Prevention should be made by control measures directed towards the structural
analysis itself. The problem of the influence of radical errors will be treated in detail in Chapter
12 about decision philosophy. In the present example and in other similar examples the danger of
making mistakes concerning the free column length is decreased by studying the stability problem
for the structure as an entity and not just the single columns separately. �

Whatever degree of detailing and sophistication of the mathematical-mechanical model a model
uncertainty will remain. Possibly this can be made so small that further decrease of the model
uncertainty has no noticeable effect on the resulting reliability measure. This means that the con-
tributions from the physical fluctuations and from other uncertainty sources (choice of probability
distribution types, statistical uncertainty, measuring uncertainty, forecast of environment devel-
opment etc.) dominate over the uncertainty of the mechanical model to such a degree that the
considered sophistication hardly is reasonable if it implies an increase of the cost of the engineer-
ing design work. Information that only to a small degree influences the answer should in practice
be considered as unnecessary information for the given problem.
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Figure 3.4: The vector field y − x = w(x) − x = y − v(y) that models the model uncertainty.

3.4 Model-uncertainty evaluation and its inclusion in the relia-
bility analysis*

Let the idealized limit-state surface Gi be given in the space of input variables x = (x1, . . . , xn)

by an equation g(x) = 0, i.e.

Gi = {x | g(x) = 0} (3.4.1)

A continuously deformed version (a perturbation) of Gi can be generated by use of a continuous
one-to-one mapping

y = w(x), x = v(y) (3.4.2)

of the space onto itself with such properties that the image point y of an arbitrary point x ∈ Gi is
suitably close to x. The image surface of Gi is then, see Figure 3.4,

Gr = {y | g(x) = 0 ∧ y = w(x)} = {y | g[v(y)] = 0} = {x | g[v(x)] = 0} (3.4.3)

We can imagine that the mapping is chosen so that Gr becomes the “real” limit-state surface. We
have already appreciated that the real limit-state surface can be considered as a surface drawn at
random from a population of limit-state surfaces. Here we now see that this is equivalent with a
draw of the mapping (3.4.2) at random from a population of mappings. Thus we can formulate the
judgemental problem about evaluating the model uncertainty of the limit state as a problem about
choosing a random vector field W(x) − x = y − V(y) which transforms the fixed idealized limit-
state surface Gi into the random “real” limit-state surface Gr. If the idealized limit-state surface
Gi in shape and position is close to the real limit-state surface, then the random vector field in the
mean is close to a field of zero vectors. Moreover, it will possess small standard deviations if the
model uncertainty is small.

Let Fi and Fr denote the idealized and the real failure event, respectively. Then it is seen that

x ∈ Fr ⇔ V(x) ∈ Fi (3.4.4)

Thus we can by changing the input variables x to the modified random “input variables” V(x)

keep the failure set F as the idealized failure set Fi and the limit-state surface G as the idealized
limit-state surface Gi.



50 Chapter 3. PROBABILISTIC INFORMATION

Figure 3.5: The set F(u) of those x for which the failure probability due to model uncertainty is larger than
u.

The simplest example of a model-uncertainty vector field is obtained by defining

V(x) = x + J (3.4.5)

where J is a random vector which is independent of x. This corresponds to a situation where the
real limit-state surface is generated by a random parallel shift of the idealized limit-state surface.
The random input vector X is then replaced by the random vector X + J in the reliability analysis.

A more flexible and less idealized model-uncertainty representation is obtained by the defini-
tion

V(x) = Hx + J (3.4.6)

in which J is as in (3.4.5) while H is a random matrix which is independent of x. This corresponds
to a situation where the real limit-state surface is generated by a random parallel shift combined
with a random affine mapping of the idealized limit-state surface. In the reliability analysis the
random input vector X is correspondingly replaced by the modified random input vector HX + J.

These examples obviously represent the “real” limit-state surfaces by surfaces that in their
shape are just as idealized as the idealized limit-state surface itself. However, as it will be demon-
strated in the following, this type of idealization is less serious for the assessment of the measure
of reliability. The essential contribution to the model uncertainty turns out to come from the rep-
resentation of the random position of the limit-state surface (position in a particular sense to be
explained later). The reason is that averaging takes place in the calculation so that the contri-
butions from the random variations of the detailed shape of the limit-state surface are smoothed
out.

Let us suppose that X has the probability-density function fX(x) and that the random vector
field V(x) for each fixed x has a well defined probability distribution. In principle it is then possible
to determine the failure probability

p(x) = P[V(x) ∈ F ] (3.4.7)

for any given value x of X. The unconditional failure probability becomes

P[V(X) ∈ F ] =
∫

Rn
p(x) fX(x) dx = E[p(X)] (3.4.8)
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As a function of u ∈ [0, 1] the probability of the event

F(u) = {x | p(x) ≥ u} (3.4.9)

is the complementary distribution function of the random variable U = p(X). This event is
illustrated in Figure 3.5. By integration by parts we have

E[U ] =
∫ 1

0
u fU (u) du = 1 −

∫ 1

0
FU (u) du =

∫ 1

0
P[F(u)] du (3.4.10)

such that (3.4.8) gives∫
Rn

p(x) fX(x) dx =
∫ 1

0
du

∫
F(u)

fX(x) dx (3.4.11)

The inner integral on the right side of (3.4.11)∫
F(u)

fX(x) dx (3.4.12)

can be interpreted as the failure probability corresponding to the assumption that F(u) is the fail-
ure set. Instead of considering the total population of possible limit-state surface it is therefore
sufficient to work with a one-parameter population of “limit-state surfaces” defined by

∂F(U ) = {x | p(x) = U } (3.4.13)

Here U is a random variable which is uniformly distributed over the interval ]0, 1[.

It is now a straightforward idea to identify the population of surfaces (3.4.13) by the population,
see (3.4.3),

{x | g[v(x; U )] = 0} (3.4.14)

in which v(x; U ) is a particular simple vector field in the sense that the realization of the field is
given when the value of U is given. According to (3.4.9) we have that

u1 ≤ u2 ⇒ F(u1) ⊃ F(u2) (3.4.15)

which means that F(u) is never increasing for u increasing. Therefore the vector field v(x; U ) as
a function of u should satisfy a corresponding condition.

At this point we will refer to the theory of the first- and second-order reliability methods
(FORM and SORM, Section 6.4) which shows that often it is only some centrally situated lo-
cal parts of the limit-state surface that contribute essentially to the failure probability. With this
in mind it follows that it is often sufficient to consider the model-uncertainty vector field in small
domains of R

n containing these most important parts of the limit-state surface. Within such a local
domain it is usually sufficient to consider a vector field defined by, see (3.4.5),

v(x; U ) = x + Jz(U ) (3.4.16)
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Figure 3.6: Model uncertainty representation within the essential local domain of the limit state
surface.

in which z(u) is a suitably chosen increasing function of u ∈]0, 1[, while J is a constant vector,
see Figure 3.6. The random variable Z = z(U ) has the distribution function

FZ (x) = P(Z ≤ z) = P[U ≤ z−1(x)] = z−1(x) (3.4.17)

with the inverse function

z(u) = F−1
Z (u) (3.4.18)

and Z is independent of the random input vector X.

From this we can conclude that in all essentials we can take care of the model uncertainty
solely by a simple modification of the distributional properties of the input vector.

The process of quantitative evaluation of the model uncertainty in specific examples belongs to
the more difficult parts of the structural reliability analysis. This is due to the nature of the model
uncertainty as an interplay between many different factors and also due to the fact that informa-
tion about the model uncertainty is often scarce and fragmentary. In practice it will normally be
a too difficult task for the individual engineer to exercise qualified judgments without consider-
able expertise. The problem of the model uncertainty evaluation cannot be neglected, however.
It is therefore necessary that guidelines are given in a code of reference for the judgemental pro-
cess together with quantitative information for the most common mechanical models and failure
criteria.

3.5 Objectivity of the structural reliability analysis method *

Structural reliability with respect to some limit state is quantitatively expressed by a number on a
suitable scale being related to a given time period. Taking for granted that the reliability evaluation
is based on probabilistic modeling, the reliability measure scale is in one-to-one correspondence
with the probability that the adverse event occurs within the considered time period.
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The probability of the adverse event is calculated on the basis of the models set up for the
different relevant randomnesses and uncertainties discussed in the previous sections. Several of
these submodels necessarily contain judgemental assessed elements including numerical values of
parameters. They are of a personalistic (or subjective) nature. This fact can give the misleading
impression that the entire probabilistic reliability evaluation method lacks objectivity and that the
reliability measure is just the result of some academic hocus pocus.

The point is, however, that the objectivity of the model is not affected by the fact that its
elements may be chosen with some degree of arbitrariness by judgment. Of course, to make sense
this statement requires a definition of the concept of objectivity. Following G. Matheron [3.3] (who
relies on K.R. Popper’s Logic of Scientific Discovery [3.4]) the crucial criterion of objectivity of
a statement is that in principle it can be falsified. A model set up with the intention that it should
mirror some real world phenomenon is a compound statement which must satisfy the criterion that
it can be put to the test of falsification. Otherwise it cannot carry information of empirical value.

There is a philosophical problem of how to falsify a probabilistic model. Matheron prag-
matically suggests to use the principle of statistical hypothesis testing: if a prespecified event of
relevance for the applications of the model has a calculated probability of very small magnitude,
then the model is considered falsified with respect to the considered event if the event actually oc-
curs in the corresponding real experiment. Since relevant adverse events in structural reliability by
intentional design are given very small probabilities, a reliability model should be considered falsi-
fied with respect to its intended domain of application if one of the adverse design events actually
occurs at or after the realization of the structure. The interpretation of this is that if the occurred
structural adverse event after close investigation cannot be attributed to a radical error (mistake,
gross error) which has caused a deviation from the theoretical design, then the reliability model is
falsified, i.e. it contains most likely a radical error. We see that the concept of falsifiability for a
probabilistic model gets a somewhat weaker meaning than for a deterministic model. This weaker
concept may be called “pragmatic falsifiability”. A probabilistic model does not exclude the oc-
currence of an event of very small probability, of course. In principle the model could be valid
even if the event occurs. (In classical statistical hypothesis testing this is called the error of first
kind: rejection of a true hypothesis). Therefore falsification of the model does not mean immediate
rejection of the model but rather that it should be subject to a critical study possibly calling for a
revision. The philosophical problem of falsifying a probabilistic model is simply removed by say-
ing that a probabilistic model is objective if it can be put to the test of pragmatic falsification. This
is sufficient to ensure that the model can carry information of empirical value and it is a condition
for the applicability of the long-run revision principle (see Remark 3.2).

Structural reliability models differ from other types of probabilistic models in that their targets
of interest are events of very small probability. The practical difficulty of performing the test of
pragmatic falsification with such rare critical events enforces the principle of anticipatory mod-
eling [3.3]. The striving for objectivity necessitates that the total reliability model be built from
partial models that can be much more easily put to the test of pragmatic falsification and which
are combined by operational rules that can be claimed to be objective, i.e. natural laws, rules of
geometry, rules of probability calculus, etc.

Let us assume that consistently an engineer uses the probabilistic reliability analysis method
based on the principle of anticipatory modeling and on his or her own judgemental assessments
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for the purpose of making rational design decisions. Because of the rarity of the relevant adverse
events it is practically impossible for this individual engineer to get sufficient experience to follow
up with the principle of long-run revision. Nevertheless, due to the applied principle of antici-
patory modeling the probabilistic reliability analysis method may still be considered as a rational
formal tool of processing different types of personalistic knowledge about the structure and its
environments into a single personalistic reliability measure that is useful for decision-making. It
is obvious, however, that it is of concern to society that experiences from the entire activity of the
engineering profession are gathered together in order to make the long-run principle of revision ef-
fective. It is also of concern to society to ensure protection of human lives and properties from less
beneficial structural consequences of arbitrary ill-founded results of judgments or less professional
guesses. Therefore rules for the game are set up in authorized codes of practice. To this day codes
of practice around the world have basically been of deterministic type as described in Chapter 2.
The principle of long-run revision, together with increasing requirements of being able to build
more economical and more elegant structures, will no doubt in the near future lead to formulation
of codes of practice for probabilistic reliability analysis. Such attempts are at present made, e.g.
in the Joint Committee of Structural Safety, which has a basis of several international professional
associations.

It is crucial for making the principle of long-run revision effective and for protection of the
public that the reliability analysis methodology is kept free of arbitrary choices of elements to
which the reliability measure is sensitive. Only empirical or internally objective choices [3.3] of
elements should be left to the designer. This implies that the code should contain standardization of
certain elements. These standardizations should at least include assumptions about distributional
tails to be used in the reliability analysis.

Code revisions should not be made at too small time intervals, in order that experiences can
be collected and processed. Due to the necessary standardization and, possibly, intended strong
idealizations, the codified reliability model gets the character of a formal system for logical infor-
mation processing for which the absolute failure probability values carry limited prediction power.
With respect to empirical information they become formal probabilities that get their informational
importance as means of comparisons with respect to reliability of different adverse events for the
same or different structural solutions of a given building construction problem. That is, the prob-
abilities of the adverse events primarily serve as indicators of a reliability ordering. This ordering
makes it possible to formulate a statement such as “these two structures are equally reliable with
respect to the adverse event A”. The point dividing the probability scale into sufficiently reliable
and insufficiently reliable structures with respect to event A is obtained by declaring some com-
parison standard to be just sufficiently reliable with respect to event A. The comparison standard
is a specific limit state for a specific structural design and the declaration is given on the basis
of a general consensus within an authorized code committee. Clearly the numerical value of the
demarcation point on the probability scale depends on the chosen reliability model.

We see here that the objectivity criterion of pragmatic falsifiability needs an extension that
specifies operationally how the imposed reliability ordering can be falsified. The requirement of
objectivity can be satisfied in the long run by setting up a suitable strategy of code committee
action that will put the reliability model to a test of pragmatic falsification. One such strategy of
action, and possibly the only one, is to gradually change the comparison standard in the direction
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of less reliability. Eventually the reliability model will lead to designs that with some observable
frequency will exhibit adverse behavior (a frequency which still can be less than the presently
observed frequency of adverse behavior due to mistakes). From data of observations of such
adverse events it is in principle possible to set up a pragmatic falsification test of the reliability
ordering. On this basis the principle of long-run revision can become active.
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Chapter 4

SIMPLE RELIABILITY INDEX

4.1 Limited probabilistic information

In this and the directly following chapters we will introduce a structural reliability concept that is
based on a minimal number of elements from the probability calculus just necessary for having a
model that makes it possible to perform rational calculations with uncertainties.

Accordingly we will presently assume that the random input variables solely are described by
their so-called second-moment representation, that is, solely by their mean values, variances and
covariances. By this only very weak direct assumptions are made about the type of their probability
distributions, namely solely assumptions about the existence of mean values and variances.

This is convenient because most practical uncertainty evaluations are such that it will be out
of the question to choose distribution types on the basis of solid data information. Pragmatic
principles or code specifications become decisive for the choice of the distribution types. An
uncertainty analysis that avoids such choices is therefore not without interest.

Moreover, the simple reliability analysis based on second-moment representations turns out
to lead to calculation methods that with large effectivity are also applicable in reliability analyses
that use full probabilistic information. Therefore it is useful to make oneself experienced in the
fundamental algebra for second-moment representations. This chapter may also be helpful in this
respect.

4.2 Calculus for linear safety margins

In this chapter we will consider the seemingly rather special case where the limit-state equation
g(x1, . . . , xn) = 0 is linear in the input variables x1, . . . , xn . This means that the equation has the
form

a1x1 + . . . + anxn + b = 0, b > 0 (4.2.1)

where a1, . . . , an, b are given constants. Consistent with the definition in Section 2.1 let the safe
set be the set of those points in R

n for which

a1x1 + . . . + anxn + b > 0 (4.2.2)

57
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The surface determined by the equation (4.2.1) is a straight line if n = 2 and a plane if n = 3. For
arbitrary n the surface is called a hyperplane. Usually a limit-state surface in a practical reliability
analysis problem is not a hyperplane. However, in later chapters we shall see that it often is
possible to obtain very accurate results by approximating the given not plane limit-state surface
by one or more hyperplanes if the approximating hyperplanes are chosen in a particular way.
The simplifications obtained in this way are substantial enough to justify a study of the reliability
analysis for limit-state surfaces made up of at most a finite number of hyperplanes. The safe set
defined by such a limit-state surface is said to be polyhedral. In the chapter “generalized reliability
index” it is shown that particularly simple properties are obtained for polyhedral safe sets that are
convex. This is an advantageous situation because particularly chosen convex polyhedral sets are
often quite convenient in the reliability analysis as approximations to the given not necessarily
convex safe set. (A set is convex if the point αx + (1 − α)y belongs to the set for any choice of
the points x, y within the set and for any α ∈ [0, 1]). In this chapter we consequently concentrate
on geometric calculations that concern hyperplanes. However, these geometric calculations will
be formulated in the language of probability calculus and reliability analysis.

Assume now that uncertainty is assigned to the input variables x1, . . . , xn by modeling these
as random variables X1, . . . , Xn with given mean values

E[X1], . . . , E[Xn] (4.2.3)

and covariances defined by

Cov[Xi , X j ] = E[Xi X j ] − E[Xi ]E[X j ] (4.2.4)

These quantities jointly make up the concept of second-moment representation for the random
vector X = (X1, . . . , Xn). The particular covariances that corresponds to i = j are the variances

Var[Xi ] = Cov[Xi , Xi ] = E[X2
i ] − E[Xi ]

2, i = 1, . . . , n (4.2.5)

The vector of mean value is denoted as E[X] while the matrix of covariances conveniently is
written as

Cov[X, XT] = E[XXT] − E[X]E[XT] (4.2.6)

preserving the rules of matrix algebra.

Remark 4.1 The calculation rules for mean values (expectations) originate from the definition of
E[·] as a positive linear functional that maps the constant 1 into the number 1. The functional is
defined on a linear space of random variables (symbolized by capital letters), with the constants
inclusive (symbolized by lower-case letters). The calculation rules are

E[1] = 1 (4.2.7)

E[aX ] = aE[X ] (4.2.8)

E[X + Y ] = E[X ] + E[Y ] (4.2.9)

X ≥ 0 ⇒ E[X ] ≥ 0 (4.2.10)
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The calculation rules for covariances follow directly from these rules through the use of the defini-
tion (4). It is seen that the covariance Cov [ , ] is a symmetrical bilinear functional. The calculation
rules are

Cov[X, Y ] = Cov[Y, X ] (4.2.11)

Cov[aX, Y ] = aCov[X, Y ] (4.2.12)

Cov[X, Y + Z ] = Cov[X, Y ] + Cov[X, Z ] (4.2.13)

that completely correspond to the rules for an inner product (scalar product) between two vectors.
Moreover the rule

Cov[a, X ] = 0 (4.2.14)

and the non-negativity rule

Var[X ] = Cov[X, X ] ≥ 0 (4.2.15)

are valid. The last rule follows from (4.2.14) and the definition (4.2.4) by writing

Cov[X, Y ] = Cov[X − a, Y − b] = E[(X − a)(Y − b)] − E[X − a]E[Y − b] (4.2.16)

and choosing a = E[X ] and b = E[Y ]. Then

Cov[X, Y ] = E[(X − E[X ])(Y − E[Y ])] (4.2.17)

which for X = Y and by use of (4.2.10) gives

Cov[X, X ] = E[(X − E[X ])2] ≥ 0 (4.2.18)

It is seen that the constants under addition operations correspond to the zero vector when the
covariance is interpreted as an inner product in the vector space of random variables.

For vectors of random variables the calculation rules can be formulated by use of the matrix
algebra rules by the simple formulas

E[aTX] = aTE[X] (4.2.19)

E[X + Y] = E[X] + E[Y] (4.2.20)

Cov[X, YT]T = Cov[Y, XT] (4.2.21)

Cov[aTX, YT] = aTCov[X, YT] (4.2.22)

Cov[X, YT + ZT] = Cov[X, YT] + Cov[X, ZT] (4.2.23)

Cov[X, XT] ≥ 0 (4.2.24)

where ≥ 0 here means that the covariance matrix Cov[X, XT] is non-negative (all n eigenvalues
are non-negative).

Moreover, from these formulas it follows that

Cov[aTX, YTb] = aTCov[X, YT]b (4.2.25)

Cov[AX, YTBT] = ACov[X, YT]BT (4.2.26)
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where A and B are constant matrices. �
The equation (4.2.1) motivates the introduction of the random variable

M = a1 X1 + . . . + an Xn + b = aTX + b (4.2.27)

where aT = [a1 . . . an]. The self-evident notation exemplified by (4.2.27) in which element no-
tations in a natural way are shortened into vector notations will be used in the following without
explicit display of the matrices. For outcomes of X in the internal of the safe set, on the limit-state
surface, and in the internal of the failure set we have M > 0, M = 0 and M < 0, respectively.
Such a random variable is called a safety margin or, more specifically, a linear safety margin. Its
sign indicates if there is failure or no failure. However, its absolute value is arbitrary since the
equation (4.2.1) is still valid after multiplication by an arbitrary constant. Of the same reason the
mean value

E[M] = aTE[X] + b (4.2.28)

is arbitrary in the sense that it says nothing about the degree of safety. However, if the mean
value E[M] is divided by the standard deviation D[M], which is defined as the square root of the
variance

Var[M] = aTCov[X, XT]a (4.2.29)

we obtain a number

β = E[M]

D[M]
= aTE[X] + b√

aTCov[X, XT]a
(4.2.30)

which is unchanged after multiplication of the safety margin with an arbitrary positive constant.
The number β is even invariant under any regular inhomogeneous linear mapping of the random
vector X into another random vector Y by

X = BY + c, Y = B−1(X − c) (4.2.31)

because M remains the same random variable whether or not it is written on the form (4.2.27) or
on the form

M = (aTB)Y + (b + aTc) = a1
TY + b1 (4.2.32)

If in particular B and c are chosen such that

E[Y] = 0, Cov[Y, YT] = I(= unit matrix) (4.2.33)

we get

β = a1
TE[Y] + b1√

a1
TCov[Y, YT]a1

= b1√
a1

Ta1

(4.2.34)
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Figure 4.1: Geometric interpretation of the simple reliability index.

The scalar product between the position vector to an arbitrary point x on a hyperplane and the unit
normal vector to the plane directed away from the origin is the same as the distance from the origin
to the hyperplane. The normal vector to the hyperplane (4.2.1) is −a/

√
aTa such that the distance

becomes −aTy/
√

aTa = b/
√

aTa.

Thus the number β is the distance from the origin to the limit state hyperplane in the particular
mapping space that corresponds to (4.2.33), see Fig. 4.1. Until further this space will be called the
normalized space. This space is rotation symmetric with respect to second-moment representation
since any rotation about the origin given by an orthogonal matrix A maps Y at Y1 = AY with the
covariance matrix

Cov[Y1, Y1
T] = ACov[Y, YT]AT = AIAT = AAT = I (4.2.35)

The invariant number β can be interpreted as a measure of safety with respect to overpassing the
limit state. According to its definition (4.2.30) it measures the distance from the limit state repre-
sented by M = 0 to the mean value E[M] with the standard deviation D[M] as unit. Having later
extensions in mind we will denote β as the simple reliability index. However, in this chapter we
will often leave out the word “simple”. If two limit states given by two different hyperplanes have
the same reliability indices, they hereby formally gets assigned the same reliability. A condition
that this reflects a reasonable engineering comparison with respect to safety between two limit
states is that rotation symmetry with respect to second-moment representation in the normalized
space also reflects rotation symmetry with respect to the conception of safety. With the assumption
that the sole available information about the input variables X is their second-moment representa-
tion this conceived rotation symmetry in safety must necessarily be present. If not, there should
be available information about X on the basis of which such asymmetry could be described and
included in the safety evaluation. It should be emphasized that the mere knowledge that asymme-
try is present without knowing the form of this asymmetry does not violate the claim of rotation
symmetry with respect to safety. In Chapter 7 we will see how documented asymmetry can be
taken care of by suitable transformations that remove the asymmetry.

Example 4.1 The truss tower in Fig. 4.2 carries a parabola antenna in a transmission line. The
pseudo static load (P1, P2) is a correlated pair of random variables that balances the random wind
pressure on the antenna [4.1]. In order that the antenna can function effectively it is required that
the rotation of the transmitted radio wave ray is kept under a certain level that depends on the
distance to the next tower in the line. Since the load is random, the rotation also becomes random
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and it is proportional to the difference R between the horizontal displacements of the points 1 and
2. It is assumed that all bars are of the same elastic material with the coefficient of elasticity E and
with the same cross sectional area A. By an elementary mechanical calculation we obtain that

R = [(5 + 2
√

2 )P1 + P2]
a

E A
(4.2.36)

About the random properties of P1 and P2 it is assumed that the two forces have a common mean

Figure 4.2: Truss tower with random loads from wind-excited parabola antenna.

value µ, standard deviation σ , and covariance ρσ 2, where ρ is the so-called correlation coefficient
Cov[P1, P2]/(D[P1]D[P2]). The correlation coefficient reflects the degree of spatial homogeneity
of the wind velocity field. For example, if ρ = 1, it means that Var[P1 − P2] = 0. The random
“rotation” R has the mean value

E[R] = (6 + 2
√

2 )
aµ

E A
(4.2.37)

and the variance

Var[R] = [(5 + 2
√

2 )2 + 1 + 2(5 + 2
√

2 )ρ]
( aσ

E A

)2
(4.2.38)

and thus the standard deviation

D[R] =
√

62.3 + 15.7ρ
aσ

E A
(4.2.39)

The square root varies from 6.82 to 7.90 to 8.83 for ρ = −1, 0 and 1, respectively. For these same
three values and for the coefficient of variation VP1 = σ/µ = 0.20 the coefficient of variation
VR = D[R]/E[R] is 0.15, 0.18 and 0.20 ≤ VP1 = VP2 , respectively. Thus the truss tower has the
effect that it decreases the uncertainty of R relative to that of the input (P1, P2).

As an example the design criteria specifications can be formulated in the following way:
Choose the cross-section area A such that the numbers E[R] − β D[R] and E[R] + β D[R] for a
given value of the simple reliability index β both belong to a given interval [−θ, θ]. The larger the
specified value of β the smaller the probability that the “rotation” R in a given strong wind gets
outside the interval [−θ, θ]. By solution it is seen that the upper limit θ is the most critical and it
is found that the requirement implies that

A ≥
(

8.83 + β
σ

µ

√
62.3 + 15.7ρ

)aµ

Eθ
(4.2.40)
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For β = 3 and σ/µ = 0.2 the just required cross-section area varies from 12.9 to 13.6 to 14.1
times aµ/Eθ for ρ = −1, 0 and 1, respectively. In this case the design result is rather insensitive
to the value of the correlation coefficient ρ. �

Figure 4.3: Geometric interpretation of the correlation coefficient ρ between two linear safety margins as
ρ = cos ν.

We conclude this section by considering two linear safety margins

M1 = a1
TX + b1, M2 = a2

TX + b2 (4.2.41)

They are in a certain relation to each other by being correlated with the covariance

Cov[M1, M2] = Cov[a1
TX, XTa2] = a1

TCov[X, XT] a2 (4.2.42)

In several connections the correlation coefficient defined by

ρ[M1, M2] = Cov[M1, M2]

D[M1]D[M2]
= a1

TCov[X, XT] a2√
a1

TCov[X, XT]a1 a2
TCov[X, XT] a2

(4.2.43)

has particular interest. Just as the simple reliability index is invariant, the correlation coefficient is
invariant to an inhomogeneous linear mapping of X into Y. Choosing the particular mapping into
the normalized space we get

ρ[M1, M2] =
(
− a1√

a1
Ta1

)
T
(
− a2√

a2
Ta2

)
(4.2.44)

where a1 and a2 here means the transformed coefficients in the safety margins M1 and M2. From
this it is seen that the correlation coefficient is the geometric quantity

ρ[M1, M2] = cos ν (4.2.45)

where ν is the angle between the normal vectors to the two hyperplanes that correspond to the
safety margins (Fig. 4.3). Both normal vectors are directed away from the origin. By specifying
the two safety indices β1 and β2 and the correlation coefficient ρ[M1, M2] the two hyperplanes
therefore are completely determined relative to each other and to the origin in the normalized
space.
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4.3 Linear regression

In the next section we will consider some important geometric results that can be obtained by
use of linear regression on linear safety margins. In spite that the concept of linear regression
should be familiar to the reader from elementary probability calculus, we will introduce the con-
cept from scratch in this section, but slightly more general than usual in elementary textbooks.
This introduction solely requires that the reader knows about calculation rules for second-moment
representations as repeated in Remark 4.1, and about elementary matrix algebra.

Without supposing that the random vectors considered in the following are vectors of input
variables we consider a pair (X, Y) of random vectors. We want to approximate Y linearly by X
such that the deviation in a certain sense becomes as small as possible. For an arbitrary coefficient
matrix A the deviation is Y − AX. We will define the best approximation as the one for which
there is no correlation between the deviation Y − AX and X. Thus A becomes determined from
the condition

Cov[Y − AX, XT] = Cov[Y, XT] − ACov[X, XT] = 0 (4.3.1)

Assuming that the covariance matrix Cov[X, XT] is regular we get

A = Cov[Y, XT]Cov[X, XT]−1 (4.3.2)

Since addition of an arbitrary constant vector to AX does not affect the covariance, we can choose
to add that particular constant vector a that make the expectation of AX+a equal to the expectation
of Y. This gives

a = E[Y] − AE[X] (4.3.3)

This linear approximation to Y in terms of X is called the linear regression of Y on X and is written
as Ê[Y | X]. Thus we have

Ê[Y | X] = E[Y] + Cov[Y, XT]Cov[X, XT]−1(X − E[X]) (4.3.4)

The deviation Y − Ê[Y | X] is called the residual vector. The covariance matrix of the residual
vector is

Cov[Y − Ê[Y | X], (Y − Ê[Y | X])T] = Cov[Y, YT] − Cov[Y, XT]Cov[X, XT]−1Cov[X, YT]
(4.3.5)

and it is denoted as the residual covariance matrix or the partial covariance matrix. Addition of
a vector of the form BX to the residual gives

Cov[(Y − Ê[Y | X]) + BX, (Y − Ê[Y | X])T + (BX)T] =
Cov[Y − Ê[Y | X], (Y − Ê[Y | X])T] + BCov[X, XT]BT (4.3.6)

Since the covariance matrix Cov[X, XT] is non-negative definite, the diagonal elements of the last
term in (4.3.6) are non-negative. Thus the addition of BX cannot decrease the diagonal elements of
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the covariance matrix to values below the values of the diagonal elements of the residual covariance
matrix. In other words, the linear regression is also the best linear approximation to Y in the sense
of giving the smallest variances of the deviations.

The notation Ê[Y | X] is used because the linear properties of the mean value functional are
also valid for the linear regression:

Ê[a | X] = a (4.3.7)

Ê[aTY | X] = aT Ê[Y | X] (4.3.8)

Ê[Y + Z | X] = Ê[Y | X] + Ê[Z | X] (4.3.9)

However, the positivity property (4.2.10) is not preserved. Moreover, we have that

Ê[X | X] = X (4.3.10)

It follows from (4.3.4) that

E[Y] = E
[

Ê[Y | X]
]

(4.3.11)

and that the last term in (4.3.5), except for the sign, is the covariance matrix for Ê[Y | X]. Thus it
follows from (4.3.5) that

Cov[Y, YT] = Cov[Ê[Y | X], Ê[Y | X]T] + Cov[Y − Ê[Y | X], (Y − Ê[Y | X])T] (4.3.12)

Example 4.2 Consider the measuring uncertainty problem in Example 3.1. We want to measure
a quantity X but we observe Z = X + Y where Y is the measurement error. In Example 3.1 it was
assumed that X and Y are mutually independent. Here we will relax that assumption and in stead
assume that the linear regression

Ê[Y | X ] = aX + b (4.3.13)

and the residual variance

Var
[
Y − Ê[Y | X ]

] = σ 2 (4.3.14)

are known. Then it follows by use of (4.3.9), (4.3.10) and (4.3.11) that

E[Z ] = E
[
X + Ê[Y | X ]

] = (1 + a)E[X ] + b (4.3.15)

and by use of (4.3.12) that

Var[Z ] = Var
[
X + Ê[Y | X ]

] + σ 2 = (1 + a)2Var[X ] + σ 2 (4.3.16)

Equations (4.3.15) and (4.3.16) give

E[X ] = E[Z ] − b

1 + a
(4.3.17)

Var[X ] = Var[Z ] − σ 2

(1 + a)2
(4.3.18)



66 Chapter 4. SIMPLE RELIABILITY INDEX

In a statistical sense we have hereby cleaned the measurement from measuring error. However, this
method is disputable because the linear regression (that is, the constants a and b) and the residual
variance may depend on the probability distribution of X .

Therefore the method is only applicable if there are reasons to assume that such dependency is
not present. �

Remark 4.2 The probability calculus introduces the concept of conditional mean value vector
E[Y | X] of Y given X. Besides (4.3.7) and (4.3.9) the more general form

E[g(X)TY | X] = g(X)TE[Y | X] (4.3.19)

of (4.3.8) is valid for the conditional mean vector. Here g(·) is a vector of functions subject to very
general restrictions. For the linear regression it is clear that (4.3.19) is not valid for other g(·) than
the constant vectors.

If E[Y | X] is linear in X, then E[Y | X] = Ê[Y | X]. This follows from the fact that the
conditional mean for given X = x is the vector E[Y | x] for which the elements in the vector of
deviations [Y | x]− E[Y | x] have minimal variances. Clearly this local minimality property carries
over to the property of global minimality of E[(Y − Ê[Y | X])2] by averaging [Y | x] − E[Y | x]
over the set of values of X weighted by the probability density of X.

It will be shown in Section 4.5 that the conditional mean value E[·|·] in the important case
where (X, Y) has a multidimensional normal distribution is an extension of the linear regression.
This means that E[·|·] coincides with Ê[·|·] when the rule (4.3.19) is used solely on the form
(4.3.8).

The analogous formulas to (4.3.11) and (4.3.12) become

E[Y] = E
[
E[Y | X]

]
(4.3.20)

Cov[Y, YT] = Cov
[
E[Y | X], E[Y | X]T] + E

[
Cov[Y, YT | X]

]
(4.3.21)

where Cov[Y, YT | X] is the conditional covariance matrix for Y given X. Unlike the residual
covariance matrix, the conditional covariance matrix may depend on X. If E[Y | X] = Ê[Y | X]
and the conditional covariance matrix is independent of X then the conditional covariance matrix
equals the residual covariance matrix.

The linear regression of Y on X with corresponding residual covariance matrix are global quan-
tities that may depend on the distribution of X while the conditional mean value vector E[Y | X]
and the conditional covariance matrix Cov[Y, YT | X] are local quantities that may depend on X
but not on the distribution of X. �

Example 4.3 With reference to Remark 4.2 we see that the problem with the method of cleaning
for measuring errors in Example 4.2 is due to the global character of the linear regression. How-
ever, if we assume that we know the local quantities E[Y | X ] and Var[Y | X ] as functions of X
this problem is eliminated. In order to be able to use (4.3.20) and (4.3.21) without introduction
of assumptions about probability distributions the conditional mean E[Y | X ] must have the linear
form

E[Y | X ] = aX + b (4.3.22)
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which leads to (4.3.17) while Var[Y | X ] at most can be quadratic in X , that is,

Var[Y | X ] = αX2 + β X + γ (4.3.23)

It is left to the reader as an exercise to find the formula for Var[X ] analogous to (4.3.18) by use of
(4.3.20)-(4.3.23). �

Example 4.4 In order to set up a non-destructive testing method for structural concrete elements
we imagine that the strain-stress curves have been measured for a large number of test cylinders
[4.1]. These test cylinders are all produced according to the same concrete recipe but each from its
own mixture. From each strain-stress curve an observation of (X1, X2, X3, Y ) is obtained where,
as shown in Figure 4.4, X1, X2 and X3 are the stresses corresponding to 0.02, 0.04 and 0.06 %
strain, respectively, while Y is the compression strength of the cylinder. By a statistical analysis of
these results the following second-moment representation has been obtained:

E
[
[X1 X2 X3 Y ]

] = [475 893 1250 2295] N/cm2 (4.3.24)

D
[
[X1 X2 X3 Y ]

] = �35 63 90 178� N/cm2 (4.3.25)

Corr[X, XT] =
⎡
⎣ 1 0, 843 0.762

0, 843 1 0.967
0, 843 0.967 1

⎤
⎦ , X =

⎡
⎣X1

X2

X3

⎤
⎦ (4.3.26)

Corr[Y, XT] = [0, 387 0.751 0.835] (4.3.27)

We introduce the notation D[X] (or D[XT]) for the diagonal matrix that has the standard deviations
of the elements of X in the diagonal and write

Cov[X, XT] = D[X]Corr[X, XT]D[XT] (4.3.28)

Cov[X, Y ] = D[X]Corr[X, Y ]D[Y ] (4.3.29)

We will calculate the linear regression of Y on X. The factor to X − E[X] in (4.3.4) becomes

Figure 4.4: Forecasting of concrete stress-strain curves on the basis of measured values for small strains.

Cov[Y, XT]Cov[X, XT]−1 = D[Y ]Corr[Y, X]Corr[X, XT]−1 D[X]−1 =
D[Y ][−0.639 0.175 1.153]D[X]−1 (4.3.30)
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and thus

Ê[Y | X] = 2295 + 178
(
−0, 639

X1 − 475

35
+ 0.175

X2 − 893

63
+ 1.153

X3 − 1250

90

)
=

547 − 3.250X1 + 0.494X2 + 2.280X3 N/cm2 (4.3.31)

The residual variance follows from (4.3.5) as

Var
[
Y − Ê[Y | X]

] = Var[Y ](1 − Corr[Y, XT]Corr[X, XT]−1Corr[X, Y ]) =
Var[Y ](1 − Corr[X; Y ]2) (4.3.32)

where

Corr[X; Y ] =
√

Corr[Y, XT]Corr[X, XT]−1Corr[X, Y ] (4.3.33)

(which is also written as Corr[Y ; X]) is called the multiple correlation coefficient between X and
Y . In this example Corr[X; Y ]2 = 0.847 such that the reduction factor on the standard deviation
D[Y ] becomes

D
[
Y − Ê[Y | X]

]
D[Y ]

= √
1 − 0.847 = 0.391 (4.3.34)

A short concrete pillar is made according to the same recipe and is designed to carry a given load
with a simple reliability index value of 4. For a given load the stress in the pillar therefore is equal
to the mean value minus 4 times the standard deviation of the compression strength, that is, 2295 -
4 · 178 = 1583 N/cm2. After the concrete pillar has been cast but before the load has been applied
doubt has been raised of whether the safety requirement is satisfied of having a simple reliability
index value of at least 4. Therefore it is decided to make a test loading of the pillar up to a strain of
0.06 %. By this test loading, the observation (X1, X2, X3) = (353, 655, 958) N/cm2 is obtained.
The linear regression then gives the prediction 1908 N/cm2 for the compression strength of the
pillar and the simple reliability index becomes

β = 1908 − 1583

0.391 · 178
= 4.67 (4.3.35)

This indicates that the reliability is more than sufficient even though the predicted strength is about
17 % less than the design mean strength of 2295 N/cm2.

The same procedure is applicable if for some reason it is needed to put more load than planned
on a structural element. �

Exercise 4.1 Let X0 be a subvector of X (that is, X0 has at most the same dimension as X and all
elements of X0 are also elements of X). Show that

Ê[X0 | X] = X0 (4.3.36)

and next that

Ê
[
Ê[Y | X0]

∣∣ X
] = Ê[Y | X0] (4.3.37)

�
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4.4 Geometric calculations by use of linear regression

In Section 4.2 we have seen that the simple reliability index

β = E[M]

D[M]
(4.4.1)

has the geometric property of being the distance from the origin to the hyperplane H in the nor-
malized space, where H is defined by M = 0. The vector from the origin to its projection on the
hyperplane is βα, where α = −a/

√
aTa is the normal unit vector to H directed away from the

origin.

This projection point is the point in the normalized space that reasonably can be denoted as the
most central outcome of the random vector X given that the linear safety margin

M = aTX + b (4.4.2)

takes the value M = 0. It is therefore interesting to check how this natural choice of the most
central point on the hyperplane is related to the approximation to X as obtained by the linear
regression of X on M . According to (4.3.4) we have that

Ê[X | M] = E[X] + Cov[X, M]

Var[M]
(M − E[M]) (4.4.3)

and thus

Ê[X | M = 0] = E[X] − Cov[X, M]

Var[M]
E[M] = E[X] − Cov[X, XT]√

aTCov[X, XT]a
aβ (4.4.4)

In particular when the space is normalized, that is, when E[X] = 0 and Cov[X, XT] = I, we get

Ê[X | M = 0] = −β
a√
aTa

(4.4.5)

This is exactly the projection point of the origin on the hyperplane H given by M = 0. Without
necessarily assigning the concepts solely to the normalized space we will in the following denote
the point given by (4.4.4) as the most central failure point on the plane limit state given by M = 0.

Linear regression can be used to determine the position vector not just from the zero point to
the nearest point on a hyperplane H in the normalized space, but more generally from the origin
to the nearest point x0 of the intersection H1 ∩ . . . ∩ Hp between p hyperplanes

Hi : Mi = 0, i = 1, . . . , p (4.4.6)

where M1, . . . , Mp are the corresponding linear safety margins. If these are collected in the vector
M we have that the position vector is, see (4.3.4),

Ê[X | M = 0] = −Cov[X, MT]Cov[M, MT]−1 E[M] (4.4.7)
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Figure 4.5: Geometric interpretation of linear regression Ê[X | M = 0].

assuming that the covariance matrix Cov[M, MT] between the safety margins is regular. This is
valid when the rank of the coefficient matrix A in

M = AX + b (4.4.8)

is the maximal rank p. This means that no one of the hyperplanes H1, . . . , Hp can be removed
from the intersection H1 ∩ . . .∩ Hp without making the intersection larger. That (4.4.7) is the same
as x0 is seen by determining x0 as the point x for which xT

0 x0 is minimal under the side condition
Ax + b = 0. By use of the Langrange multiplicator λ this conditional minimum is determined as
the unconditional minimum of the function

g(x, λ) = xTx + 2(Ax + b)Tλ (4.4.9)

We have

1

2

{∂g(x, λ)

∂xi

}
= x + ATλ = 0 (4.4.10)

which upon multiplication by A gives

Ax + AATλ = 0 (4.4.11)

Since AAT is regular and Ax = −b, it follows that λ = (AAT)−1b, and thus from (4.4.10) that

x0 = −AT(AAT)−1b (4.4.12)

In the normalized space we have Cov[M, MT] = ACov[X, XT]AT = AAT, Cov[X, MT] =
Cov[X, XT]AT = AT, and E[M] = AE[X] + b = b. Thus (4.4.7) and (4.4.12) are identical
in this space.

We can generalize the formula (4.4.7) further such that we can determine the position vector
from the point Ê[X | M = 0] in the intersection H1∩. . .∩Hp to the nearest point in the intersection
H1 ∩ . . .∩ Hp ∩ Hp+1 ∩ . . .∩ Hp+q where Hp+1, . . . , Hp+q are q hyperplanes determined by the
linear safety margins N1, . . . , Nq collected in the vector N. This position vector becomes

Ê[X | M = 0, N = 0] − Ê[X | M = 0] = Ê
[
X − Ê[X | M = 0]

∣∣M = 0, N = 0
]

(4.4.13)
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which follows by use of (4.3.9) and (4.3.37).

In the special case where q = 1 the length in the normalized space of the vector (4.4.13) can
be determined as the conditional reliability index

βN | M=0 = Ê[N | M = 0]

D̂[N | M = 0]
(4.4.14)

in which we have written N1 as N . The numerator is determined by the linear regression

Ê[N | M] = E[N ] + Cov[N , MT]Cov[M, MT]−1(M − E[M]) (4.4.15)

by setting M = 0, and the denominator D̂[N | M = 0] is the square root of the residual variance,
see (4.3.32) and (4.3.33),

Var[N ](1 − Corr[N ; M]2) (4.4.16)

where

Corr[N ; M]2 = (Cov[N , MT]Cov[M, MT]−1Cov[M, N ])Var[N ]−1 (4.4.17)

A proof of (4.4.14) is given at the end of Section 4.5.

4.5 The standardized multidimensional
normal distribution

Let X1, . . . , Xn be mutually independent random variables each of which is distributed as the
standardized normal density

ϕ(x) = 1√
2π

exp
(
−1

2
x2

)
, x ∈ R (4.5.1)

Then the joint density of all variables is

fX(x) = ϕ(x1) · . . . · ϕ(xn) =
( 1√

2π

)n
exp

(
−1

2
(x2

1 + . . . + x2
n)

)
, x ∈ R

n (4.5.2)

This density is called the standardized normal density in the n-dimensional space (centered at
the origin) and X is said to be n-dimensional standard normal. The density (4.5.2) is constant
on the hypersphere xTx = r2 with center at the origin and radius r . The density varies with the
distance ||x|| from the origin proportionally to the standardized one-dimensional normal density.
The restriction of the density function to an arbitrary linear subspace of R

n varies in the same way
with the distance from the origin. If the set of points in the considered subspace is parallel shifted
by a vector x0 that is orthogonal to all position vectors of the subspace, the restriction of (4.5.2)
to this parallel shifted set also varies as the standardized one-dimensional normal density with the
distance from the origin x0 of the shifted space. This follows from the identity

exp
(
−1

2
||x||2

)
= exp

(
−1

2
(||x0||2 + ||x − x0||2)

)
∝ exp

(
−1

2
||x − x0||2

)
(4.5.3)
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Thus we have shown that the standardized normal n-dimensional density as density for the random
vector X has the property that the conditional distribution of X given that

AX + b = 0 (4.5.4)

is the standardized normal m-dimensional density centered at x0. The dimension is m = n − p
where p is the rank of the matrix A while x0 is the orthogonal projection of the origin on the shifted
m-dimensional subspace H1 ∩ . . . ∩ Hp given by the condition

Ax + b = 0 (4.5.5)

In this condition the i th equation defines the hyperplane Hi , i = 1, . . . , p (given that the number
of equations equals the rank p). We can write the conditional density defined in this way as

fX(x | M = 0) =
( 1√

2π

)m
exp

(
−1

2
||x − x0||2

)
, x ∈ {x ∈ R

n | Ax + b = 0} (4.5.6)

where M = Ax + b and x0 is the point in the set H1 ∩ . . . ∩ Hp that is closest to the origin, that is,
the point x0 = Ê[X | M = 0] given by (4.4.7). For reasons of symmetry it is clear that x0 also is
the conditional mean value vector E[X | M = 0]. Since x0 is a vector of arbitrary length it follows
that Ê[X | M] = E[X | M] generally. This proves the statement in Remark 4.2.

The conditional covariance matrix corresponding to the conditional density (4.5.6) is deter-
mined by

Cov[X, XT | M = 0] =
( 1√

2π

)m
∫

A(x−x0)=0
(x − x0)(x − x0)

T exp
(
−1

2
||x − x0||2

)
dx =

( 1√
2π

)m
∫

A(z−z0)=0
(z − z0)(z − z0)

T exp
(
−1

2
||z − z0||2

)
dz = Cov[X, XT | M = m] (4.5.7)

in which we have substituted x − x0 = z − z0 with z0 = Ê[X | M = m] where m is an arbitrary
vector. Thus the conditional covariance matrix of X given M is independent of the value m of M.
Note that this does not imply that Cov[X, XT | M] is identical with Cov[X, XT]. Using (4.3.21) on
the residual covariance matrix gives

Cov
[
(X − E[X | M]), (X − E[X | M])T] =

Cov[E[(X − E[X | M]) | M], E[(X − E[X | M]) | M]T] +
E

[
Cov

[
(X − E[X | M]), (X − E[X | M])T]∣∣M]] =

E
[
Cov[X, XT | M]

] = Cov[X, XT | M] (4.5.8)

This is an important result valid for the normal distribution: the conditional covariance matrix and
the residual covariance matrix are identical. A proof of (4.4.14) is hereafter obtained by letting X
have standard normal distribution.

Exercise 4.2 Let X be n-dimensional standard-normal and define the random vector Y = TX+µ,
where T and µ are arbitrary constant matrices of type (m, n) and (m, 1), respectively. Then Y is
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said to be m-dimensional normal with mean value vector µ and covariance matrix TTT. Let
M = AY + b, where A and b are arbitrary allowable matrices with A having full rank.

Show that Ê[Y | M] = E[Y | M] and that Cov[Y, YT | M] is identical with the residual covari-
ance matrix Cov

[
Y − Ê[Y | M], (Y − Ê[Y | M])T

]
.

Show that the general expression for the m-dimensional normal density is

fX(x) = 1√
(2π)m det(Cov[X, XT])

exp
(
−1

2
(x − µ)TCov[X, XT]−1(x − µ)

)
, x ∈ R

m (4.5.9)

�

Exercise 4.3 Let (X, Y ) be two-dimensional normal and let E[Y | X ] = ρX , Var[Y | X ] = 1−ρ2,
E[X ] = 0, and Var[X ] = 1.

Show that (X, Y ) has the density

ϕ2(x, y; ρ) = 1

2π
√

1 − ρ2
exp

(
−x2 − 2ρxy + y2

2(1 − ρ2)

)
(4.5.10)

and show that

∂2ϕ2(x, y; ρ)

∂x∂y
≡ ∂ϕ2(x, y; ρ)

∂ρ
(4.5.11)

Use this to prove the formula

�2(x, y; ρ) = �(x)�(y) +
∫ ρ

0
ϕ2(x, y; t) dt (4.5.12)

where �2(x, y; ρ) is the distribution function corresponding to the density ϕ2(x, y; ρ) of the two-
dimensional normal distribution with mean values (0, 0), variances (1, 1) and correlation coeffi-
cient ρ. �
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Chapter 5

GEOMETRIC RELIABILITY INDEX

5.1 Nonlinear safety margin. Linearization problem

Only rarely limit states for structures are formulated such that they are linear in all input variables
x1, . . . , xn . In the early attempts to evaluate the safety by use of probabilistic concepts it was an
obvious idea to define a safety margin M by use of the limit-state function g(x1, . . . , xn). To be a
safety margin, M must be a random variable that satisfies the condition that M > 0 at the internal
points of the safe set, M = 0 at the limit state, and M < 0 at the internal points of the failure set.
This condition is satisfied by the limit-state function when X is substituted for x . Thus the safety
margin

M = g(X1, . . . , Xn) (5.1.1)

was defined and it was attempted to compute a reliability index by use of the formula

β = E[M]

D[M]
(5.1.2)

It is shown in Chapter 4 that this index is defined uniquely if the limit-state surface is a hyperplane
and only linear safety margins are used for the description of the limit state. However, with β

defined by (5.1.1) and (5.1.2) we are in a situation where β cannot be determined solely by use of
the second-moment representation for X. Distributional assumptions are needed. To circumvent
this problem in a formulation that aims to be based solely on information of first and second
moments the limit-state function g(x1, . . . , xn) was replaced by a linear approximation to g.

As done in the usual error analysis that is a well established tool in the field of measurement
technique (experimental physics, land surveying etc.) the function g(X) is replaced by its first
order Taylor expansion at the mean value µ = E[X]:

g(X) =µ Mµ = g(µ) +
n∑

i=1

g,i (µ)(Xi − E[Xi ]) (5.1.3)

(=µ means “equal to” up to the first order terms by Taylor expansion at the point µ). The right
side of (5.1.3) will be denoted as the linearly associated to g(X) at µ and it has the form as a linear

75
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safety margin. The corresponding simple reliability index βµ can then be calculated solely by the
use of the second-moment representation for X. In the early developments of the applications of
probabilistic reasoning in structural reliability it was assumed that

βµ = g(µ)√∑n
i=1

∑n
j=1 g,i (µ)g, j (µ)Cov[Xi , X j ]

(5.1.4)

is a reasonable approximation to β. However, it is easy to see that it is a serious problem that the
limit-state function g is arbitrary except for the requirement that the limit state should be defined
as the set

{X ∈ R
n | g(X) = 0} (5.1.5)

For example, this set is identical to the set

{X ∈ R
n | g(X)3 = 0} (5.1.6)

and g(X)3 satisfies the conditions for being a safety margin. By use of the limit-state function
h(X) = g(X)3 in stead of g(X) the right hand side of (5.1.4) becomes

g(µ)3√∑n
i=1

∑n
j=1 3g(µ)2g,i (µ) 3g(µ)2g, j (µ) Cov[Xi , X j ]

= 1

3
βµ (5.1.7)

where βµ is the simple reliability index (5.1.4). Thus we get completely different values of β as
defined by (5.1.2) dependent of the arbitrary choice of the limit-state function.

This lack of so-called formulation invariance of the reliability index definition (5.1.2) is not
only related to the error of linearization. This follows from the fact that the linearization error
become almost vanishing when the standard deviations of X1, . . . , Xn become small. The factor
of 1/3 from (5.1.4) to (5.1.7) exists independent of this.

Formulation invariance is achieved, naturally, if (5.1.2) is rejected and the probability P(M >

0) is used as a measure of reliability. However, this step would imply that the idea of formulating
a simple reliability analysis model that solely works with second-moment representations must
be abandoned. This turns out not to be necessary. As it is seen in many other cases of concept
extensions associated to mathematical models, the problem is caused by an inconvenient choice of
property for generalization. The simple reliability index is in a natural way defined by the formula
(5.1.2). However, a formulation-invariant extension of (5.1.2) does not exist. On the other hand,
the simple reliability index β has the formulation-invariant property that β is the distance from the
origin to the limit state surface in the normalized space. Therefore this property can be taken as
the basis for extension to limit-state surfaces that are not plane.

Example 5.1 The early application of the simple reliability index were based on a splitting of the
limit-state function in two terms denoted as the resistance R and the load effect S , respectively.
The considered reliability indices were defined as, see Example 2.4,

βC = µR − µS√
σ 2

R + σ 2
S

(5.1.8)
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or as, see Exercise 2.1,

βE R = µlog R − µlog S√
σ 2

log R + σ 2
log S

≈ log(µR/µS)√
V 2

R + V 2
S

(5.1.9)

For the early applications of these reliability indices the lack of formulation invariance was not
crucial. The applications were essentially about comparisons within a narrow structural domain of
variation. For example it could be about the calibration of a code concerning the application of a
given carrying-capacity formula. A design formalism is seeked such that the reliability index varies
as little as possible over the practical domain of variation for the formula. Thus the reliability index
was used with the purpose of ensuring local uniform reliability assuming that the failure probability
is some unknown function solely of the reliability index. The more ambitious goal of being able to
justify comparisons of global extension has motivated the development described in the following.
�

5.2 The geometric reliability index

Let the limit-state function in the space of input variables x1, . . . , xn be given by the equation

g(x1, . . . , xn) = 0 (5.2.1)

and let the input variables be random variables collected in the vector X with the second moment
representation E[X] and Cov[X, XT]. To generalize the simple reliability index the normalized
random variables Y1, . . . , Yn are introduced by a suitable one to one inhomogeneous linear map-
ping X = L(Y), Y = L−1(X). For example, this linear mapping may be composed of a parallel
shift and a rotation of the coordinate system followed by an axis parallel affinity, see Remark 5.1.
The corresponding space of points y is then defined by the transformation

x = L(y), y = L−1(x) (5.2.2)

By this the limit-state equation (5.2.1) is mapped into the equation

h(y1, . . . , yn) = 0 (5.2.3)

where the function h is defined by

h(y) = g[L(y)] (5.2.4)

Equation (5.2.3) defines the limit-state surface in the normalized space. The mean value of Y is
at the origin and the projection of Y on an arbitrary straight line through the origin is a random
variable with the standard deviation 1. The geometric reliability index β is then defined as the
distance in the normalized space from the origin to the limit state surface, that is,

β = min{
√

yTy | h(y) = 0} (5.2.5)
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where the minimum of the distance
√

yTy is obtained for y varying over the entire limit state
surface h(y) = 0. [Usually the limit-state surface is a closed but not necessarily bounded set in
R

n . Therefore the operation “min” is written in stead of the more general “inf” (infimum = largest
lower bound)].

A point y on the limit state surface with β =
√

yTy is called a globally most central limit-state
point. There may exist several such globally most central limit-state points. In particular the
limit-state surface may have an infinity of points common with a sphere surface with center at the
origin and radius β.

A point z with the property that there is an open neighborhood N (z) of z such that

√
zTz = min{

√
yTy | y ∈ N (z), h(y) = 0} (5.2.6)

is called a locally most central limit-state point, see Figure 5.1. Obviously the globally most central
limit-state points should be sought among the locally most central limit-state points.

Figure 5.1: Locally and globally most central limit-state point.

Remark 5.1 The linear transformation X = L(Y) is defined by a matrix T and a vector µ as

L(Y) = TY + µ (5.2.7)

where

µ = E[X] (5.2.8)

and T satisfies the condition

Cov[X, XT] = TTT (5.2.9)

The splitting of the covariance matrix for X in the product of a square matrix T and its transposed
matrix TT is not unique. If the covariance matrix is regular it is often computationally the simplest
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to determine T as a lower-triangular matrix (that is, all the elements above the diagonal are zero)
by Cholesky factorization method, described in several textbooks on matrix algebra.

Another possibility is to use diagonalization of the covariance matrix. In all cases there exist
an orthogonal matrix V and a diagonal matrix ��� such that

Cov[X, XT] = V���VT (5.2.10)

where the elements of the diagonal of ��� = �λ1 . . . λn� are the eigenvalues (taken in arbitrary order)
of the covariance matrix while the columns in V are the corresponding eigenvectors taken in the
succession of eigenvalues. A matrix T that satisfies (5.2.9) is then

T = V���1/2 (5.2.11)

where ���1/2 = �√λ1 . . .
√

λn�. Since covariance matrices solely have real eigenvalues that are non-
negative (which follows from the fact that the expectation functional property X ≥ 0 ⇒ E[X ] ≥ 0
implies that Var[X ] ≥ 0) the matrix T becomes a matrix of real numbers. �

Those points in the x-space that correspond to the locally or globally most central limit-state
points in the normalized space through the transformation x = L(y) are denoted as the locally or
globally most central limit-state points in the x-space. With reference to the particular metric that
is generated in the x-space by the usual Euklidian metric in the normalized space by the invariance

||y||y =
√

yTy =
√

(x − µ)T(T−1)TT−1(x − µ)

=
√

(x − µ)TCov[X, XT]−1(x − µ) = ||x − µ||x (5.2.12)

the globally most central limit-state point is the point on the limit-state surface which is closest to
the mean-value point µ = E[X].

5.3 Determination of a locally most central limit-state point by
use of linear regression

Let us assume that the limit-state surface G with the equation (5.2.1) is a differentiable surface with
a continuous vector of partial derivatives

grad g = (g,1(x), . . . , g,n(x)), x ∈ G (5.3.1)

that at no point of G is the zero vector. The vector (5.3.1) is orthogonal to the tangent hyperplane
to G at the point x.

Assume that x0 ∈ G is a locally most central point on G. The tangent hyperplane to G at x0 has
the equation

{g,i (x0)}T(x − x0) = 0 (5.3.2)

where {g,i (x0)} is a short notation for the column matrix that corresponds to the vector (5.3.1)
of partial derivatives. Naturally, x0 is also a locally most central point on the tangent hyperplane
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Figure 5.2: Characterization of a locally most central limit-state point in terms of the linear regression
Ê[X | Mx0 = 0].

defined by (5.3.2) (the only such point on the hyperplane, of course), see Figure 5.2. Thus it
follows from (4.4.4) that

x0 = Ê[X | Mx0 = 0] (5.3.3)

in which

Mx0 = {g,i (x0)}T(X − x0) (5.3.4)

is the linear safety margin defined by (5.3.2). Mx0 is called the linearly associated safety margin
to G at x0. Thus we have the following:

Theorem 5.1 The point x is a locally most central point on the limit-state surface G only if

x = Ê[X | Mx = 0] (5.3.5)

where Mx is the linearly associated safety margin to G at x. Then the corresponding local geomet-
ric reliability index is

βx = E[Mx]

D[Mx]
(5.3.6)

In Theorem 5.1 we have introduced the concept of local geometric reliability index. The
(global) geometric reliability index is the smallest of the local reliability indices.

The condition (5.3.5) directly points at an iteration principle for the determination of a locally
most central point on G: Let x1 be an arbitrary point on G or reasonably close to G. Calculate

x2 = Ê[X | Mx1 = 0] (5.3.7)

where

Mx1 = g(x1) + {g,i (x1)}T(X − x1) (5.3.8)

If x2 = x1, then x1 is possibly a locally most central point on G. Otherwise replace x1 with x2 and
start from scratch with (5.3.7). In this way a sequence x1, x2, . . . , xm, . . . of points is constructed.
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If the sequence is convergent with the limit x, then x is possibly a locally most central point on G.
To prove this we need only to note that the function

ψ(x) = Ê[X | Mx = 0] (5.3.9)

is continuous. Then {xm} → x implies {ψ(xm)} → ψ(x) and since the two sequences are identical
except for the first element of {xm} we have that x = ψ(x).

After this it is easy to see that g(x) = 0, and thus x ∈ G. In fact, with the notation

∇g = {g,i (x)} (column matrix) (5.3.10)

we have that the equation x = ψ(x) can be written as

x − E[X] = − Cov[X, XT]∇g

∇gTCov[X, XT]∇g
[g(x) + ∇gT(E[X] − x)] (5.3.11)

By scalar multiplication by ∇gT it then follows that g(x) = 0.

It is not ensured that the constructed sequence is convergent. However, under the given assump-
tions the equation (5.3.5) always possesses one or more solutions. Several different numerical
methods can be applied for the determination of these solutions. The interpretation of the solu-
tions as local solutions to an optimization problem as defined by (5.2.5) or (5.2.6) with (5.2.12)
substituted also points at the use of optimization algorithms.

Example 5.2 Assume that the limit-state curve is a parabola with the equation

g(x, y) = 1 − x2 − y = 0 (5.3.12)

and that E[X ] = E[Y ] = 0.5, D[X ] = D[Y ] = 1, and Cov[X, Y ] = 0.5, see Fig. 5.3. We will
apply the iteration method based on Theorem 5.1 to determine the geometric reliability index of
(5.3.12). We have

Figure 5.3: Parabolic limit-state curve given by (5.3.12).

∂g(x, y)

∂x
= −2x,

∂g(x, y)

∂y
= −1 (5.3.13)

so that

M(x,y) = −2x(X − x) − (Y − y) + 1 − x2 − y (5.3.14)
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To calculate the linear regression of (X, Y ) on M(x,y) we need, see (4.4.3),

E[M(x,y)] = −2x(E[X ] − x) − (E[Y ] − y) + 1 − x2 − y = x2 − x + 0.5 (5.3.15)

Var[M(x,y)] = 4x2 Var[X ] + Var[Y ] + 4x Cov[X, Y ] = 4x2 + 2x + 1 (5.3.16)

and

Cov

[[
X
Y

]
, M(x,y)

]
= −2x Cov

[[
X
Y

]
, X

]
− Cov

[[
X
Y

]
, Y

]
=

[−2x −0.5
−x −1

]
(5.3.17)

Thus

Ê

[[
X
Y

] ∣∣∣ M(x,y) = 0

]
=

[
0.5
0.5

]
+

[
2x + 0.5

x + 1

]
x2 − x + 0.5

4x2 + 2x + 1
(5.3.18)

and

β(x,y) = x2 − x + 0.5√
4x2 + 2x + 1

(5.3.19)

The right sides are seen to depend solely on x . Therefore it is sufficient to make iterations in the
first coordinate:

Ê[X | M(x,y) = 0] = 0.5 + (2x + 0.5)
x2 − x + 0.5

4x2 + 2x + 1
(5.3.20)

Take x1 = 0.5 as starting point for the iteration. In the first step we then have (with βx = β(x,y))

β0.5 = 1

4
√

3
= 0.1443, x2 = 0.5 + 1.5

0.25

3
= 0.625 (5.3.21)

Second step gives β0.625 = 0.1360, x3 = 0.6219. Third step gives β0.6219 = 0.1360, x4 = 0.6218.
�

We conclude this section by the case where the limit-state surface G is not differentiable every-
where, but where it is composed of p differentiable surfaces

Gi = {x ∈ R
n | gi (x) = 0}, i = 1, . . . , p (5.3.22)

Each of the functions g1, . . . , gp satisfies the conditions put on g previously. Then it is possible,
but not necessarily true, that the intersection

K = G1 ∩ . . . ∩ Gp (5.3.23)

contains a locally most central point for the composed limit-state surface G. Relative to K itself
there exists always a locally most central point in K. It is the point of K that by the mapping into
the normalized space is closest to the origin. With support in the formula (4.4.7), Theorem 5.1 can
directly be generalized to
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Theorem 5.2 The point x is a locally most central point of K = G1 ∩ . . . ∩ Gp only if

x = Ê[X | M (1)
x = 0, . . . , M (p)

x = 0] (5.3.24)

where M (i)
x is the linearly associated safety margin to Gi at the point x, i = 1, . . . , p.

The iteration principle for the solution of equation (4.4.5) is directly generalized for the solution
of equation (5.3.24).

Example 5.3 We will calculate the projection of the origin on the straight line defined by the
equations

x + 2y + 3z = 3

3x + y + 4z = 2 (5.3.25)

by use of Theorem 5.2. Let X be a random vector with E[X] = 0 and Cov[X, XT] = I (the unit
matrix) and define the vector

M =
[

3
2

]
−

[
1 2 3
3 1 4

]
X (5.3.26)

It has the covariance matrix

Cov[M, MT] =
[

1 2 3
3 1 4

] ⎡
⎣1 3

2 1
3 4

⎤
⎦ =

[
14 17
17 26

]
(5.3.27)

Moreover we have

E[M] =
[

3
2

]
and Cov[X, MT] = −

⎡
⎣1 3

2 1
3 4

⎤
⎦ (5.3.28)

such that the linear regression of X on M becomes

Ê[X | M] = −
⎡
⎣1 3

2 1
3 4

⎤
⎦ 1

75

[
26 −17

−17 14

] (
M −

[
3
2

])
(5.3.29)

or

Ê[X | M = 0] = 1

15

⎡
⎣−5

13
8

⎤
⎦ (5.3.30)

�
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5.4 Historical and bibliographical notes

The use of consistent calculations with mean values and standard deviations for strengths, loads
and geometric quantities for the determination of the safety factors to be used together with simple
carrying capacity formulas was suggested as early as in the 1920s by M. Mayer [5.9]. The basis was
directly available in the tool box of the civil engineers of those days where the theory of errors was
taught in connection with the topic of land surveying. However, the much larger complexity of the
error problem when considering a structure kept the development back for several decades. This
was not the least due to the many relevant but seemingly incommensurable sources of uncertainty
that influence the structural safety problem. Attempts to reconsider the reliability index idea was
not made before about 1960. It was suggested by E. Basler [5.1] but the idea was not appreciated
before acceptance of the classical Bayesian interpretation of the probability concept which had
long been rejected by the frequentists.

The Bayesian interpretation allows introduction of random judgemental variables that do not
show fluctuations in the physical sense but still are considered to carry information about uncer-
tainty. Such random variables make it possible to join contributions from uncertainty sources of
completely different types in a probabilistic model without causing philosophical problems. This
line of thought penetrated into the civil engineering education at several leading American en-
gineering schools. The structural safety problem was an obvious domain of application for this
philosophy and the reliability index was reborn with convincing strength. Among the pioneers
should be mentioned C.A. Cornell [5.2] (βC in Example 5.1), L. Esteva and E. Rosenblueth [5.5]
(βER in Example 5.1), C. Turkstra [5.10]. The development was strongly promoted by the current
code revision work both in North America and in Europe, and particularly so in the Scandinavian
cooperation. This code work revealed that there was an urgent need for establishing a rational basis
for the determination of the safety factors that should be specified in the codes.

The formulation-invariance problem was pointed out in 1972 by O. Ditlevsen [5.3] and by N.
Lind who in 1974 together with A.M. Hasofer suggested the geometric reliability index [5.7] as
a formulation invariant and operational reliability measure. The geometric property of the sim-
ple reliability index was demonstrated much earlier in an example in a larger paper on structural
reliability by A.M. Freudenthal i 1956 [5.6]. Freudenthal’s reliability considerations were based
on complete probability models that at the time of the paper were difficult to apply due to com-
putational problems and due to the narrow interpretation of the concept of probability. In this
connection it should be mentioned that from the end of the 1940s and the beginning of the 1950s
there are several works on fully probability based reliability considerations. Among these there is
a particularly interesting dissertation by A.J. Johnson [5.8].

The particular use of linear regression of X on M for determination of the most central limit-
state point as well as the geometric reliability index is suggested by O. Ditlevsen and used for
example in [5.4] that gives the first version of the model given in Section 3.4 for representation of
model uncertainty.



5.4 Historical and bibliographical notes 85

Bibliography

[5.1] E. Basler (1961) Untersuchungen über der Sicherheitsbegriff von Bauwerken. Schweizer
Archiv, 27.

[5.2] C.A. Cornell (1969) A Probability-based structural code. Journal of the ACI, 66, 974-985.

[5.3] O. Ditlevsen (1973) Structural Reliability and the Invariance Problem. Report No. 22,
University of Waterloo, Solid Mechanics Division, Waterloo, Canada.

[5.4] O. Ditlevsen (1982) Model Uncertainty in Structural Reliability. Structural Safety, 1, 73-86.

[5.5] L. Esteva and E. Rosenblueth (1972) Reliability Basis for Some Mexican Codes. ACI publi-
cation SP-31-1, American Concrete Institute, Detroit, Michigan.

[5.6] A.M. Freudenthal (1956) Safety and the Probability of Structural Failure. Trans. ASCE, 121.

[5.7] A.M. Hasofer and N.C. Lind (1974) An exact and invariant first-order reliability format.
Journal of Eng. Mech., ASCE, 100, 111-121.

[5.8] A.I. Johnson (1953) Strength, Safety and Economical Dimensions of Structures. Statens
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Chapter 6

GENERALIZED RELIABILITY INDEX

6.1 Shortcomings of the geometric reliability index

From a mathematical point of view the geometric reliability index is a crudely structured extension
of the simple reliability index from the set of plane limit-state surfaces to the set of general limit-
state surfaces. It is crude because it does not distinguish between limit-state surfaces that are
tangential to each other at the common point closest to the origin in the normalized space. Thus
these limit-state surfaces are all assigned the same reliability. This raises the question of whether
such a reliability index in general has a sufficient degree of resolution to satisfy engineering goals.

In spite of this question the geometric reliability index is useful because a limit-state surface
for a realistic structure is often almost plane in the sense that the tangent hyperplane at the most
central point only deviates slightly from the limit-state surface within a domain that contains the
essential part of the failure probability mass. The simple reliability index of the tangent hyperplane
at the most central limit-state point therefore often turns out to be a sufficiently good measure of
reliability. The domain of application for the geometric reliability index is thus the limit state
surfaces that in the indicated sense are almost plane. The method simply points at a “reliability-
equivalent” plane limit state surface whose simple reliability index is used as a reliability measure
for the curved but almost plane limit-state surface. The characterization is at this stage very im-
precise. A quantitative evaluation requires an extension of the reliability index definition which
takes account of the deviation from plainness of the limit-state surface. In the following we will
introduce such an extension to a generalized reliability index that solves this problem. The geo-
metric reliability index preserves its practical importance by being a good approximation to the
generalized reliability index for “almost plane” limit state surfaces. Besides, it gets an essential
importance as a computationally characteristic quantity in connection with the calculation of the
generalized reliability index.

We will now look at the requirements that a reliability index should satisfy in order to be
reasonable from an engineering point of view. Let a, b, c, . . . be structures with corresponding
limit states that can be represented in the normalized space of input variables. Let Sa,Sb,Sc, . . .

be the corresponding safe sets. A reasonable requirement to a reliability-analysis model is that it
is capable of ordering the structures with respect to reliability. Thus we want to define an ordering
relation “≺” in the set of structures such that the statement a ≺ b is tantamount to the statement

87



88 Chapter 6. GENERALIZED RELIABILITY INDEX

“b is as least as safe as a with respect to the considered limit states”. This ordering relation should
naturally be transitive (a ≺ b ∧ b ≺ c ⇒ a ≺ c) and antisymmetric (a ≺ b ∧ b ≺ a ⇔ a ∼ b).
The equivalence relation a ∼ b is expressed in words by the statement “a and b are equally safe”.

A reasonable property is

Sa ⊂ Sb ⇒ a ≺ b (6.1.1)

Under the explicit assumption that no other information is available than the second-moment repre-
sentation of the input variables, the rotation symmetry with respect to uncertainty of the normalized
space must be accepted. Thus we must accept the more general property:

If the safe set Sa by a rotation with respect to the origin can be transformed

into a subset S ′
a of Sb, then a ≺ b (6.1.2)

By definition it is so that a scalar reliability measure β is an ordering-preserving mapping from
the set of structures into the real numbers. Each structure is here assigned just one safe set. We
have

a ≺ b ⇔ β(a) ≤ β(b) (6.1.3)

and, in particular,

a ∼ b ⇔ β(a) = β(b) (6.1.4)

If the set of structures corresponds solely to the set of plane limit-state surfaces, then the sim-
ple reliability index is obviously such a reliability measure. For more general sets of limit-state
surfaces we may as in the previous chapter let the geometric reliability index be a reliability mea-
sure for which (3) and (4) must be satisfied. By this the ordering relation ≺ is introduced in the
corresponding set of structures. Inspection of Fig. 6.1 shows, however, that this definition easily
gets in conflict with a reasonable engineering judgment of the reliability. This inconvenience has
been called lack of dimension invariance [6.9], a concept that will be explained in the following.
The simple reliability index can be interpreted as adjoined to a one-dimensional problem. Only
the projection of the input vector on the normal of the limit-state hyperplane has relevance for the
reliability. However, if the limit-state surface curves as a cylinder surface, the problem becomes
two-dimensional since only the projection on the orthogonal plane to the cylinder surface matters
with respect to reliability. Dependent on the curvature properties of the limit-state surface the prob-
lem is of dimension between 1 and n inclusive. This is not reflected by a corresponding variation
of the geometric reliability index.

Example 6.1 The lack of dimension invariance of the geometric reliability index is clearly illus-
trated by the probability that the input vector X gets an outcome inside the circular cylinder with
the equation

x2
1 + . . . + x2

r = β2, r ∈ {1, . . . , n} (6.1.5)
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when it is assumed that the vector X = (X1, . . . , Xn) has a standardized normal distribution. The
mentioned event can be written as

X2
1 + . . . + X2

r ≤ β2 (6.1.6)

where the left side has a χ2-distribution with r degrees of freedom. The mean value is r and
the variance is 2r . For large values of r the χ2-distribution approaches the normal distribution
asymptotically. For large values of r we therefore get

FX2
1+...+X2

r
(β2) ≈ �

(β2 − r√
2r

)
→ �(−∞) = 0 as r → ∞ (6.1.7)

for any β. As the dimension increases, more and more of the probability mass is placed outside
the cylinder with the fixed radius β. �

This example extends far beyond the threshold below which the geometric reliability index
is reasonable for practical reliability evaluation. Section 6.4 gives criteria for the judgment of
the applicability of the geometric reliability index. Before such criteria can be formulated, it is
necessary to construct an extension of the simple reliability index to a generalized dimension-
invariant reliability index.

Figure 6.1: Illustration of examples of safe sets (Sa,Sb,Sc) for which the geometric reliability index cannot
be resolved with respect to reliability. Moreover it is illustrated by an example (Sd) that there can be a direct
inconsistency with engineering judgment.

6.2 Generalized reliability index

We will require that the generalized reliability index β must satisfy the following three basic rules:

1. the generalized reliability index is an extension of the simple reliability index from the set
of plane limit-state surfaces to the set of piecewise differentiable limit-state surfaces.
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2. The ordering induced by the generalized reliability index has the rotation property (6.1.2).

3. If S ′
a in (6.1.2) is a genuine subset of Sb, that is, if S ′

a ⊂ Sb ∧ S ′
a �= Sb, then β(a) < β(b)

(which excludes the possibility a ∼ b).

It is an obvious idea to construct a scalar reliability measure that satisfies the rules 2 and 3 by
letting the measure be related to the volume of the safe set. The volume measure cannot be applied
directly because it is not bounded for all subsets of R

n . However, we can apply a weighted volume
measure by introducing a suitable weight function ψn : R

n
� R which is positive everywhere and

which to any suitable regular subset A of R
n assigns a finite measure determined by the integral of

ψn over A. Since the relative measure (the ordering property) does not change after multiplication
of all measures by a constant, we may without introducing restrictions normalize ψn such that all
of R

n is assigned the measure 1. By this normalization ψn gets properties as a probability density
in R

n . The rotation symmetry with respect to the origin shows that ψn is a function solely of
r2 = x2

1 + . . . + x2
n .

To satisfy the rule 1 we must define the reliability index by the formula

β(a) = G
(∫

Sa

ψn(x) dx
)

(6.2.1)

where G is a suitable increasing function that maps the interval [0, 1] onto R. If ψn has been
chosen, the function G is uniquely determined by the rule 1. In principle any rotation symmetric
probability density ψn can be used as the basis for the generalized reliability index according to
the formula (6.2.1). We need even not require that the probability density ψn possesses moments
of first and second order. If the density possesses these moments, we need not require that the
covariance matrix is the unit matrix. From the rotation symmetry it only follows that given that the
covariance matrix exist it is proportional to the unit matrix. However, simplicity reasons make us
require that the following extra rules are satisfied for ψn:

4. The function ψn is continuous and the corresponding second-moment matrix is the unit
matrix.

5. For all n and m < n the product rule

ψn(x1, . . . , xn) = ψm(x1, . . . , xm)ψn−m(xm+1, . . . , xn) (6.2.2)

is valid.

Rule 5 implies the very convenient property∫
x>x0

ψn(x) dx =
n∏

i=1

(∫
xi>x0i

ψ1(x) dx
)

(6.2.3)

valid for all x0 = (x01, . . . , x0n) ∈ R
n . . Due to the rotation symmetry this formula is also valid

upon an arbitrary rotation of the coordinate system.

It can be shown that these rules imply that ψ1(x) is uniquely determined as the one-dimensional
standardized normal density ϕ(x) and thus that

ψn(x1, . . . , xn) = ϕ(x1) · . . . · ϕ(xn) (6.2.4)
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Hereafter it is easily seen that G in (6.2.1) is the inverse function �−1 to the standardized normal
distribution function �. Thus the formulated requirements uniquely lead to the definition

β(a) = �−1
(∫

Sa

ϕ(x1) · . . . · ϕ(xn) dx1 · . . . · dxn

)
(6.2.5)

of the generalized reliability index. For brevity we will in general omit the word “generalized” in
the following. The integral over Sa in (6.2.5) can be interpreted as a probability

p =
∫
Sa

ϕ(x1) · . . . · ϕ(xn) dx1 · . . . · dxn (6.2.6)

and the reliability index β as the fractile

β = �−1(p) (6.2.7)

corresponding to p in the standardized normal distribution. However, once more it is emphasized
that the assignment of the density ψn defined by (6.2.4) is not an indication of use of distributional
information about the input variables X. Only the second-moment representation of X reflects the
reliability. The assignment of the density (6.2.4) is solely a formal mathematical tool that provides
a rational extension of the simple reliability index to a larger class of limit-state surfaces. The
extension is one of several possible and therefore it is arbitrary. However, by requiring that (6.2.2)
is satisfied, a unique extension is obtained which is particularly simple with respect to calculations.
Thus it is not claimed that X has a normal distribution in the sense that such a property is based
on data. Mathematically we may describe the assignment in (6.2.4) in short terms by saying that
X has a normal distribution. It should then be remembered that this statement does not reflect
empirical information about the reality.

Remark 6.1 Assume that there is sufficient data available, not just for the choice of the second-
moment representation for X, but also to state that the normal distribution fits well with the data.
Then p, as calculated by (6), is interpretable as a relative frequency of the occurrence of the event
S. However, if p has been given the formal role as a calculational quantity on which the definition
of the generalized reliability index is based, then such an interpretation is erroneous or doubtful,
at least. Since the mentioned information about distributional type is added on top of the second-
moment information, it is in conflict with common-sense engineering to claim that there is the same
reliability with respect to overpassing the limit state as if only the second-moment information is
available. That p by (1) has the same value is irrelevant for this reliability evaluation problem. The
core of the matter is that one cannot use (1) both in the one situation and in the other situation with
the purpose of comparing the results and thereby determine an ordering with respect to safety. In
fact, we are dealing with two different reliability models that should not be mixed together. Any
reliability analysis model is constrained solely to handle elements of information of certain types.
Within the same model varying amounts of information are reflected in a rational way by varying
reliability measures. Information that cannot be formally represented in terms of the elements
of the model cannot be taken advantage of by use of the model. If engineering considerations
show that the not represented information is of essential technical importance, the model must be
replaced by a more detailed model. Comparisons between the different models can in general only
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be made through the study of the technical consequences of the models. Thus one must turn to the
principle of consequence calculation mentioned in Chapter 1. It is clear from this that the choice
of model becomes a question of establishment of codes of practice for reliability evaluation. �

Example 6.2 A structure is loaded successively by an uncorrelated sequence of random loads
X1, X2, . . . , Xm, . . . all with mean value µX and standard deviation σX . The structure has a
random resistance Y against failure. This means that failure occurs at the earliest at load application
number m + 1 if and only if

Y − X1 > 0, Y − X2 > 0, . . . , Y − Xm > 0 (6.2.8)

The resistance has the mean value µY , the standard deviation σY and is uncorrelated with the loads.
We want to calculate the generalized reliability index with respect to failure before load application
number m + 1 [4.1]. Therefore we assume that X1, X2, . . . , Xm and Y are normally distributed.
The conditional failure probability, given that Y = y, obviously becomes

1 − �
( y − µX

σX

)m = �[−βm(u)] (6.2.9)

where βm(u) expressed as a function of

u = y − µY

σY
(6.2.10)

is the conditional generalized reliability index given that Y = y. In particular we have

β1(u) = y − µX

σX
= uσY + µY − µX

σX
(6.2.11)

and thus (6.2.9) can be written as

βm(u) = �−1{�[β1(u)]m} (6.2.12)

Let us assume that σX/σY = 2 and that the structure is designed such that the simple reliability
index

β1 = E[Y − X1]

D[Y − X1]
= µY − µX√

σ 2
X + σ 2

Y

(6.2.13)

has the value β1 = 5. Then (6.2.12) specializes to

βm(u) = �−1
{
�

[1

2
u + 5

√
5

2

]m}
(6.2.14)

The graphs for this function are shown for m = 1, 10, 100, 1000, and 10 000 in Fig. 6.2.

The total formal probability that the structure survives the m first load applications hereafter
becomes

�(βm) =
∫ ∞

−∞
�[βm(u)]ϕ(u) du =

∫ ∞

−∞
du

∫ βm(u)

−∞
ϕ(u)ϕ(v) dv =

∫
S

ϕ(u)ϕ(v) du dv (6.2.15)
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Figure 6.2: Conditional generalized reliability index βm(u) for given resistance Y = σY u + µY and m
independent load applications.

m β β/
√

1 + β ′2 {1 + . . . } βm <≈ �−1[�(β1)
m]

1 5.590 5.000 1 5.00 5.00
10 5.175 4.562 0.994 4.53 4.54
100 4.727 4.084 0.989 4.04 4.02
1000 4.236 3.560 0.981 3.49 3.44
10000 3.687 2.976 0.966 2.88 2.76

Table 6.1: Data for Example 6.2

At this stage the original (m + 1)-dimensional problem is reduced to a 2-dimensional problem
for the mutually independent standardized normally distributed variables U and V in which the
inequality v ≤ βm(u) defines the safe set S. From the convex curvature properties of the limit-
state curves it follows that the geometric reliability index calculated in this 2-dimensional space is
an upper limit to the generalized reliability index βm defined by (6.2.15).

The limit-state curves in Fig. 6.2 can be approximated by their curvature circles at the points
(0, βm(0)). By calculating the distances from the origin to these circles followed by Taylor expan-
sion we obtain

βm < (≈)
β√

1 + β ′2

{
1 + ββ ′2β ′′

2[ββ ′′ + (1 + β ′2)2]

}
(6.2.16)

where β = βm(0), β ′ = β ′
m(0), β ′′ = β ′′

m(0). The formula (6.2.16) is valid generally for convex
limit-state curves that qualitatively are shaped as in Fig. 6.2.

The values are given in Table 6.1. The last column in the table is the generalized reliability
index calculated under the incorrect assumption that Y − X1, . . . , Y − Xm are mutually indepen-
dent. The dependency through the common term Y is in this case seen to have a very modest
influence on the generalized reliability index. Under suitable assumptions this small influence of
the dependency between different modes of failure turns out to be of a general nature.

While the geometric reliability index in the original formulation space is independent of m and
equal to 5 the generalized reliability index decreases with m. �
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6.3 Reliability index bounds for convex polyhedral safe sets

As an important example of the practical possibilities of calculating the reliability index we con-
sider the case where the safe set is polyhedral and convex. Let the limit state be composed of m
hyperplanes such that the safe set is defined as the intersection of the m half-spaces given by the
conditions

M1 > 0, . . . , Mm > 0 (6.3.1)

where Mi is the linear safety margin corresponding to the i th hyperplane, see Fig. 6.3.

Figure 6.3: Polyhedral and convex safe set.

The formal probability mass

p = P(M1 > 0, . . . , Mm > 0) = P(−M1 < 0, . . . ,−Mm < 0) (6.3.2)

on the safe set is determined by the formal assignment of the normal distribution to the input
variables X1, . . . , Xn . The set of safety margins M1, . . . , Mm is then jointly normally distributed
since each safety margin is an inhomogeneous linear function of X1, . . . , Xn . It appears from
(6.3.2) that p is the value at (0, . . . , 0) of the joint distribution function for (−M1, . . . ,−Mm).
Obviously we have

p = �m(β; PM) (6.3.3)

where β = (β1, . . . , βm) is the vector of simple reliability indices

βi = E[Mi ]

D[Mi ]
(6.3.4)

and PM = {ρ[Mi , M j ]} is the correlation matrix for M, that is, the matrix of the correlation
coefficients corresponding to M = (M1, . . . , Mm). The function �m(x; P) is the m-dimensional
normal distribution function that corresponds to all mean values being zero, all variances being 1,
and the correlation matrix being P.

If P is regular, the normal distribution is said to be regular and otherwise to be singular. If
m > n, the normal distribution is always singular but it can be singular also for m ≤ n, of course.
When the distribution is singular, the entire probability mass is concentrated on a subspace of the
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m-dimensional space. This subspace has dimension equal to the rank of the correlation matrix (or
what is the same, the rank of the covariance matrix Cov[M, MT]).

The practical applicability of the reliability theory on problems that are more general than the
problems that correspond to “almost plane” limit-state surfaces is thus restricted by the possibilities
of calculating values of the m-dimensional normal distribution function �m(x; P) for any correla-
tion matrix P. In particular this is valid for points x = β, where the elements of β have suitably
large positive values such that the formal failure probability 1 − p = 1 − �m(x; P) is small.

Both in this and in the next chapter we will treat different methods for approximate calculation
of �m(x; P). In this section we will derive an exact bounding of 1 − p both from below and from
above. For this it is convenient to work with set indicator functions (zero - one variables). We
define

1A(x) =
{

1 if A is true for x (or if x ∈ A)

0 otherwise
(6.3.5)

in which A is either a statement, such as M1 > 0, or a set. The indicator function for the safe set
S defined by all the statements in (6.3.1) being true is then determined by the product

1S = 1S1 · . . . · 1Sm (6.3.6)

where 1Si = 1Mi>0, i = 1, . . . , m. For brevity we will write 1Si as 1i in the immediately following
equations. Then we have

1 − 1S = 1 − 11 · . . . · 1m = 1 − 11

+11(1 − 12)

+1112(1 − 13) + . . .

+1112 · . . . · 1m−1(1 − 1m) (6.3.7)

Moreover we have

1112 · . . . · 1i

{
= max{1 − �i

j=1(1 − 1 j ), 0}
≤ 1 j for j ≤ i

(6.3.8)

where the last inequality is obvious. The right side of the equality can at most be 1, and only if
1 j = 1 for all j . But in this case the left side also takes the value 1. In all other cases both sides
are zero.

By substitution of (6.3.8) in (6.3.7) we get

1 − 1S = 1 − 11 + �m
i=2 max{(1 − 1i )[1 − �i−1

j=1(1 − 1 j )], 0} (6.3.9)

and

1 − 1S ≤ 1 − 11 + �m
i=2[(1 − 1i ) min{11, 12, . . . , 1i−1}]

= 1 − 11 + �m
i=2

[
(1 − 1i )(1 − max{1 − 11, 1 − 12, . . . , 1 − 1i−1})

]
= �m

i=1(1 − 1i ) − �m
i=2max j<i {(1 − 1i )(1 − 1 j )} (6.3.10)
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Thus

1F

{
= 1F1 + �m

i=2 max{1Fi − �i−1
j=11Fi 1F j , 0}

≤ �m
i=11Fi − �m

i=2max j<i {1Fi 1F j }
(6.3.11)

where 1F = 1 − 1S is the indicator function for the complementary set to S, and correspondingly
for the sets marked with indices.

Since for two random variables X and Y we have that X ≤ Y ⇒ E[X ] ≤ E[Y ] (which
follows from the positivity of the expectation functional (4.2.10)), (6.3.11) gives the probability
inequalities

P(F)

{
≥ P(F1) + �m

i=2 max{P(Fi ) − �i−1
j=1 P(Fi ∩ F j ), 0}

≤ �m
i=1 P(Fi ) − �m

i=2max j<i {P(Fi ∩ F j )}
(6.3.12)

Here it is used that the expectation of a random indicator function 1A is the same as the probability
P(A) of the event A. The inequalities (6.3.12) are valid for an arbitrary probability distribution. In
the definition of the generalized reliability index we formally have assigned a normal distribution
to the space of input variables such that this normal distribution has the same second-moment
representation as the vector of input variables X. Therefore we can use (6.3.12) for bounding of
the reliability index

β = −�−1[P(F)] (6.3.13)

by setting

P(Fi ) = �(−βi ) (6.3.14)

P(Fi ∩ F j ) = �2(−βi , −β j ; ρi j ), j = 1, . . . m (6.3.15)

where the function �2(x, y; ρ) is the distribution function of the two-dimensional normal distri-

Figure 6.4: Geometric illustration of the normalized space with proof of (6.3.16) and (6.3.17).

bution with mean values (0, 0), variances (1, 1) and correlation coefficient ρ (Exercise 4.3).

It follows directly by considering Fig. 6.4 that

�2(−βi , −β j ; ρi j )

{
≥ max{�(−βi )�(−β j |i ), �(−β j )�(−βi | j )}
≤ �(−βi )�(−β j |i ) + �(−β j )�(−βi | j )

(6.3.16)
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for ρi j > 0 while

�2(−βi , −β j ; ρi j ) ≤ min{�(−βi )�(−β j |i ), �(−β j )�(−βi | j )} (6.3.17)

for ρi j < 0. The conditional reliability index βi | j is, see (4.4.14),

βi | j = Ê[Mi | M j = 0]

D̂[Mi | M j = 0]
= βi − ρi jβ j√

1 − ρ2
i j

(6.3.18)

This can also be seen from Fig. 6.4 by use of the fact that the correlation coefficient ρ[Mi , M j ] is
cos ν where ν is the angle between the two outwards directed normal vectors to the hyperplanes.

In many practical situations it is sufficient to use (6.3.16) and (6.3.17) for the evaluation of the
terms P(Fi ∩ F j ) on the right side of (6.3.12).

Example 6.3 Figure 6.5 shows a steel truss loaded by self weight q1 and snow load q2 [4.1].
The loads are considered as constants while the yield resistances of the bars are random with
given mean values and standard deviations. The yield resistances are assumed to be equicorrelated
with the correlation coefficient ρ ≥ 0. Equicorrelation can originate from a common random
term (common except for proportionality) while the variation beyond the contribution from this
common term is represented by mutually independent random variables.

Yielding of any of the 13 bars defines a failure mode for the truss structure. The corresponding
safety margins are linear. For the sake of simplicity we will assume that the compression bars are
prevented from loss of stability through constructive means. The exercise is then to design the bars
such that the generalized reliability index with respect to failure of the truss in any mode gets a
specified value βtruss. For further simplification of the example the design problem is restricted
to the special case where the cross-section areas of the bars are chosen such that all the individ-
ual failure modes get a common simple reliability index β. Thus the exercise is reduced to the
determination of β for a given value of βtruss.

The m = 13 linear safety margins become

Mi = Yi − ai q1 − bi q2, i = 1, . . . , 13 (6.3.19)

where ai , bi are influence coefficients while Yi is the yield force for the i th bar (compression or
tension dependent of what is relevant). Since the loads are constants, the safety margins become
equicorrelated with the correlation coefficient ρ. We then have that

P(Fi ) = �(−β) (6.3.20)

and according to (6.3.18) that

βi | j = β

√
1 − ρ

1 + ρ
(6.3.21)

so that (6.3.15) and (6.3.16) give

1 ≤ P(Fi ∩ F j )

�(−β)�

(
−β

√
1 − ρ

1 + ρ

) ≤ 2 (6.3.22)
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Figure 6.5: Truss structure with load definitions.

Hereafter it follows from (6.3.12) that

P(F)

�(−β)
≥ 1 +

m∑
i=2

max

{
1 − 2(i − 1)�

(
−β

√
1 − ρ

1 + ρ

)
, 0

}

= max
j∈{1,... ,m}

j∑
i=1

{
1 − 2(i − 1)�

(
−β

√
1 − ρ

1 + ρ

)}

= max
j∈{1,... ,m}

{
j

[
1 − ( j − 1)�

(
−β

√
1 − ρ

1 + ρ

)]}
(6.3.23)

where the maximal value is obtained for j equal to the integer closest to the number

1

2

⎡
⎢⎢⎢⎣1 + 1

�

(
−β

√
1 − ρ

1 + ρ

)
⎤
⎥⎥⎥⎦ (6.3.24)

The upper bound obtained from (6.3.12) is

P(F)

�(−β)
≤ m − (m − 1)�

(
−β

√
1 − ρ

1 + ρ

)
(6.3.25)

In particular for ρ = 0 we find that the generalized reliability index βtruss is bounded as follows:

−�−1{�(−β)[13 − 12�(−β)]} ≤ βtruss ≤ −�−1{�(−β)[13 − 156�(−β)]} (6.3.26)

For values of practical interest there is a very small difference between the two bounds. Obviously
the exact value is

βtruss = �−1[�(β)13] ≈ −�−1[13�(−β)] (6.3.27)
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Figure 6.6: Upper and lower bound for the generalized reliability index βtruss for the truss structure in
Fig. 6.5 as a function of the correlation coefficient ρ between the bar yield resistances. The middle curve
shows the exact reliability index (Remark 6.2).

For a specified value of βtruss as for example βtruss = 4, the formula (6.3.27) gives the value
β = 4.57 for the design of the individual bars. This value of β is used for the curves in Fig. 6.6.
The solid line shows the bounds for βtruss(ρ) determined by (6.3.23) and (6.3.25) as functions of
ρ ∈ [0, 1]. The maximal value of the bracketed term {. . . } in (6.3.23) is obtained for j = 13
when ρ ≤ 0.748. For ρ = 0.8, 0.9, 1 the optimal bound is obtained for j = 8, 4, 1, respectively.
The bounds of the shaded domain are determined by use of the exact integral formula (4.5.11) for
�2(−β, −β; ρ) in (6.3.15).

Figure 6.6 shows that βtruss(ρ) is almost independent of ρ up to as large a value as about 0.5 to
0.6. This practical limit for independence of ρ increases with the reliability index β. Furthermore
the figure illustrates that the two bounds are almost coincident for ρ less than about 0.5 to 0.6. �

Remark 6.2 Let X, X1, . . . , Xm be mutually independent standardized normally distributed ran-
dom variables and consider the m safety margins

Mi = βi + √
ρ X +

√
1 − ρ Xi , i = 1, . . . , m (6.3.28)

They are seen to be equicorrelated with the correlation coefficient ρ. They all have the variance 1
and Mi has the mean value βi . Then

P(M1 > 0, . . . , Mm > 0) =
∫ ∞

−∞
P(M1 > 0, . . . , Mm > 0 | X = x)ϕ(x) dx

=
∫ ∞

−∞

[ m∏
i=1

P(Mi > 0 | X = x)
]
ϕ(x) dx =

∫ ∞

−∞

[ m∏
i=1

�
(βi + √

ρx√
1 − ρ

)]
ϕ(x) dx (6.3.29)

which in particular for β1 = . . . = βm = β becomes

P(M1 > 0, . . . , Mm > 0) =
∫ ∞

−∞
�

(βi + √
ρx√

1 − ρ

)m
ϕ(x) dx (6.3.30)
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The reliability problem considered in Example 6.3 can therefore be solved by a single integral.
The graph for the corresponding function βtruss(ρ) is shown in Fig. 6.6. �

Example 6.4 The frame structure shown in Fig. 6.7 is analyzed with respect to carrying capac-
ity by use of the yield hinge theory corresponding to ideal plasticity [4.1]. The yield moments
Y1, . . . , Y5 are assumed to be uncorrelated random variables with a common mean value µ and a
standard deviation σ . The principle of virtual work gives the following three linear safety margins

M =
⎡
⎣M1

M2

M3

⎤
⎦ =

⎡
⎣M1

M2

M3

⎤
⎦

⎡
⎣1 0 2 2 1

0 1 2 1 0
1 1 0 1 1

⎤
⎦

⎡
⎢⎢⎢⎢⎣

Y1

Y2

Y3

Y4

Y5

⎤
⎥⎥⎥⎥⎦ −

⎡
⎣Fa + Gb

Gb
Fa

⎤
⎦ (6.3.31)

corresponding to each of the mechanisms shown in Fig. 6.7.

Figure 6.7: Yield hinge model for frame structure.

The limit-state surface in the five-dimensional space of the yield moments is convex and poly-
hedral. The angles ν12, ν13, ν23 between the normal vectors to the hyperplanes in the corresponding
normalized space are given by, see (4.2.45),

cos ν12 = Corr[M1, M2] =
√

6/10 ≈ 0.775, ν12 ≈ 39◦

cos ν13 = Corr[M1, M3] =
√

4/10 ≈ 0.632, ν12 ≈ 51◦

cos ν23 = Corr[M2, M3] =
√

1/6 ≈ 0.408, ν12 ≈ 66◦ (6.3.32)

We will consider the simple but special case where the three simple reliability indices βi =
E[Mi ]/D[Mi ], i = 1, 2, 3, have the common value β. The conditional reliability index (6.3.18)
becomes

βi | j =
√

1 − ρi j

1 + ρi j
(6.3.33)

and it follows from (6.3.15) and (6.3.16) that

�(−β)pi j ≤ P(Fi ∩ F j ) ≤ 2�(−β)pi j (6.3.34)
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where pi j = �(−βi | j ). The inequalities (6.3.12) imply that the probability of collapse P(F) has
the lower bound

P(F) ≥ �(−β)[3 − 2(p12 + p13 + p23)] (6.3.35)

and the upper bound

P(F) ≤ �(−β)[3 − 2(p12 + p13 + p23) + min{p12, p13, p23}] (6.3.36)

that both correspond to the numeration of the three mechanisms that give the closest bounds. From
this the following bounding of the generalized reliability index is obtained: 3.74 < βframe < 3.76
for β = 4 and 4.78 < βframe < 4.80 for β = 5.

If we calculate the probability of collapse under the assumption of independence between the
three safety margins we get

P(F) = 1 − �(β)3 ≈ 3�(−β) (6.3.37)

which gives βframe = 3.73 and 4.78 for β = 4 and 5, respectively. Thus we see that the correlation
between the safety margins is almost without influence on the generalized reliability index.

It is important not to mix up the insensitivity of the generalized reliability index with respect
to correlation between several (in series) contributing safety margins with the effect of correlation
between input variables as Y1, . . . , Y5. The correlation between the input variables can naturally
have a substantial influence on the standard deviations of the individual safety margins and thus on
their reliability indices. �

6.4 Asymptotic reliability index for curved limit-state surface.
Definition of “almost plane” limit-state surface (single-point
FORM or SORM)

Let the limit-state surface in the standardized Gaussian space have its globally most central point
on the xn-axis. This can always be achieved by rotating the coordinate system. Moreover, assume
that the limit-state surface is twice differentiable in a neighborhood of the globally most central
point.

As illustrated in Fig. 6.8 place a “circular” cylinder C in R
n with the xn-axis as axis. Let R

n−1

here designate the special subspace of R
n described by the n−1 first coordinates of (x1, . . . , xn−1,

xn). The projection of the cylinder on R
n−1 is then a sphere K.

We will make the assumption that the intersection between C and the limit state surface makes
a piece of a surface whose projection on R

n−1 is the entire sphere K. By use of Taylor’s formula
we can represent this surface piece by an equation of the form

xn = β + 1

2
zTAz + o(zTz), z ∈ K (6.4.1)

where β is the geometric reliability index, A is a constant matrix and z = (x1, . . . , xn−1).
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By the affinity yn = γ xn , y = γ z with respect to the origin using an affinity factor γ ≥ 1 we
generate a surface piece with the equation

yn = γβ + 1

2γ
yTAy + γ o

(yTy
γ 2

)
, y ∈ K (6.4.2)

The corresponding geometric reliability index is γβ.

Let Fγ denote the failure set relative to the limit state that corresponds to the value of the
affinity factor in (6.4.2). Our goal in the following is to derive an asymptotic formula for the formal
failure probability P(X ∈ Fγ ) as γ → ∞. Readers who are less interested in the derivation may
jump to equation (6.4.10).

First we will use the asymptotic formula

�(−x) ∼ ϕ(x)

x
as x → ∞ (6.4.3)

that is, for any ε1 > 0 there is a value x0 such that∣∣∣∣ ϕ(x)

x�(−x)
− 1

∣∣∣∣ < ε1 for x > x0 (6.4.4)

With yn given by (6.4.2) we thus have

P(X ∈ Fγ ∩ C) =
∫
K

�(−yn)ϕn−1(y) dy ∼
∫
K

ϕ(yn)

yn
ϕn−1(y) dy (6.4.5)

where the relative error after “∼ ” is less than ε1 when γ is chosen suitably large in dependence of
ε1. The function ϕn−1(y) is the standardized normal density in the (n − 1)-dimensional space. By
substitution of yn from (6.4.2) it is seen that the last integral in (6.4.5) can be written as

ϕ(γβ)

γβ

( 1√
2π

)n−1
∫
K

exp

[
−1

2
yT(I + βA)y

]
exp[γ 2o(yTy/γ 2)]

1 + [1/(2γ 2β)]yTAy + o(yTy/γ 2)
dy (6.4.6)

where I is the unit matrix. The fraction behind the integral is for an arbitrary choice of ε2 > 0
bounded to the interval [1 − ε2, 1 + ε2] for γ suitably large. With a relative error less than ε2 we
can therefore replace the fraction in (6.4.6) by 1. Thus we have from (6.4.5)

P(X ∈ Fγ ∩ C) ∼ �(−γβ)
( 1√

2π

)n−1
∫
K

exp

[
−1

2
yT(I + βA)y

]
dy (6.4.7)

using (6.4.3) to replace ϕ(γβ)/(γβ) by �(−γβ).

We now assume that the absolute values of the elements in the matrix A are sufficiently small
for the matrix I+βA to be positive definite, that is, for all the eigenvalues of I+βA to be positive.
Then the integrand in (6.4.7) is proportional to a normal distribution density defined by the inverse
covariance matrix I + βA. If we rotate the coordinate system about the xn-axis, we can achieve
that A becomes a diagonal matrix

A = �α1 . . . αn−1� (6.4.8)
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Figure 6.8: Illustration of cylinder C, sphere K, limit-state surface, and affinity with respect to the origin
with factor γ ≥ 1.

By this rotation the sphere K maps onto itself such that the integral in (6.4.7) can be written

n−1∏
i=1

(1 + βαi )
−1/2

∫
K

n−1∏
i=1

{
1√
2π

exp
[
−1

2
(1 + βαi )x2

i

]
d(xi

√
1 + βαi )

}
(6.4.9)

If K is replaced by R
n−1, the integral in (6.4.9) obviously becomes 1. Therefore we could from

the start have chosen the radius of the cylinder C and thus the radius of the sphere K so large that
the integral in (9) deviates arbitrarily little from 1. Thus we have shown that as γ → ∞:

P(X ∈ Fγ ∩ C) ∼ �(−γβ)

n−1∏
i=1

(1 + βαi )
−1/2 (6.4.10)

in which the right-hand side is independent of the choice of C. The numbers α1, . . . , αn can be
interpreted by use of (6.4.1) on the form

xn = β + 1

2
(α1x2

1 + . . . + αn−1x2
n−1) + o(zTz) (6.4.11)
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It is seen that

αi =
[∂2xn

∂x2
i

]
z=0

= −κi (6.4.12)

where κi is the i th principal curvature at the most central point on the limit-state surface. It is noted
that the sign is chosen such that positive principal curvatures correspond to local convexity of the
safe set.

The result (6.4.10) does not allow the conclusion that the left-hand side of (6.4.10) can be
replaced by P(X ∈ F) where F = F1. However, there is a more involved proof that the formula
is also valid for P(X ∈ F). For our practical use of the formula this is of minor importance. This
is because we always can choose C with so large a radius that P(X ∈ F ∩ Cc) is much smaller
than the right side of (6.4.10) within the relevant value domain of β. To this is added that the result
merely is an asymptotic result for which the error for finite values of β is unknown. However, the
result illustrates clearly the fundamental importance of the geometric reliability index and of the
curvature properties of the limit state surface at the most central limit-state point.

It is also useful to note that the generalized reliability index (here denoted as βG) asymptotically
is equal to the geometric reliability index γβ as γ → ∞. This is seen in the following way.
According to the right hand side of (6.4.10) we have that

�(−βG) = k�(−γβ) (6.4.13)

where k is the product factor in (6.4.10) and where βG corresponds to the formal probability on
the right side of (6.4.10) . It follows from (6.4.13) that βG → ∞ as γ → ∞. Let us assume that
k > 1. Then γβ/βG > 1 during the passage to the limit. Moreover, let us assume that it is not true
that γβ/βG → 1 as γ → ∞. Then there is an ε > 0 and a sequence γ1, γ2, . . . → ∞ such that
γiβ/βG > 1 + ε for all i . If (6.4.3) is used on (6.4.13) we get

γβ

βG
∼ k

ϕ(γβ)

ϕ(βG)
= k exp

{
−1

2
β2

G

[(γβ

βG

)2 − 1
]}

(6.4.14)

For the sequence γ1, γ2, . . . the right-hand side of (6.4.14) converges to 0 while the left-hand side
is larger than 1. This is a contradiction and we can conclude that

βG ∼ γβ (6.4.15)

asymptotically as γ → ∞. A similar argument can be applied for k < 1. It now follows from
(6.4.14) that

2 log k − [(γβ)2 − β2
G] → 0 as γ → ∞ (6.4.16)

or

β2
G ∼ (γβ)2 + log

(1

k

)2 = (γβ)2 +
n−1∑
i=1

log(1 − βκi ) (6.4.17)
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If βκi � 1 for all i = 1, . . . , n − 1, we get from this that

βG ∼ γβ

√√√√1 − 1

γ 2β

n−1∑
i=1

log κi ≈ γβ − 1

2γ

n−1∑
i=1

κi (6.4.18)

asymptotically as γ → ∞, where
∑n−1

i=1 κi is the first curvature invariant at the most central point
on the limit-state surface, that is, on the surface that corresponds to γ = 1. This curvature invariant
equals the trace in the matrix −A, see (6.4.12) and (6.4.8).

The formulas (6.4.17) or (6.4.18) can be used to judge the accuracy by which the geometric
reliability index approximates the generalized reliability index when the limit-state surface is twice
differentiable in a neighborhood of the most central point. We can also use (6.4.18) for making the
characterization “almost plane” precise. For example, if we decide that βG is sufficiently accurate
if the error is less than about 5% of the geometric reliability index, then we can characterize the
limit state surface as being almost plane if

∣∣∣∣∣
n−1∑
i=1

βκi

∣∣∣∣∣ ≤ (γβ)2

10
(6.4.19)

Since the left side of this inequality is independent of γ , the set of limit-state surfaces that are
almost plane will increase together with the geometric reliability index γβ.

Methods for the calculation of failure probabilities and generalized reliability indices without
correction for curvature of the limit state surface at the most central point are often denoted under
the abbreviation FORM (First Order Reliability Method). Methods that include the curvature cor-
rection similarly are denoted under the abbreviation SORM (Second Order Reliability Method). If
only the globally most central limit-state point is taken into account, the methods can be charac-
terized as “single-point FORM” or “single-point SORM”.

Remark 6.3 For a plane curve given by the equation g(x1, x2) = 0 where g is twice differentiable,
the curvature at an arbitrary point can be determined by the formula

κ = −g,11g2
,2 − 2g,12g,1g,2 + g,22g2

,1

(g2
,1 + g2

,2)
3/2

(6.4.20)

In practical reliability analysis problems the limit-state surfaces for the individual failure modes are
often almost plane such that it is sufficiently accurate to apply FORM. When the curvature plays a
role, it is most often solely with respect to some few of the active input variables. With only two
input variables of this type, (6.4.20) can be used for calculation of the curvature correction factor
in (6.4.10) or (6.4.18) with γ = 1.

In computer programs for SORM-analyses both the derivatives of g as well as the curvature
are usually computed by numerical methods. Such calculations can be less accurate. A formula
like (6.4.20) is therefore also useful for the control of the computer program. �
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6.5 Polyhedral approximation to arbitrary safe sets
(multi-point FORM or SORM)

Evaluation of the integral in (6.2.6) for arbitrary safe sets S may show large calculational diffi-
culties. It is therefore an obvious goal to try to approximate S with a simpler set for which the
calculation can be done with less difficulties. The results of the two previous sections invite to use

Figure 6.9: Multipoint FORM.

Figure 6.10: Multipoint SORM.

convex polyhedral sets whose faces are tangent hyperplanes to the limit-state surface ∂S at one
or more of the locally most central points on ∂S. The use of just these points as tangent points
ensures the convexity of the polyhedral set defined by the tangent hyperplanes, see Fig. 6.9.

We have seen in the previous sections that the most essential contributions to the failure proba-
bility come from the vicinities of the locally most central limit-state points if the distances from the
origin in the standardized Gaussian space to these points are suitably large. This situation is most
common in structural reliability. It is therefore to be expected that the polyhedral approximation
often will give reliability index values of sufficient accuracy for practical purposes. This method
of approximation can be characterized as “multi-point FORM”(Fig. 6.9).
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If the curvatures of the limit-state surface at the locally most central points are so large that the
assumption of almost plane surface is less good, a somewhat better approximating convex polyhe-
dral set can be constructed by parallel shifts of the faces of the previously constructed polyhedral
set by such amounts that the distances from the origin to the new hyperplanes equal the local gen-
eralized reliability indices determined by (6.4.17) or (6.4.18). This method can be characterized as
“multi-point SORM” (Fig. 6.10).

Without using Monte Carlo simulation the possibilities of controlling the accuracy of the results
that can be obtained by the methods of this and the previous section are limited to particularly
simple examples in which analytical or numerical integration can be accomplished. In spite of
long computation time, Monte Carlo simulation therefore gets a decisive role as a tool for control
of the accuracy of fast approximative methods. This topic is considered in Chapter 9.

6.6 Polyhedral approximation at singular points on the limit-
state surface (single-point multiple FORM or SORM)

Often certain points on the limit-state surface are singular in the sense that they are intersection
points between several differentiable surfaces ∂S1, . . . , ∂Sm . The sets S1, . . . ,Sm make up the
safe set S for example as the intersection

S = ∩m
i=1Si (6.6.1)

while the failure set is the union

F = ∪m
i=1Fi (6.6.2)

where F is the complementary set to S. This situation is relevant if the limit state is passed if
just one of the events F1, . . . ,Fm occurs. This corresponds to a situation where several different
elements function together as a series system (chain system) in the sense that failure of the system
occurs if just one of the elements fails, that is, if just one link in the chain fails. (These elements
are not necessarily materialized. For example they can be collapse mechanisms as in Example 6.4.
The convex polyhedral sets considered previously correspond to such series systems where the
faces are the elements).

It is easy to see that if ∂S1, . . . , ∂Sm are differentiable surfaces, then no singular points on ∂S
can be locally most central points in case S is defined as the intersection (6.6.1). However, this can
very well be the case if S is defined as the union

S = ∪m
i=1Si (6.6.3)

so that the failure set becomes the intersection

F = ∩m
i=1Fi (6.6.4)

This definition of S corresponds to a situation where the individual elements work together as a
parallel system. Failure of the system requires that all elements fail. At this place we will not go
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further into system considerations. Such considerations play an essential role for the evaluation of
the reliability of statically indeterminate structures. This important topic is given an introductory
treatment in Chapter 14.

Let us assume that q of the m limit-state surfaces ∂S1, . . . , ∂Sm have a nonempty intersection
and let us for the sake of simplicity assume that they correspond to the q first indices. We will
denote the set

K = ∂S1 ∩ . . . ∩ ∂Sq (6.6.5)

as a ridge of S (or of F). Choose a point x ∈ K and replace ∂Si with the tangent hyperplane ∂ Hix
to ∂Si at x and let Hix be the half-space with boundary ∂ Hix that approximates Fi for i = 1, . . . , q .
In a Gaussian space, replacement of

∩q
i=1Fi by ∩q

i=1 Hix (6.6.6)

then leads to the approximation

P
(∩q

i=1Fi
) ≈ �q(−β; Corr[M, MT]) (6.6.7)

where �q is the distribution function for the q-dimensional normal distribution. In (6.6.7) the
vector M = (M1,x, . . . , Mq,x) is defined as the vector of linear safety margins that correspond to
the q tangent hyperplanes ∂ H1x, . . . , ∂ Hqx at x, and β is the corresponding vector of the simple
reliability indices.

The most central point on the ridge K will normally be a good choice of the approximation
point x. It is noted that this point generally will not be a locally most central point on ∂S.

6.7 Historical and bibliographical notes

The dimension-invariance problem connected to the geometric reliability index was pointed out by
D. Veneziano in 1974 [6.9] and considered further by O. Ditlevsen in 1976 [6.3]. The generalized
reliability index was suggested by O. Ditlevsen in 1979 [6.4].

The probability inequalities (6.3.12) was published by the statistician E.G. Kounias in 1968,
[6.7]. However, his work remained unknown within the subject of structural safety until the begin-
ning of the 1980s. The simple inequalities

max
i

P(Fi ) ≤ P(F) ≤
m∑

i=1

P(Fi ) (6.7.1)

were applied for the evaluation of the reliability structural system by C.A. Cornell in 1967, [6.2].
In some relevant cases these simple bounds are rather wide. This fact motivated the formulation of
the bounds in (6.3.12). E. Vanmarcke [6.8] published the upper probability bound in 1973 while
the lower bound was formulated by O. Ditlevsen in 1979 [6.5]. The extensive applicability of the
bounds for structural reliability evaluations was demonstrated by O. Ditlevsen and since then by
several researchers in a large number of different examples.

The important asymptotic result (6.4.10) is given by K. Breitung in 1984 [6.1]. The approxi-
mation (6.6.7) is suggested by M. Hohenbichler in 1984, [6.6]. These works were made within a
research group at Technische Universität München under the leadership of R. Rackwitz.
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Chapter 7

TRANSFORMATION

7.1 Informational asymmetry

The generalized reliability index was defined in the previous chapter in a natural way under the
assumption that the sole available information about the input variables x is that they are uncertain
with their uncertainty quantified solely in terms of a second-moment representation. A fundamen-
tal assumption behind the definition is informational rotation symmetry in the normalized space.
Both in theory and in practice there is usually more information of high quality available than solely
the second moment representation of X. Most obvious is symmetry disturbing restrictions that are
satisfied of logical necessity or of physical reasons. Almost any physical quantity is bounded up-
wards or downwards or both. Often negative values are excluded as being in contradiction with the
definition of the quantity. For example, negative tension strengths make no sense in usual modeling
of mechanical phenomena.

However, in many cases it is only of minor practical importance that a model error is made
by assuming that the definition domain of the mechanical model is the entire of R

n in spite of the
physical facts. This is because the boundary of the definition domain is far away from the origin
of the normalized space as compared to the distance to the relevant limit state surface.

It is obvious that the existence of a boundary of the definition domain generally prevents the
informational rotation symmetry with respect to the origin. If the definition domain is suitably
regular, it is, however, in principle possible to represent the mechanical model and the considered
n-dimensional limit-state problem by the aid of a new set of variables y that without restrictions
can take values everywhere in R

n . This set of variables y is obtained by a suitable one-to-one
continuous mapping y = T (x) of the input variables x into y where the transformation T is chosen
such that the map of the definition set is all of R

n . The space of the map R
n is formally covered

with the normal distribution density that corresponds to the second-moment representation for the
transformed random vector Y = T (X). However, this second moment representation is unknown
while the second-moment representation (E[X], Cov[X, XT]) of the input variables X is known.
Therefore (E[Y], Cov[Y, YT]) must be determined from the condition that the applied transforma-
tion X = T −1(Y) transforms the normal distribution density in the y-space into a formal density
in the x-space that corresponds to the known mean value vector E[X] and the known covariance
matrix Cov[X, XT]. After normalization of the y-space such that it becomes standard Gaussian we

111
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are back in the informational rotation symmetrical situation. Thus we can define the generalized
reliability index on the basis of the representation of the limit-state surface in the y-space.

In the following we will often use the notation u-space for the standard Gaussian space, and U
will without further definition denote a random vector with standard Gaussian distribution.

Example 7.1 The most common situation is that in which one or more of the variables in X
solely can take positive values. If X is such a variable, a possibility is to apply a logarithmic
transformation and to assume that log X is normally distributed. Then the following transformation
formulas are valid:

E[log X ] = log E[X ] − 1

2
log(1 + V 2

X ) (7.1.1)

Var[log X ] = log(1 + V 2
X ) (7.1.2)

where

VX = D[X ]

E[X ]
(7.1.3)

is the coefficient of variation of X . If V 2
X � 1 we have

E[log X ] ≈ log E[X ] (7.1.4)

D[log X ] ≈ VX (7.1.5)

If both X and Y are variables that are transformed logarithmically, we have

Cov[log X, log Y ] = log

(
1 + Cov[X, Y ]

E[X ]E[Y ]

)
= log(1 + Corr[X, Y ]VX VY ) (7.1.6)

which for VX VY � 1 gives the approximations

Cov[log X, log Y ] ≈ Corr[X, Y ]VX VY (7.1.7)

Corr[log X, log Y ] ≈ Corr[X, Y ] (7.1.8)

If only X is transformed, we get

Cov[log X, Y ] = Cov[X, Y ]

E[X ]
= Corr[X, Y ]VX D[Y ] (7.1.9)

Corr[log X, Y ] = Corr[X, Y ]
VX√

log(1 + V 2
X )

(7.1.10)

≈ Corr[X, Y ] for V 2
X � 1 (7.1.11)

�
On the basis of the assumed level of information it is not possible by theoretical considerations

alone to point out principles that show how the transformation T can be chosen in a unique way.
Only criteria of simplicity seem to point at reasonable choices. In order to use the theory in
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practice, standardized transformations must therefore necessarily be prescribed by an authorized
code giving organization.

The situation is different if distributional information exists on top of the second-moment in-
formation and information about restrictions imposed by definitions and physical relations. If this
distributional information is complete, it is reasonable to require that the transformation T should
be exactly the one that transforms the given probability distribution for X to the standardized nor-
mal distribution for Y.

This complete state of information is an ideal state that hardly will show up in practice often.
Usually the claimed probability distribution is chosen from a large class of distributions by com-
parison with sample data as given for example in terms of histograms. Thus there is a remaining
problem about the arbitrary choice of the distributional type. This problem cannot be neglected
when the domain of application is structural reliability. This is illustrated in the following example.

Example 7.2 Two engineers have each got the job of designing a steel cable such that the reli-
ability against tension failure is fixed by a reliability index of β = 4.75. It is assumed that the
cable can be manufactured such that with great accuracy it has a prescribed tension resistance R.
The knowledge of the load S is uncertain, however. The engineers have available only a sample of
possible load values without any given specifications of distribution types.

One engineer fits a normal distribution to the given data for S while the other engineer chooses
to fit a logarithmic normal distribution; that is, this engineer transforms the given data logarithmi-
cally to the data for log S and assumes that log S is normally distributed. The sample shows no
clear indications of whether the one or the other distribution should be preferred, that is, non of the
hypotheses can be rejected by use of statistical test methods. The two engineers assign the same
second-moment representation to S.

The two conflicting distribution assumptions imply that the tensile resistance should be RN and
RLN, respectively, where

RN = E[S](1 + βVS) (7.1.12)

log RLN = E[log S](1 + βVlog S) (7.1.13)

From the formulas (7.1.1) and (7.1.2) it then follows that

RN

RLN
= (1 + βV )

√
1 + V 2 exp

(
−β

√
log(1 + V 2)

)
(7.1.14)

where V = VS . For β = 4.75 and VS = 0.1, 0.2, 0.3 one finds that this ratio is 0.92, 0.78,
0.63, respectively. Thus the two engineers get completely different results solely due to arbitrary
assumptions. This illustrates the so-called “tail-sensitivity problem”.

The problem appears, naturally, because the prescription of a given value of the reliability index
is insufficient without a prescription of the mathematical model by which the reliability index is
defined. Reliability index values corresponding to different models can be compared only if they
are transformed via their structural consequences. If in (7.1.12) and (7.1.13) we replace β with βN

and βLN, respectively, we get that βN is equivalent to βLN with respect to the reliability if and only
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Figure 7.1: Equivalent reliability indices βN and βLN corresponding to the normal and the logarithmic
normal distribution model, respectively.

if RN = RLN, that is, if and only if

βLN = log[(1 + βNV )
√

1 + V 2]√
1 + V 2

(7.1.15)

This relation between βN and βLN is shown in Fig. 7.1. The use of the relation is a simple example
of an application of the principle of consequence calculations for the calibration of one reliability
index scale to another. �

Since fitting of distributions to measured data only rarely can remove the problem about arbi-
trary model choice, it is necessary that codes about practical decision making concerning structural
design uniquely specify those distribution types (or transformations) that are to be applied for dif-
ferent types of relevant input variables. In this way reliability comparisons in practice will only be
influenced by second-moment information (or more liberally by nth-moment information). Such
information is in general much less distorted by “false” information from arbitrary and unverifi-
able model formulation than information about distribution tails that extend far beyond the central
domains of the distributions that are covered by data.

Thus it should be one of the most important goals of a code committee to summarize existent
knowledge about the distributions of the basic input variables and to formulate this knowledge in
terms of suitable standardization under consideration of reasonable principles of simplicity. As
mentioned above it is important to note that whatever format is chosen for the code, it must be
constructed such that individual engineering decisions derived from the code are solely influenced
by second-moment information (nth-moment information). This is the supporting philosophy of
the definition of the generalized reliability index.

As long as such authorized codes do not exist, practical applications of the reliability index
must be supported on the principle of consequence calculations rather than on comparisons of
the calculated failure probabilities with calculated or statistically observed probabilities of adverse
events of a completely different nature than those related to the considered type of limit states for
structures (e.g. traffic accidents, deaths due to tobacco smoking, etc). See also the remarks about
the long-run model development in the section on the objectivity problem in Chapter 3.
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7.2 Some important transformations

Marginal transformation. Nataf distribution

In this section we will introduce some of the most important transformations from the space of
input variables x to the standardized Gaussian space. The space of x will be called the free physical
formulation space (“free” because the input variables are free input variables − their values can
without inconsistencies be chosen independently of each other).

A simple class of transformations is defined by the equations

�(yi ) = Fi (xi ), i = 1, . . . , n (7.2.1)

where � is the standardized normal distribution function while F1, . . . , Fn are absolutely contin-
uous and increasing distribution functions. (A distribution function is said to be absolutely contin-
uous if it can be expressed as an integral of a density function). The logarithmic transformation is
a special example of (7.2.1) with

Fi (xi ) = �

(
log xi − a

b

)
(7.2.2)

where a and b > 0 are suitable constants that ensure that the y-space is normalized. The transfor-
mation (7.2.1) is obtained if one assumes that the random input variables X1, . . . , Xn are mutually
independent and have the distribution functions F1, . . . , Fn , respectively.

If it cannot be assumed that X1, . . . , Xn are mutually independent, the “marginal” transforma-
tion (7.2.1) applied to X1, . . . , Xn will lead to random variables Y1, . . . , Yn that are not mutually
independent. If the joint distribution of X = (X1, . . . , Xn) is unknown except for the covariance
matrix Cov[X, XT], it is reasonable to let Y = (Y1, . . . , Yn) have an n-dimensional normal distri-
bution with a correlation matrix PY = Cov[Y, YT] that consistent with the transformation (7.2.1)
corresponds to the given correlation matrix PX. In this way a unique n-dimensional probability
density fX(x1, . . . , xn) is induced in the x-space. The density is

fX(x1, . . . , xn) = ∂(y1, . . . , yn)

∂(x1, . . . , xn)
ϕn(y; PY) (7.2.3)

where

∂(y1, . . . , yn)

∂(x1, . . . , xn)
= fX1(x1) · . . . · fXn(xn)

ϕ(y1) · . . . · ϕ(yn)
(7.2.4)

is the Jacobian of the transformation (7.2.1) while

ϕn(y; PY) = 1√
(2π)n det PY

exp

(
−1

2
yTP−1

Y y
)

(7.2.5)

is the n-dimensional normal density corresponding to the mean values 0, the variances 1 and the
correlation matrix PY.
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Denoting the correlation coefficient between Xi and X j by ri j and introducing the normalized
variables Zi = (Xi − E[Xi ])/D[Xi ], we get the equation

ri j = E[Zi Z j ] =
∫ ∞

−∞

∫ ∞

−∞
zi z jϕ2(yi , y j ; ρi j ) dyi dy j (7.2.6)

for the determination of the correlation coefficient

ρi j = Cov[Yi , Y j ] (7.2.7)

by ri j . The variable zi is expressed by yi through the formula

zi = F−1
i [�(yi )] − E[Xi ]

D[Xi ]
(7.2.8)

It is not always possible to determine a normal distribution that by (7.2.6) corresponds to the given
correlation coefficients ri j . If these correlation coefficients are too close to 1 or -1 it can happen
that (7.2.6) has no solution. Moreover, it must be required that the solutions ρi j to (7.2.6) define a
non-negative definite matrix {ρi j }.

In order to avoid the work of solving (7.2.6), some approximation formulas have been estab-
lished for the ratio

R = ρi j

ri j
(7.2.9)

These formulas are based on the following properties of the relation between r = ri j and ρ = ρi j :

1. ρ is an increasing function of r .
2. ρ = 0 ⇔ r = 0
3. R ≥ 1
4. For given marginal distributions R is a constant if one of the marginals is normal and R = 1 if
both the marginals are normal.
5. R is invariant with respect to increasing linear transformations of Xi and X j .
6. R is independent of the parameters in a marginal two-parameter distribution that by a linear
transformation can be reduced to a parameter-free form.
7. R is a function of the coefficient of variation in a marginal two-parameter distribution that
cannot be reduced to a parameter free form.

We will not go through the proofs of these properties but refer to [7.13]. The approximation
formulae for R are put together in Appendix 2. The distribution defined by (7.2.3) with (7.2.4)
substituted is in the literature denoted as Nataf’s distribution (see also Example 7.6).

Hermite polynomial transformation*

A useful special type of multidimensional distribution is obtained by defining the random variables
X1, . . . , Xn to be of the form

X =
N∑

k=0

akHek(Y ) (7.2.10)
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in which a1, . . . , aN are constant coefficients, Y is a standardized normal random variable, and
He0(x) = 1, He1(x) = x He2(x) = x2 − 1, He3(x) = x3 − 3x , He4(x) = x4 − 6x2 + 3, . . . are
the Hermite polynomials defined by the identity

ϕ(t − x)

ϕ(x)
= exp

(
−1

2
(t2 − t x)

)
=

∞∑
n=0

(−1)n tn(t − 2x)n

2nn!

=
∞∑

n=0

(−1)n

2nn!

n∑
i=0

(
n
i

)
(−2x)n−i tn+i

=
∞∑

n=0

tk

k!

[k/2]∑
i=0

(−1)i k!

i!(k − 2i)!

xk−2i

2i
≡

∞∑
k=0

Hek(x)

k!
tk (7.2.11)

in which [k/2] = k/2 for k even and [k/2] = (k −1)/2 = [(k −1)/2] for k odd. Referring directly
to the Taylor expansion formula it is seen that Hek(x) alternatively can be defined by the formula

Hek(x)ϕ(x) =
[

dk

dtk
ϕ(t − x)

]
t=0

= (−1)k dk

dxk
ϕ(x) (7.2.12)

Also it is seen from (7.2.11) that

d

dx
Hek(x) = k

[(k−1)/2]∑
i=0

(−1)i (k − 1)!

i!(k − 1 − 2i)!

xk−1−2i

2i
= kHek−1(x) (7.2.13)

It follows directly by integration of (7.2.12) that

E[Hek(Y )] = 0 for k = 1, 2, . . . (7.2.14)

The definition of the random variables Xi and X j in accordance with (7.2.10) as linear com-
binations of Hermite polynomials of the standard Gaussian variables Yi and Y j , respectively, is
particularly convenient because

Cov[Hem(Yi ), Hen(Y j )] =
{

0 for m �= n

n!ρn for m = n > 0
(7.2.15)

where ρ = ρi j = Cov[Yi , Y j ].
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To prove (7.2.15) we use (7.2.11) and (7.2.13) to obtain

∂

∂ρ
E[Hem(Yi )Hen(Y j )]

=
∫ ∞

−∞

∫ ∞

−∞
Hem(x)Hen(y)

∂2ϕ2(x, y; ρ)

∂x∂y
dx dy

=
∫ ∞

−∞
Hem(x)

[
Hen(y)

∂ϕ2(x, y; ρ)

∂x
−

∫
dHen(y)

dy

∂ϕ2(x, y; ρ)

∂x
dy

]∞

−∞
dx

= −n
∫ ∞

−∞

∫ ∞

−∞
Hem(x)Hen−1(y)

∂ϕ2(x, y; ρ)

∂x
dx dy

= −n
∫ ∞

−∞
Hen−1(y)

[
Hem(x)ϕ2(x, y; ρ) −

∫
dHem(x)

dx
ϕ2(x, y; ρ) dx

]∞

−∞
dy

= mn
∫ ∞

−∞

∫ ∞

−∞
Hem−1(x)Hen−1(y)ϕ2(x, y; ρ) dx dy

= mnE[Hem−1(Yi )Hen−1(Y j )] (7.2.16)

valid for m, n > 0. By repeated use of this result we get

∂k

∂ρk
E[Hem(Yi )Hen(Y j )] = m!n!

(m − k)!(n − k)!
E[Hem−k(Yi )Hen−k(Y j )] (7.2.17)

valid for m, n ≥ k, and thus also

∂k−1

∂ρk−1
E[Hem(Yi )Hen(Y j )] = m!n!

(m − k + 1)!(n − k + 1)!
E[Hem−k+1(Yi )Hen−k+1(Y j )]

(7.2.18)

Since He0(x) = 1 it follows from (7.2.14) that if m > n and k = n, then the right side of (7.2.17)
is zero for any value of ρ, and consequently the right side of (7.2.18) is also zero for any value of
ρ because it is zero for ρ = 0. Proceeding recursively in this way decreasing k by 1 in each step it
follows that (7.2.15) is valid in the case m �= n.

For m = n and k = n − 1 (7.2.17) becomes

∂n−1

∂ρn−1
Cov[Hem(Yi ), Hen(Y j )] = (n!)2ρ (7.2.19)

Recursive integration then leads to (7.2.15) for n = m.

It follows from (7.2.10) and (7.2.15) that

Cov[Xi , X j ] =
N∑

k=1

k!aika jkρ
k
i j (7.2.20)

Since

E[Y n] =
{

0 for n odd

1 · 3 · 5 · . . . · (n − 1) for n even
(7.2.21)
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the moments E[Xn] of any order n can be calculated analytically. For a0 = 0 and n = 3, and
writing a1 = a, a2 = b, a3 = c, we have

E[Xn] = E

[(
3∑

k=1

akHek(Y )

)n]

=
n∑

i=0

(
n
i

) i∑
j=0

(
i
j

)
a j bi− j cn−i E[Y j (Y 2 − 1)i− j (Y 3 − 3Y )n−1] (7.2.22)

which gives E[X ] = 0, E[X2] = a2 + 2b2 + 6c2. Thus D[X ] = 1 for

b = ±
√

(1 − a2 − 6c2)/2 (7.2.23)

provided a2 + 6c2 ≤ 1. If D[X ] = 1 the moments E[X3] and E[X4] are the skewness α3 and
kurtosis α4, respectively, and we get the equations

α3 = ±
√

2(1 − a2 − 6c2)(2 + a2 + 18ac + 42c2) (7.2.24)

α4 = 15 + 228ac + 936c2 − 12a4 − 264a3c − 864a2c2 − 432ac3 − 2808c4 (7.2.25)

In a case where the distribution of X is only slightly different from the standardized normal
distribution we have |c| << 1 and a = 1 − ε where |ε| << 1. Then we find b ≈ ±√|ε|,
α3 ≈ 2

√|ε|(3 − 2ε + 18c), and α3 ≈ 3 + 48ε + 24c asymptotically as ε → 0 and c → 0. Thus
we have asymptotically

X ≈
(

1 − α2
3

36

)
Y + α3

6
(Y 2 − 1) +

(
α4 − 3

24
− α2

3

18

)
(Y 3 − 3Y ) (7.2.26)

as α3 → 0 and α4 → 3. Also we have that D[X ] ≈ 1 asymptotically, while E[X ] = 0. By
neglecting the term α3/36 << 1 the right side of (7.2.26) becomes identical to the cutoff after the
third term of the so-called Cornish-Fisher expansion of an arbitrary density type random variable
X , [7,8] p. 34.

Winterstein approximation*

The n-dimensional marginal Hermite polynomial transformation of third degree of the Gaussian
distribution can be used to define an n-dimensional density that approximates the probability dis-
tribution of an arbitrary random vector X = (X1, . . . , Xn) in the sense of having marginal coinci-
dence of the first four moments and coincidence of the covariance matrices.

Assume that E[Xi ] = E[X j ] = 0, D[Xi ] = D[X j ] = 1, and Cov[Xi , X j ] = ri j . Moreover,
assume that the skewness and kurtosis of both variables are given. Then (7.2.24) and (7.2.25) can
be solved with respect to a and c for each of the two variables and thus together with (7.2.23)
give the two sets of coefficients ai1, ai2, ai3 and a j1, a j2, a j3. As an approximation we may then
replace Xi and X j by the linear combinations

X̃i =
3∑

k=1

aikHek(Yi ), X̃ j =
3∑

k=1

a jkHek(Y j ) (7.2.27)
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that due to useful applications by Winterstein will be denoted as W-polynomials in the following.

Next requiring that Cov[X̃i , X̃ j ] = Cov[Xi , X j ] = ri j for all i, j ∈ {1, . . . , n} the correlation
coefficients ρi j = Cov[Yi , Y j ] are obtained by solving (7.2.20) with respect to ρi j , that is, by
solving each of the third-degree equations

6ci c jρ
3 + 2bi b jρ

2 − ai a jρ − ri j = 0 (7.2.28)

with respect to ρ. Clearly, a root of (7.2.28) is only applicable as the value of ρi j , if the matrix {ρi j }
becomes non-negative definite. So even if (7.2.24) and (7.2.25) may have solutions with respect to
a and c and a2 + 6c2 ≤ 1, it is not necessarily so that the covariances ri j can be reproduced. For
the asymptotic case corresponding to (7.2.26) we obviously get ρi j ≈ ri j .

Example 7.3 In standardized form the gamma-distribution type is defined by the one-parameter
family, see (A2.8),

fk(x; k) = 1

�(k)
xk−1e−x , k > 0, x ≥ 0 (7.2.29)

The mean and variance are

E[X ] = Var[X ] = k (7.2.30)

and the skewness and kurtosis are

α3 = 2√
k
, α4 = 3 + 6

k
(7.2.31)

respectively. Table 7.1 lists the coefficients a, b, c as functions of values of k corresponding to the
asymptotic expression (7.2.26) and the exact values as obtained by solving the equations (7.2.24)
and (7.2.25). Fig. 7.2 (left) shows the corresponding W-polynomials in the range of values of

k 1 4 10 25 100
a asymptotic 1.000 1.000 1.000 1.000 1.000

exact 0.894 0.973 0.989 0.996 0.999
b asymptotic 0.333 0.167 0.105 0.067 0.033

exact 0.314 0.163 0.104 0.066 0.033
c asymptotic 0.028 0.007 0.003 0.001 0.000

exact 0.023 0.007 0.003 0.001 0.000

Table 7.1: Three-term Hermite-expansion coefficients (Winterstein approximation) for the gamma distri-
bution.

y from -15 to 5, that is, a range that is much larger than the range of probable values of the
standard Gaussian variable Y . It is seen that the W-polynomials are not monotonously increasing.
In particular the polynomial corresponding to k = 1 has a local minimum at y ≈ −1.592 with
minimal value x ≈ −0.924. This value is passed to the negative side for y less than -10. Thus
there is a completely negligible probability that the random W-polynomial takes a value less than ≈
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Figure 7.2: Left: W-polynomials for the standard gamma distributions (7.2.29) of mean k =
1, 4, 10, 25, 100 (top down). Right: Distribution functions for the two W-polynomials corresponding to
k = 1 and 4 compared to the corresponding gamma distribution functions shifted ±0.1 in the x-direction.

−0.924. The corresponding gamma distribution is the standard exponential distribution shifted to
have mean zero. Shifting both distributions to mean 1 by adding 1 thus shows that the Winterstein
approximation to the exponential distribution function is practically zero for x � 1 − 0.924 =
0.076. This is also seen in Fig. 7.2 (right) that compares the distribution functions for the random
W-polynomials for k = 1 and k = 4 with the corresponding gamma distribution functions shifted
±0.1 in the direction of the x-axis. The approximations are seen to be very good except in the
vicinity of zero for the exponential distribution. �

If X has a symmetric distribution we have α3 = 0 and it follows that b = 0 and

a2 = 1 − 6c2 (7.2.32)

which upon substitution into (7.2.25) gives the equation

α4 = 3 + 216c2 + 1944c4 + 24c(1 − 48c)
√

1 − 6c2 (7.2.33)

Example 7.4 The function

fX (x) ∝
(

1 + x2

ν

)−(ν+1)/2

, x ∈ R (7.2.34)

defines a density function for any ν > 0. In particular, for ν an integer the distribution is called
Students t-distribution with ν degrees of freedom. It is symmetric about x = 0 and

E[X ] = 0 (ν > 1), Var[X ] = E[X2] = ν

ν − 2
(ν > 2) (7.2.35)

α3 = 0 (ν > 3), α4 = 3 + 6

ν − 4
(ν > 4) (7.2.36)
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asymptotic exact
ν a c a c
5 1.000 0.2500 0.9684 0.1019
6 1.000 0.1250 0.9861 0.0679
8 1.000 0.0625 0.9946 0.0425
10 1.000 0.0417 0.9971 0.0314
15 1.000 0.0227 0.9989 0.0191
25 1.000 0.0119 0.9997 0.0108
50 1.000 0.0054 0.9999 0.0052
75 1.000 0.0035 1.0000 0.0034
100 1.000 0.0026 1.0000 0.0025

Table 7.2: Three-term Hermite-expansion coefficients (Winterstein approximation) for Student’s t-
distribution.
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Figure 7.3: Left: W-polynomials for Student’s t-distributions (7.2.34) of ν = 5, 6, 8, 10, 15 (top down)
degrees of freedom. Right: Distribution function for the W-polynomial corresponding to ν = 5 (thick)
compared to the corresponding t-distribution function (thin). The standard normal distribution is shown
with dashed line.

Table 7.2 lists the coefficients a and c as functions of values of ν > 4 corresponding to the
asymptotic expression (7.2.26) and the exact values as obtained by solving equation (7.2.33).

Fig. 7.3 (left) shows the W-polynomials for the five first values of ν in Table 7.2. Fig. 7.3
(right) compares the distribution function of the random W-polynomial with the corresponding
t-distribution function for ν = 5. It is seen that the approximation is not particular good in the
central part of the distribution (in the probability range from about 5% to 95%). In the tail regions
the approximation turns out to be reasonably good even though it should be remembered that the
moments of order ν and higher order do not exist for the t-distribution while moments of all orders
exist for the corresponding random W-polynomials. �
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Rosenblatt transformation

If a complete distributional description is given for X in the form of a joint distribution function

P(X1 ≤ x1, . . . , Xn ≤ xn) = FX1,... ,Xn(x1, . . . , xn) (7.2.37)

a transformation can be defined by successive conditioning:

�(u1) = FX1(x1)

�(u2) = FX2(x2 | X1 = x1)

�(u3) = FX3(x3 | X1 = x1, X2 = x2)

...

�(un) = FXn(xn | X1 = x1, X2 = x2, . . . , Xn−1 = xn−1) (7.2.38)

in which it is assumed that all the conditional distribution functions are absolutely continuous.
In order to see that this one-to-one transformation maps X into a standardized Gaussian random
vector U, we only need to note that the Jacobian in the identity

fU1,... ,Un(u1, . . . , un)
∂(u1, . . . , un)

∂(x1, . . . , xn)
= fX1,... ,Xn(x1, . . . , xn) (7.2.39)

follows from the equation

∂(u1, . . . , un)

∂(x1, . . . , xn)
ϕ(u1) · . . . · ϕ(un) = fX1(x1) fX2(x2 | x1) . . . fXn(xn | x1, x2, . . . , xn−1) (7.2.40)

which is obtained by writing down the differential du of the transformation (7.2.38). Since the
functional matrix is a lower triangular matrix, the functional determinant becomes the product
solely of the diagonal elements. Since the right side of (7.2.40) is just the right side of (7.2.39), it
is seen by canceling of the Jacobian that

fU1,... ,Un(u1, . . . , un) = ϕ(u1) · . . . · ϕ(un)

and thus that U is standardized Gaussian.

Example 7.5 Let (X, Y ) have the density function

fX,Y (x, y) = (x + y + xy)e−(x+y+xy), (x, y) ∈ R
2
+ (7.2.41)

The marginal density function of X is

fX (x) =
∫ ∞

0
fX,Y (x, y) dy

= e−x
[

x
∫ ∞

0
e−(1+x)y dy + (1 + x)

∫ ∞

0
ye−(1+x)y dy

]

= e−x
[

x

1 + x
+ 1 + x

(1 + x)2

]
= e−x , x ∈ R+ (7.2.42)
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Figure 7.4: Mappings by the Rosenblatt transformations defined in Example 7.5.

which is the density of the exponential distribution with parameter value 1. This result confirms
that (7.2.41) is a density function. The conditional density of Y given X = x is then

fY (y | x) = fX,Y (x, y)

fX (x)
= (x + y + xy)e−(1+x)y, (x, y) ∈ R

2
+ (7.2.43)

with corresponding distribution function

FY (y | x) =
∫ y

0
[x + z(1 + x)]e−(1+x)z dz = 1 − (1 + y)e−(1+x)y, (x, y) ∈ R

2
+ (7.2.44)

The Rosenblatt transformation corresponding to the ordering (x, y) then becomes

u1 = �−1(1 − e−x)

u2 = �−1[1 − (1 + y)e−(1+x)y] (7.2.45)

Due to the symmetry in (7.2.41) between x and y, the Rosenblatt transformation corresponding to
the ordering (y, x) is obtained by permutation of x and y in (7.2.45). Fig. 7.4 shows the map by
each of the two Rosenblatt transformations of the straight line piece that connects (0, 9) and (6, 0)

in the (x, y)-space. This straight-line piece can be thought of as representing a simple limit state
in the free physical formulation space. It is seen that it is far away from being represented by a
straight line in the Gaussian formulation space. �

Example 7.6 For the distribution in Example 7.5 the covariance between X and Y can be calcu-
lated directly, or e.g. by first calculating

E[Y | X = x] =
∫ ∞

0
[1 − FY (y | x)] dy =

∫ ∞

0
(1 + y)e−(1+x)y dy = 2 + x

(1 + x)2
(7.2.46)

which, since E[Y ] = 1, gives
∫ ∞

0 (2 + x)/(1 + x2)e−x dx = 1, and then use (4.3.21):

Cov[X, Y ] = Cov
[
X, E[Y | Y ]

] =
∫ ∞

0

x(2 + x)

(1 + x)2
e−x dx − 1 (7.2.47)

which can be evaluated as

Cov[X, Y ] =
∫ ∞

0

e−x

1 + x
dx − 1 = eE1(1) − 1 = −0.40366 . . . (7.2.48)
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Figure 7.5: Conditional densities determined by the two-dimensional exponential distribution (7.2.41) (full
curves) compared with the corresponding conditional densities from that Nataf distribution that has the same
marginal distributions and correlation coefficient as the exponential distribution (dashed curves).

where E1(1) = −Ei(−1) = ∫ ∞
0 e−t/t dt is a value of the so-called exponential integral. Since

Var[X ] = Var[Y ] = 1, the correlation coefficient becomes r = −0.403 66 . . . . The corresponding
Nataf distribution has the density

fX,Y (x, y) = e−(x+y)

ϕ(y1)ϕ(y2)
ϕ2(y1, y2; ρ) (7.2.49)

where ρ = Rr ≈ −0.556 with the factor R = 1.229 − 0.367 r + 0.153 r2 = 1.402 taken from
Table A2.5 in Appendix 2 and

y1 = �−1(1 − e−x)

y2 = �−1(1 − e−y) (7.2.50)

Fig. 7.5 shows comparisons between the conditional densities fY (y|x) for the two distributions for
different values of x . �
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In practice it will most often be such that the distribution of X is not given directly by the dis-
tribution function (7.2.37), but rather by the conditional distribution functions that enter (7.2.38).

7.3 On differentiable mappings and surfaces

The theory of differentiable mappings and surfaces is assumed to be known from the mathematical
analysis. We will here shortly repeat some of the most fundamental concepts and properties that
we need in the following.

Let � be a domain in R
n . The mapping T : x ∈ � � y ∈ R

n is said to be continuously
differentiable if T has continuous partial derivatives ∂yi/∂x j everywhere in �. For our purpose
we only need to consider continuously differentiable mappings y = T (x) with functional matrices
{∂yi/∂x j } that are regular everywhere in �. Moreover we can assume that for each considered
mapping T there is an inverse mapping x = T −1(y) that maps any point y ∈ R

n at a corresponding
point x ∈ �. Like T itself, the inverse mapping T −1 : R

n
� � is a continuously differentiable

mapping with regular functional matrix

Ax0 =
{

∂xi

∂y j
(y0)

}
(7.3.1)

at any point y0 = T (x0) ∈ R
n . Its inverse matrix A−1

x0
is the functional matrix for T at x0. Between

the differentials dx and dy considered at x0 we then have the relations

dx = Ax0 dy, dy = A−1
x0

dx (7.3.2)

The corresponding inhomogeneous linear mapping Lx0 : R
n

� R
n defined by

Lx0 : y = y0 + A−1
x0

(x − x0) (7.3.3)

is called the tangential mapping to T at the point x0. The inverse inhomogeneous linear mapping
L−1

x0
: R

n
� R

n defined by

L−1
x0

: x = x0 + Ax0(y − y0) (7.3.4)

is the tangential mapping to T −1 at y0.

A surface in y-space defined by an equation of the form

g(y) = 0 (7.3.5)

where g is a differentiable function within its domain of definition, is said to be a differentiable
surface if the vector of partial derivatives (g,1(y), . . . , g,n(y)) are different from the zero vector
everywhere on the surface. If g(y) is interpreted as a scalar field in the y-space, the vector of partial
derivatives is identical to the gradient vector

grad g = ∇g = [g,1 . . . g,n]T (7.3.6)
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and is orthogonal to the surface given by (7.3.5) (since dg = g,1 dy1 + . . . + g,n dyn = 0 for
( dy1, . . . , dyn) tangential to the surface).

The continuous differentiable mapping T −1 maps the differentiable surface given by (7.3.5)
onto a surface in the x-space defined by the equation

G(x) = 0 (7.3.7)

where

G(x) = g[T (x)] (7.3.8)

has the continuous partial derivatives

G,i (x) =
n∑

j=1

g, j [T (x)]
∂y j

∂xi
, i = 1, . . . , n (7.3.9)

From this it follows that the vector of partial derivatives can be written as

∇G(x) = (A−1
x )T∇g(y) (7.3.10)

It is seen that ∇G(x) is different from the zero vector if ∇g(y) is different from the zero vector.
Thus the surface given by (7.3.7) is differentiable.

In a similar way the tangential mapping L−1
x0

to T −1 at y0 maps the same differentiable surface
given by (7.3.5) onto a differentiable surface with the equation

g[y0 + A−1
x0

(x − x0)] = 0 (7.3.11)

where the compound function on the left hand side of the equality sign at the point x0 has the
vector of partial derivatives

(A−1
x0

)T∇g(y0) (7.3.12)

Assume that y0 is a point on the surface in the y-space, that is, g(y0) = 0. By comparison of
(7.3.10) and (7.3.12) it is then seen that the two image surfaces in the x-space given by (7.3.7) and
(7.3.11), respectively, have a common normal vector at the common point x = T (y). Thus they
touch each other tangentially at the point x0. In particular it is so that if g(y) is an inhomogeneous
linear function of y, then the surface given by g(y) = 0 is a hyperplane in the y-space while the
image surface (7.3.11) by L−1

x0
is a hyperplane in the x-space. If g(y0) = 0, this hyperplane is

coincident with the tangent hyperplane at x0 to the image surface by T −1 as given by (7.3.7).

7.4 The normal tail-approximation principle for determination
of locally most central limit-state points

In this section we will characterize and determine such points on a limit-state surface in the free
physical formulation space that, by the transformation u = T (x), are mapped at locally most
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central points on the corresponding limit-state surface in the Gaussian formulation space. For this
we will use the properties of differentiable mappings and surfaces outlined in the previous section.

Let Sx be a simply connected safe set in the free physical formulation space and let Sx have a
boundary ∂Sx , the limit-state surface, which is a differentiable surface Gx given by

Gx = {x | G(x) = 0} (7.4.1)

The transformation T : � � R
n is required to be continuously differentiable and moreover to

have properties as defined in the previous section. Further it is required that the transformation
has such properties that it maps Sx onto a simply connected set Su = T (Sx), the internal of Sx

onto the internal of Su , and the boundary ∂Sx onto the boundary ∂Su = T (∂Sx). Then ∂Su is a
differentiable limit-state surface

Gu = {u | g(u) = 0} (7.4.2)

g(u) = G[T −1(u)] (7.4.3)

Choose a point x0 ∈ Gx . If u0 = T (x0) should happen to be a locally most central point on
Gu , the point x0 becomes the corresponding most central point on the surface L−1

x0
(Gu) in the

particular Gaussian space that is obtained by mapping of the standardized Gaussian space by use
of the inhomogeneous linear mapping L−1

x0
T : R

n
� R

n as defined by (7.3.4). The corresponding
Gaussian random vector is, see(7.3.1) and (7.3.4),

Zx0 = Ax0U + µx0
(7.4.4)

µx0
= x0 − Ax0u0 (7.4.5)

with mean value vector and covariance matrix

E[Zx0] = µx0
, Cov[Zx0, ZT

x0
] = Ax0AT

x0
(7.4.6)

respectively. By use of Theorem 5.1 in Section 5.3 we can then formulate the following:

Theorem 7.1 The point u0 = T (x0) is a locally most central point on Gu only if

x0 = Ê[Zx0 | Mx0 = 0] (7.4.7)

where Mx0 is the linear safety margin that corresponds to the tangent hyperplane to Gx at x0,
however with Zx0 substituted in place of X. The corresponding local geometric reliability index is

βx0 = E[Mx0]

D[Mx0]
(7.4.8)

That the definition in this theorem of the linear safety margin Mx0 can be used in (7.4.7) and (7.4.8)
follows directly from the concluding remark in the previous section. This concluding remark is
that the tangent hyperplane to L−1

x0
(Gu) at x0 = T −1(u0) is coincident with the tangent hyperplane

to Gx = T −1(Gu) at the same point x0.
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As in Section 5.3 the condition (7.4.7) directly points at an iteration principle for the determi-
nation of locally most central points:

xm

↓
determine Axm , µxm

and Mxm = G(xm) + ∇G(xm)T(Zxm − xm)

↓
determine xm+1 = Ê[Zxm | Mxm = 0] (7.4.9)

If a sequence of points x1, x2, . . . , xm, . . . determined in this way is convergent with x∗ as limit
point, then x∗ ∈ Gx and u∗ = T (x∗) is possibly a locally most central point on Gu . The proof of
this is the same as in Section 5.3. The limit safety margin Mx∗ corresponding to x∗ determines the
local geometric reliability index in the usual way as the simple reliability index.

Example 7.7 For the first of the two Rosenblatt transformations in Example 7.5 we will determine
the locally most central points on the line piece that connects the points (0, 9) and (6, 0) in the
(x, y)-space. The mapping (7.2.45) has the functional matrix

A−1 =
{

∂ui

∂x j

}
=

⎡
⎢⎣

1

ϕ(u1)
e−x 0

1

ϕ(u2)
y(1 + y)e−(1+x)y 1

ϕ(u2)
[(1 + x)(1 + y) − 1]e−(1+x)y

⎤
⎥⎦ (7.4.10)

from which it follows that the inverse mapping has the functional matrix

A =
{

∂xi

∂u j

}
=

⎡
⎣ ϕ(u1)ex 0

ϕ(u1)
−y(1 + y)ex

(1 + x)(1 + y) − 1
ϕ(u2)

e(1+x)y

(1 + x)(1 + y) − 1

⎤
⎦ (7.4.11)

Omitting the subscripts, (7.4.5) and (7.4.6) give

E[Z] = x − Au =
⎡
⎣ x − u1ϕ(u1)ex

y + u1ϕ(u1)y(1 + x)ex − u2ϕ(u2)e(1+x)y

(1 + x)(1 + y) − 1

⎤
⎦ (7.4.12)

Cov[Z, ZT] = AAT = ϕ(u1)
2e2x

⎡
⎢⎢⎣

1
−y(1 + x)

(1 + x)(1 + y) − 1
−y(1 + x)

(1 + x)(1 + y) − 1

y2(1 + x)2 + e2(y+xy−x)+u2
1−u2

2

[(1 + x)(1 + y) − 1]2

⎤
⎥⎥⎦
(7.4.13)

Since G(x) = −3x − 2y + 18 is linear in (x, y), we have directly that M = 18 − [3 2]Z for any
approximation point. The linear regression of Z on M = 0 becomes, see (4.4.3),

Ê[Z | M = 0] = E[Z] +
AAT

[
3
2

]
[
3 2

]
AAT

[
3
2

](18 − [
3 2

]
E[Z]) (7.4.14)
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and the reliability index corresponding to M becomes

β = 18 − [
3 2

]
E[Z]√[

3 2
]

AAT

[
3
2

] (7.4.15)

Along the straight line piece the density (7.2.44) takes its smallest value for x = 17/6 and local
maxima for x = 0 and x = 6. It is therefore a reasonable strategy to look for two locally most
central points that correspond to a point close to (0, 9) and a point close to (6, 0), respectively, on
the straight line piece. Moreover Fig. 7.2 shows directly that there is just two locally most central
points on the image curve corresponding to the straight line piece.

With start at (x, y) = (0.050, 8.925) we get the following sequence of values of Ê[Z |M = 0]
and β using as a new point of start in each step the average of the old point of start and the point
determined by (7.4.14):

x 0.050 0.0965 0.1038 0.1023
y 8.925 8.8552 8.8443 8.8466
β 3.4345 3.5006 3.5012 3.5012 ≈ β2

This gives �(−β2) ≈ 0.232 × 10−3. With start at (x, y) = (5.959, 0.075) we get in the same way
the following sequence:

x 5.950 5.9365 5.9273 5.9217 5.9186
y 0.075 0.0953 0.1090 0.1174 0.1222
β 2.7855 2.7842 2.7838 2.7836 2.7835 ≈ β1

which gives �(−β1) ≈ 2.689 × 10−3. The corresponding locally most central points are directly
identified on the curves in Fig. 7.4. The single point FORM-approximation to the probability
P(3X + 2Y > 18) thus is 2.69 × 10−3.

For the Rosenblatt transformation appearing for the other possible ordering (y, x) the following
results are obtained: (x, y) = (0.091, 8.863); β2 = 3.633 and (x, y) = (5.907, 0.140); β1 =
2.649. The two points correspond to the two locally most central points on the line piece. It is
noted that the points are different from the points obtained for the first ordering. The probability
approximations are �(−β2) ≈ 0.140 × 10−3 and �(−β1) ≈ 4.037 × 10−3, respectively. In this
case the single point FORM-approximation thus gives 4.04 × 10−3, that is, a result which is larger
than the result obtained by the ordering (x, y). This difference is essentially due to the different
curvatures of the limit state curve at the most central points. For the ordering (x, y) the curvature is
small and positive while for the ordering (y, x) it is numerically considerably larger and negative,
Fig. 7.4 and Table 7.3.

At each of the points the curvature κ can be calculated by use of (6.4.20) such that the curvature
correction factor in (6.4.10) can be obtained. We find the results shown in Table 7.3. It is seen that
the two single point SORM-approximations to the probability differ by about 1% and also that the
FORM-approximation corresponding to the ordering (x, y) is accurate.

�
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ordering β 103�(−β) κ
103�(−β)√

1 − κβ
βG

(x, y) 2.784 2.689 0.0249 2.783 2.772
(x, y) 3.501 0.232 -0.4163 0.148 3.619
sum: - 2.921 - 2.931 2.755
(y, x) 2.649 4.037 -0.4003 2.812 2.769
(y, x) 3.633 0.140 0.0305 0.148 3.618
sum: - 4.177 - 2.960 2.752

Table 7.3: Results of asymptotic SORM-calculation of the probability P(3X + 2Y > 18) in Example 7.7
by use of the two Rosenblatt transformations that correspond to the orderings (x, y) and (y, x), respectively.
The sums are used in Example 7.9.

Remark 7.1 It is emphasized that Theorem 7.1 is also valid when the transformation T maps into
a Gaussian space which is not standardized. For example, this is relevant when using Nataf’s dis-
tribution model in which the transformation is defined by (7.2.1), that is, solely on the basis of the
one-dimensional marginal distributions of X1, . . . , Xn , also when these variables are correlated.
Then we just have that the covariance matrix for Zx0 becomes, see (7.4.4),

Cov[Zx0, ZT
x0

] = Ax0Cov[Y, YT]AT
x0

(7.4.16)

�

Example 7.8 We will solve the same problem as in Example 7.7, but under the assumption that
(X, Y ) has the Nataf distribution (7.2.49). The functional matrix corresponding to the marginal
transformation (7.2.50) is the diagonal matrix

A−1 = �e−x/ϕ(y1) e−y/ϕ(y2)� (7.4.17)

such that

E[Z] = x − Ay =
[

x − y1ϕ(y1)ex

y − y2ϕ(y2)ey

]
(7.4.18)

and, see (7.4.16),

Cov[Z, ZT] = A
[

1 ρ

ρ 1

]
AT =

[
ϕ(y1)

2e2x ρϕ(y1)ϕ(y2)ex+y

ρϕ(y1)ϕ(y2)ex+y ϕ(y2)
2e2y

]
(7.4.19)

where ρ = −0.566. The formulas (7.4.14) and (7.4.15) are valid after replacement of AAT by
Cov[Z, ZT]. With judgementally chosen start points for the iterations we get the following se-
quences:

x 0.050 0.0356 0.0300 0.0273 0.0260
y 8.925 8.9466 8.9551 8.9590 8.9611
β 3.6596 3.6575 3.6570 3.6569 3.6568 ≈ β2
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Figure 7.6: The Nataf transformation (Examples 7.6 and 7.8).

for which �(−β2) ≈ 1.277 × 10−4, and

x 5.900 5.9310 5.9426 5.9478 5.9505
y 0.150 0.1035 0.0861 0.0783 0.0743
β 2.8008 2.7968 2.7959 2.7957 2.7957 ≈ β1

for which �(−β2) ≈ 2.589 × 10−3.
Fig. 7.6 shows the image of the straight-line piece by the marginal transformation as well as

some few curves of constant density of the normal distribution of mean values (0, 0), variances
(1, 1) and correlation coefficient ρ = −0.556. A locally most central point of the image curve is
characterized by the property that the image curve and a curve of constant density are tangential to
each other at the point. �

Remark 7.2 If several points x1, . . . , xq ∈ Gx are determined as points that are mapped at lo-
cally most central points on Gu we may, of course, calculate an approximation to the generalized
reliability index by use of multipoint FORM. The joint set of linear safety margins Mx1, . . . , Mxq

considered as functions of Zx1, . . . , Zxq respectively, define a q-sided convex polyhedral set in the
standardized Gaussian space (the u-space). This polyhedral set approximates Su . However, the
calculation of the approximation to the probability on Su can be made directly by use of the safety
margins Mx1, . . . , Mxq . Their joint q-dimensional distribution is Gaussian with mean values

E[Mxi ] = βi D[Mxi ] (7.4.20)

and covariances Cov[Mxi , Mx j ] determined by use of the covariances

Cov[Zxi , ZT
x j

] = Axi A
T
x j

(7.4.21)

Thus we are back in the type of problem described in Section 6.3.
Also single-point multiple FORM, Section 6.6, can be handled as in Section 5.3 after a direct

generalization of Theorem 7.1 such that the condition (7.4.7) gets the form as (5.3.24). �

Example 7.9 In the problem of Example 7.7 we obtained two points x and y that are mapped at
locally most central points on the limit-state curve in the standardized Gaussian space. Then we
have

Cov[Zx1, ZT
x2

] = Ax1AT
x2

=
[

3.0849 0.0000
−0.0625 0.1372

] [
0.1905 −1.6837
0.0000 3.5156

]

=
[

0.5872 −5.1902
−0.0919 0.5876

]
(7.4.22)
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and thus

Cov[Mx1, Mx2] = [
3 2

]
Ax1AT

x2

[
3
2

]
= −23.58 (7.4.23)

Var[Mx1] = [
3 2

]
Ax1AT

x1

[
3
2

]
= 83.30 (7.4.24)

Var[Mx2] = [
3 2

]
Ax2AT

x2

[
3
2

]
= 57.25 (7.4.25)

so that

Corr[Mx1, Mx2] = −0.341 (7.4.26)

The negative correlation coefficient implies that �2(−β1, −β2; ρ) ≈ 2 · 10−9 is negligible com-
pared to �(−β1) = 2.689 · 10−3 and �(−β2) = 0.232 · 10−3.

Thus we find by two-point FORM that

P(3X + 2Y ≥ 18) ≈ �(−β1) + �(−β2) − �2(−β1, −β2; ρ) ≈ 2.921 · 10−3 (7.4.27)

This result corresponds to the ordering (x, y) while the ordering (y, x) gives the two-point FORM-
approximation 4.177×10−3 , Table 7.3, where the last result is about 43% larger than the first. For
the two orderings the two-point SORM-approximation becomes 2.931 × 10−3 and 2.960 × 10−3,
respectively, Table 7.3, results that only differ by about 0.3%. The corresponding generalized
reliability indices are βG = 2.755 and 2.752.

For the Nataf distribution considered in Example 7.8 the correlation coefficient between the
two safety margins is about 0.1 and two-point FORM gives that

P(3X + 2Y ≥ 18) ≈ (2.589 + 0.128 − 0.000) · 10−3 ≈ 2.72 · 10−3 (7.4.28)

which corresponds to the generalized reliability index βG = 2.780. The replacement of the two-
dimensional exponential distribution in Example 7.5 by the corresponding Nataf distribution in
Example 7.6 is seen to lead to an almost unchanged generalized reliability index. �

It is seen that the described method for determination of locally most central points on Gu

followed by application of multipoint FORM formally looks as if the distribution for X is approx-
imated by different normal distributions at certain points of Gx . Therefore the method has been
called “the normal tail-approximation principle”. The reason for this terminology becomes even
more clear in the following example. In spite of the name the method is exact with respect to the
determination of locally most central limit state points.

Example 7.10 If the transformation T is the simple marginal transformation defined by (7.2.1),
the matrix Ax in (7.3.1) becomes a diagonal matrix in which the i th diagonal element σi = ∂xi/∂yi

is determined by differentiation of the equation (7.2.1). We get

ϕ(yi ) = fi (xi )σi (7.4.29)
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where fi (xi ) = F ′
i (xi ) is the density function corresponding to Fi . The i th element in µx as

defined by (7.4.5) then becomes

µi = xi − σi yi (7.4.30)

from which

yi = xi − µi

σi
(7.4.31)

By substitution of this formula into (7.2.1) and into (7.4.29) we get the equations

�
(xi − µi

σi

)
= Fi (xi ) (7.4.32)

1

σi
ϕ
(xi − µi

σi

)
= fi (xi ) (7.4.33)

from which µi and σi can be determined for any choice of x = x0. The equations determine the
mean value µi and the standard deviation σi in the normal distribution that has the same distribution
function value and the same density function value at the approximation point x0 as the given
distribution of the input variable Xi . �

Remark 7.3 The possibilities to construct a sufficiently good convex polyhedral approximation to
the safe set in a Gaussian formulation space depends not just on the shape of the safe set in the free
physical formulation space but also on the properties of the transformation T .

Consider the following example. Let (X, Y ) be uniformly distributed on the internal of the
circle with center at the origin and radius 1. Then the pair

(U1, U2) = 2

√− log R

R
(X, Y ) (7.4.34)

with R defined by

R =
√

X2 + Y 2 (7.4.35)

has a rotation symmetric density that by elementary calculations can be shown to be standardized
Gaussian. If it is assumed that the safe set is a circle with center at the origin and radius r < 1,
the image of the safe set is the set of points outside the circle with center at the origin and radius
2
√− log r . Thus the safe set does even not contain the central part of the standardized normal

distribution and an approximation of the safe set by a convex polyhedral set is out of the question.

Except for the fact that this example is so simple that a transformation is not necessary, the same
example can be used to illustrate that the Rosenblatt transformation (7.2.41) is not necessarily the
simplest choice of transformation. In this example it is much simpler to transform (X, Y ) into
the pair (R, �) of polar coordinates to (X, Y ). Then R and � are mutually independent, R has
a density proportional to r , and � is uniformly distributed on the interval [0, 2π ]. The simple
marginal transformation (7.2.1) can then be applied to (R, �). �
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7.5 Approximate calculation of values of the multi-dimensional
normal distribution function by use of FORM and SORM*

Let M be a Gaussian random vector of safety margins defined such that all variances are 1 and let
M have the correlation matrix PM. In this section we will demonstrate an approximative method
based on FORM or SORM for the calculation of the probability

P(M > 0) = �m(β; PM) (7.5.1)

where �m is the distribution function for the m-dimensional normal distribution and β is the vector
of simple reliability indices βi = E[Mi ]/D[Mi ] corresponding to the elements M1, . . . , Mm in
M.

First step consists in decomposing PM into a product

PM = AAT (7.5.2)

where A is a lower triangular matrix with the first diagonal element a11 = 1. This can be made by
the Choleski triangulation method. We have then that M can be written

M = AU + β (7.5.3)

where U = (U1, . . . , Um) is a standardized Gaussian random vector. This is shown by noting that
(7.5.3) is an inhomogeneous linear transformation that maps U into M such that Cov[M, MT] =
Cov[AU, UTAT] = ACov[U, UT]AT = AIAT = PM according to (7.5.2), and E[M] = AE[U] +
β = β.

We can then write (7.5.1) as

P(M > 0) = P(AU > −β) = P(AU < β) = P(AU < β | U1 < β1)�(β1) (7.5.4)

Since U1, . . . , Um are mutually independent, only U1 in the event {AU < β} is affected by the
condition U1 < β1. We have

P(U1 ≤ u1 | U1 < β1) =
⎧⎨
⎩

�(u1)

�(β1)
for u1 ≤ β1

1 for u1 > β1

(7.5.5)

The calculation of the conditional probability P(AU < β | U1 < β1) is hereby transformed to a
space which is standardized Gaussian in all variables except the first variable. In this space the
event {AU < β | U1 < β1} is defined by the m − 1 inequalities

A1U < β1 (7.5.6)

where A1 and β1 are submatrices of A and β defined as follows:

A =
[

1 0 0 . . . 0
A1

]
=

[
1 0

α1 A11

]
, β =

[
β1

β1

]
(7.5.7)
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The one-to-one mapping

U ∈ (−∞, β1] × R
m−1

� Y ∈ R
m (7.5.8)

�(Y1) = �(U1)

�(β1)
(7.5.9)

Yi = Ui for i = 2, . . . , m (7.5.10)

defines a standardized Gaussian vector (Y1, . . . , Ym) and in the corresponding Gaussian space the
conditional event {AU < β | U1 < β1} is represented by the event

{α1�
−1[�(β1)�(Y1)] + A11Y1 < β1} (7.5.11)

where α1 and A11 are defined in (7.5.7) as submatrices of A1. The event (7.5.11) is by the inter-
section of the m − 1 marginal events defined by the m − 1 inequalities in (7.5.11).

The event (7.5.11) is next approximated by a convex polyhedral set of m − 1 faces. Each
of the m − 1 marginal limit-state surfaces in (7.5.11) is replaced by a hyperplane following the
principles of FORM or SORM. It is noted that the probability of the i th marginal event in (7.5.11)
is calculated solely by use of the fact that the two random variables Y1 and

Zi = αi+1 2U2 + . . . + αi+1 i+1Ui+1 (7.5.12)

are Gaussian and mutually independent with the mean values zero and the variances 1 and a2
i+1,2 +

. . . + a2
i+1,i+1, respectively.

In stead of fixing the approximating hyperplane as a plane parallel to the tangent hyperplane
at the most central point of the i th limit-state surface in (7.5.11), the plane can be chosen as a
so-called “equivalent” hyperplane. The normal vector to this hyperplane is defined to be parallel
to the direction of largest velocity of increase of the probability when the limit-state surface is
parallel shifted by a given direction independent velocity in the considered direction.

The result of this convex polyhedral approximation with m − 1 hyperplanes is that the condi-
tional probability P(AU < β | U1 < β1) in (7.5.4) is replaced by the unconditional probability

P(N > 0) = �m−1(δ; PN) (7.5.13)

where δi = E[Ni ]/D[Ni ] and N = (N1, . . . , Nm−1) is a vector of linear safety margins that
correspond to the m − 1 faces of the approximating polyhedral set. Thus we have derived the
approximation formula

�m(β; PM) ≈ �(β1)�m−1(δ; PN) (7.5.14)

by which the dimension is reduced by 1.

Due to the increasing accuracy of FORM or SORM with increasing geometric reliability index
this successive dimension reduction method shows increasing accuracy for increasing value of
min{|β1|, . . . , |βm |}.
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7.6 Reliability analysis for limit states of high complexity

Response-surface method

The practicability of structural reliability analyses methods for a specific limit state depends to a
great extent on the complexity of the formulation of the limit state. Often the limit-state function
g(x1, . . . , xn) is not available in explicit form but rather defined implicitly through a complicated
numerical procedure, for example given by an elaborate finite element program. For such limit-
state formulations the calculations needed for the direct application of the iteration algorithm given
in (7.4.9), or for similar iteration algorithms, may require very large and even prohibitive computer
efforts.

One way to solve this problem of complexity is to approximate the limit-state surface in a
numerical-experimental way by a surface of an explicit mathematical form as, for example, an
algebraic surface of the second degree. The method is in its principle similar to the method of
the experimentalist in the laboratory. A suitable family of mathematical functions is chosen such
that each member of the family is uniquely fixed by the assignment of values to a finite set of free
parameters. If there are m free parameters, it usually takes m different experiments to fix the sur-
face. However, with only m experiments no information is obtained about the error of fit and the
possible random error. Therefore the experimentalist will usually make more than m experiments.
Thereafter the parameters are chosen by some regression method based on a suitable principle of
minimization of the totality of misfit errors. A standard method is the method of least sum of suit-
ably weighted squared errors. Exactly the same procedure is applied in numerical experimentation
on the computer to obtain an approximation to the limit-state surface by regression. Such an ap-
proximation is called a response surface in the reliability literature. The deviation of the computed
results from the response surface are easily appreciated as being misfit errors. However, also the
concept of random error makes sense if the regression equation contains fewer basic variables than
the elaborate model. The more important variables may be included in the simplified response-
surface model while the rest of the basic variables are neglected. In the numerical experiments the
values of these neglected variables may be chosen at random in accordance with their specified
probability distributions, that is, they may be chosen by simulation, see Chapter 9. Thus the re-
sulting regression error will be a sum of a misfit error (idealization error) and a random error. In
accordance with the philosophy of Section 3.3 the total error is modeled by a probability distribu-
tion coming out of the statistical regression analysis. Thereafter the error variable is included in
the response-surface limit-state model as an extra variable that takes care of the model uncertainty.
This topic is elaborated in detail for a special important case in Section 11.4.

Once the response surface has been obtained the reliability analysis is made with the response
surface as limit-state surface in place of the complicated limit-state surface of the elaborate model.
One problem with this purely experimental response-surface approximation technique is that in
general it is necessary to know in advance where on the complicated limit-state surface to make
the replacement by the response surface. Otherwise an iterative search procedure with determina-
tion of a new response surface in each step is needed. For problems with several variables such an
iteration algorithm may require large computer efforts due to the large number of calls to the com-
plicated numerical limit-state model needed to obtain the response surface in each step. Moreover,
there is no guarantee that convergence is achieved. The response surface as shaped arbitrarily, for
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example by a second degree polynomial, naturally carries no obvious formal resemblance to the
mechanical modeling of the complicated limit-state surface.

Therefore it would be desirable instead to be able to formulate response surfaces that come
out of direct idealizations of the complicated mechanical model. Obviously it is an advancement
of the understanding of the most important structural features with respect to carrying capacity
if the limit states even in the most idealized form are deduced from clear and reasonably simple
mechanical principles. Such properties decrease the risk of making radical design errors caused by
misconception of the way the structure carries its loads when coming close to the failure situation.

For example, for structures with ductile behavior before approaching the collapse, the theory
of rigid-ideal plastic structures is an idealized (and consistent) model universe that to the first
approximation satisfies both geometric and statical conditions valid for the real structure. Within
the realm of the ideal plasticity model the limit state can be formulated in a clear way for a large set
of structure types. Usually the mathematical form of the limit state is well suited for manageable
reliability analysis with respect to plastic collapse.

With the supposition that the rigid-ideal plastic theory is used as the analysis tool for the deter-
mination of the limit state, it is necessary to correct for the error of idealization when this analysis
tool is applied to real structures. The considerations should be about the influence of the deviations
between the ideal and the realistic constitutive relations concerning the ductile behavior. Also, the
importance of deviations from genuine ductility should be judged. For example such a deviation
could be limited rotation capacity of the possible yield hinges. Secondary internal forces that are
due to the displacements of the real structure before collapse (i.e. geometric nonlinearities) may
also affect the limit state essentially.

Based on the physical principles of dimension homogeneity in combination with the principles
of first-order reliability analysis (FORM) it will be shown in the following that it is possible in
a systematic way to replace a complicated limit-state reliability analysis by a simpler limit-state
reliability analysis that is approximately equivalent with respect to the failure probability. It is
required, though, that the safe sets of both limit-state problems with respect to the origin of the
load vector are star-shaped in terms of the load vector. The purpose of this requirement is simply
to ensure that any point of the safe set can be reached through proportional loading such that the
entire loading path is completely contained in the safe set (that is, failure does not occur during the
load growth from zero to the final value of the load). Under this star-shape condition, the strength
parameters of the simple model can be corrected by a single model-correction factor (effectivity
factor). The principles of FORM indicate that it may be sufficient in most cases to approximate the
correction factor to the zeroth order simply by a constant, or to the first order by an inhomogeneous
linear function of the set of random variables that appears in the elaborate model. This inhomoge-
neous linear function is determined through a specific number of particularly chosen deterministic
calculations in the elaborate model. The choice of these calculation cases is determined by the
FORM analysis of the uncorrected simple model.

The method is a type of response-surface method in which the mathematical form of the
response-surface equation is chosen not arbitrarily as a second degree surface but by a simple
systematic correction of a mechanically interpretable, but perhaps over-idealized, limit-state equa-
tion.
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Model-correction-factor method based on FORM*

For a given structure let xF be the vector of all basic variables with physical units that contain the
unit of force (forces, moments, stresses, coefficients of elasticity, etc.) and let xD be the vector
of all the remaining basic variables (of the type of geometric and dimensionless basic variables).
With sufficient generality we can assume that the basic variables are defined such that the units of
the elements in xF are proportional to the force unit. Let xF = (xS, xR) be split into the vector xS

of load variables and the vector xR of strength variables, respectively, and consider two limit-state
equations between the vectors xS, xR, and xD to be one defined by an elaborate model, and the
other by a simple model formulated to be an idealization of the elaborate model.

The input values are assumed to be specified as random variables (XS, XR, XD) with a given
joint probability distribution. The quantity of interest is the probability that an outcome of (XS, XR,

XD) is obtained in the failure set Fr of the elaborate model (index r for “realistic”). The problem
at hand is that the calculation of this probability P(Fr) is elaborate. Therefore it is attractive to
try to take advantage of the simple model by which the probability P(Fi) of getting an outcome
in the idealized failure set Fi can be calculated with less effort than required for the calculation of
P(Fr).

The two limit-state equations are formally

gr(xS, xR, xD) = 0 (7.6.1)

gi(xS, xR, xD) = 0 (7.6.2)

where gr is a suitably regular function that is not necessarily given in explicit form, and gi is a less
elaborate function than gr. For example, gr could be defined implicitly through a finite-element
algorithm.

It is assumed that both the safe sets are star-shaped in terms of xS with respect to the origin of
xS, that is, for any (xS, xR, xD) each of the following equations

gr(κrxS, xR, xD) = 0 (7.6.3)

gi(κixS, xR, xD) = 0 (7.6.4)

has a unique solution with respect to κr and κi, respectively. As we shall see it is then a consequence
of the physical property of dimension homogeneity of the limit state equations (7.6.1) and (7.6.2)
that the limit state defined by the elaborate equation (7.6.1) is identical to the limit state defined by
the equation

gi(xS, ν(x)xR, xD) = 0 (7.6.5)

in which ν(x) is the function defined by

ν(x) = κr(x)

κi(x)
, x = (xS, xR, xD) (7.6.6)

with κr and κi being the unique solutions to (7.6.3) and (7.6.4), respectively; ν(x) is called the
effectivity factor.
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Proof Consider any physically admissible limit state in the space of x = (xF, xD). Let g(x) = 0 be
the equation of the limit state. In order for the limit state to be physically admissible, the limit-state
equation must have the property that

g(axF, xD) = 0 for all dimensionless a > 0 (7.6.7)

because otherwise the equation is not homogeneous with respect to the physical dimension of force.
Since (7.6.7) is valid with an individual value of a > 0 for any specific value set of (xF, xD), we
can further conclude that (7.6.7) is valid if a = a(xF, xD) is any everywhere positive dimensionless
function of (xF, xD). Consequently the dimension homogeneity of gi allows a reformulation of the
identity (7.6.4) to the following identity

gi(κr(x)xS, ν(x)xR, xD) = 0 (7.6.8)

Thus, from (7.6.3) and (7.6.8),

{x | gr(x) = 0} = {x | κr(x) = 1} ⊂ {x | gi(xS, ν(x)xR, xD) = 0} (7.6.9)

Assume that y is a point of the last set in (7.6.9) but not of the first set in (7.6.9). Substitute
(xS, xR, xD) = y in the identity (7.6.8). Then it follows that (7.6.8) is satisfied for κr = 1 but also
for a value of κr different from 1, that is, (7.6.4) is satisfied for both κi = 1/ν(y) and κi = κr/ν(y).
This is a contradiction with the star-shape assumption. Thus (7.6.9) is valid with ⊂ replaced by =.
This concludes the proof. �

Equation (7.6.5) is just as elaborate as (7.6.1), of course. However, if the two models quali-
tatively behave in the same way (and they should in the essentials do so because they are models
of the same physical phenomenon) then it is reasonable to expect that the effectivity factor ν(x)

locally can be approximated well with a constant. Assuming this to be so, (7.6.5) is replaced by

gi(xS, ν
∗xR, xD) = 0 (7.6.10)

as an approximation to elaborate equation (7.6.1) in a more or less wide neighborhood of any point
x∗ at which ν∗ = ν(x∗) is calculated.

The problem is now reduced to the problem of how to choose the point of approximation x∗.
Of course, according to FORM the best choice of ν∗ is obtained if it happens to be equal to the
unknown value of ν(x) at the most central point x = x∗ of elaborate limit state (7.6.1). Given that
ν(x) actually has a point of stationarity at x∗, that is, given that all the partial derivatives of ν(x)

are zero at x∗, then the two limit-state surfaces defined by (7.6.1) and (7.6.10) are tangential to
each other at x∗. Thus the two limit states have x∗ in common as a point that satisfies the necessary
conditions for being a most central point also for the limit state given by (7.6.10). Therefore the
following iterative procedure directly suggests itself.

With a judgementally chosen value ν0 of ν∗ a first- or second-order reliability analysis (FORM
or SORM) is made with (7.6.10) as the limit-state equation. This analysis determines the most cen-
tral point x1 and an approximate failure probability p1 corresponding to the limit state gi(xS, ν0xR,

xD) = 0. Using κi(x1) = 1/ν0, an improved value ν1 = ν0κr1 of ν∗ is calculated, where
κr1 = κr(x1) is obtained by solving (7.6.3) with respect to κr for (xS, xR, xD) = x1. Then a
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Figure 7.7: Illustration of iteration.

new FORM or SORM analysis is made with (7.6.10) as the limit-state equation and ν∗ = ν1. This
gives the most central point x2 and the approximate failure probability p2. Proceeding iteratively
in this way we get a sequence (κr1, p1), (κr2, p2), . . . that may or may not be convergent. If the
sequence is convergent in the first component, it is also convergent in the second component, and
we have (κr1, p1), (κr2, p2), . . . → (1, p), where p is denoted as the zero-order approximation to
the probability of the elaborate failure event Fr. Moreover, x1, x2, . . . → x∗.

If the sequence is not convergent, the zero-order approximation can be obtained by simple
interpolation to the value κr = 1 among points (κr, β) [β = −�−1(p)] corresponding to the
sequence or simply obtained for a series of different values of ν0, see Fig. 7.7.

If x∗ is not a stationarity point of ν(x), the zero-order approximation to the probability of failure
may still be an applicable approximation. A check of the goodness of the zero-order approximation
can be made by replacing the effectivity factor ν(x) by its first-order Taylor expansion

ν(x) ≈ ν̃(x) = ν∗ + aT(xS − x∗
S) + bT(xR − x∗

R) + cT(xD − x∗
D) (7.6.11)

at the most central point x∗ corresponding to the limit state defined by (7.6.10), with ν∗ being the
effectivity factor value corresponding to κr = 1. The numerical determination of the coefficients
a, b, c requires that the values of ν(x) be known at at least as many points in the vicinity of x∗ as
the number of variables in x. These values of ν are obtained by solving (7.6.3) and (7.6.4) with
respect to κr and κi, respectively, at each chosen point x.

Upon substitution of ν̃(x) given by (7.6.11) into (7.6.5) in place of ν(x), a limit state is obtained
for which both the probability of failure and the value of κr in general will be different from the
probability p and the value κr = 1 as obtained by the zero-order approximation. However, by a
unique scaling factor kr on the load vector xS it can be achieved that the limit state defined by

gr(krxS, xR, xD) = 0 (7.6.12)

or equivalently by

gi[krxS, ν(krxS, xR, xD)xR, xD] = 0 (7.6.13)

corresponds to the failure probability p. With the Taylor expansion (7.6.11) substituted into
(7.6.13), the limit state

gi[krxS, ν̃(krxS, xR, xD)xR, xD] = 0 (7.6.14)
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is obtained. The factor kr can be determined by iterative application of FORM or SORM analysis
such that the corresponding failure probability becomes p. The pair (kr, p) will be called the first
order approximation. The size of the deviation of kr from 1 can then be used to judge the accuracy
of the zero order approximation. Also the change of the most central point from that of (7.6.10) to
that of (7.6.14) contributes to this judgment.

It is noted that the formulations of the elaborate and the simple limit states are made in a
common space of basic variables. Often the number of basic variables can be larger in the elaborate
model than in the simple model. This means that the simple limit state is “cylindric” in the direction
of the axes of the basic variables that contribute to the elaborate model but not to the simple model.
Thus those elements of x∗ that correspond to the extra basic variables are equal to the mean values
(or similar central values) of the respective random variables.

Clearly, if the extra basic variables get dominant influence in the reliability analysis made with
the Taylor expansion of the effectivity factor the simple model is too simplified to capture the
essentials of the considered reliability problem.

Remark 7.4 The dimension homogeneity property (7.6.7) has the interesting consequence that
any physically admissible limit-state surface in the standard Gaussian space is invariant to the
multiplication of all the basic strength and load variables xF in the physical formulation space by
any nonnegative function of the basic variables x = (xF, xD).

To see this let X = (XF, XD) be a random vector with a given joint distribution and assume
that there is a one-to-one transformation T such that X = T (U) = [TF(U), TD(U)] where U is a
standard Gaussian random vector. Then the limit state in the standard Gaussian space obtained by
this transformation is given by an equation G(u) = 0, where

G(u) = g[T (u)] (7.6.15)

Consider now a situation where XF is multiplied by an everywhere positive dimensionless func-
tion a(X) of X; that is, let the joint distribution of X be replaced by the joint distribution of
[a(X)XF, XD]. The transformation Ta between the [a(x)xF, xD]-space and the standard Gaussian
space is simply obtained from the old transformation T by Ta(U) = {a[T (U)]TF(U), TD(U)}.
The limit state equation in the standard Gaussian space is given by the equation g{a[T (u)]TF(u),

TD(u)} = 0, which according to (7.6.7) and (7.6.15) defines the same surface as the equation
G(u) = 0. �

Example 7.11 Consider a slender knee frame as defined in Fig. 7.8. The displacements caused
by the force F are sufficiently large to make the secondary bending moments coming from F be
dominating for the collapse situation. Thus an elaborate mechanical analysis model (e.g. a finite-
element model) is needed. The standard critical mechanism in rigid-plastic theory (d) obviously
carries no resemblance with the collapse displacement of the frame (b). However, with a rea-
sonable conception about the displacement field of the elastic-plastic frame just before collapse,
the potential yield hinge positions of a rigid plastic model are chosen ad hoc at the points 2 and
5 excluding the possibility that the reliability analysis for the rigid-plastic model automatically
points out the standard mechanism (d) as the most critical mechanism. The formulated rigid-
plastic model defines a mechanically based response surface that can be well adapted to the limit
state corresponding to collapse of the elaborate elastic-plastic model even with dominant geometric
nonlinear behavior.
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Figure 7.8: Slender knee frame of material with elastic-plastic constitutive relation (a). The displacement
field (b) is idealized to the mechanism-displacement field (c) which is completely different from the standard
critical mechanism (d) in rigid-plastic theory.

The data of the frame structure in Fig: 7.8 are

L = 10 [m]; rectangular cross-section: height × width = 0.296 [m] × 0.026 [m]; Young’s modulus:
2.1 ×105 [MPa]; F : Gaussian, E[F] = µF , VF = 0.2; e: Gaussian, E[e] = 0.1 [m], Ve = 0.2;
fy (yield stress): lognormal, E[ fy] = 400 [MPa], V fy = 0.1, Cov[ f 1−3

y , f 4−6
y ] = 0.3Var[ fy], no

other correlation.

In this specific example it is almost obvious in advance that it is sufficient solely to consider
the points 2 and 5 as potential yield-hinge points. However, for larger structures under more com-
plicated load configurations there can be several failure modes corresponding to the complicated
model. This should be reflected also in the idealized rigid-plastic model by choosing a reasonably
large number of separated potential rotation hinges in the model.

The point is that the probabilistically important mechanisms obtained from the reliability ana-
lysis at least crudely behave like the elaborate model with respect to geometric nonlinearity. A
mechanism that has bad similarity with some reasonable displacement field of the complicated
model is expected to be less suitable for defining an applicable response surface. For the knee
frame considered here the obtained FORM results are presented in Fig. 7.9. (The calculations have
been made by use of the program PROBAN version 3.0 installed on an HP9000/730 computer).
The geometric reliability index β is shown as function of the mean µF of the force F for the dif-
ferent steps of approximation. The curve marked “simple model” corresponds to the rigid-plastic
mechanism (c) without effectivity-factor reduction of the yield stress. The four points marked by
squares are calculated solely within a finite-element model of the frame. (CPU-time ≈ 1 hour per
point). It is seen that the reduction of the reliability index due to geometric nonlinearity is very
large. Nevertheless, even the zero-order approximation comes quite close to the correct results, and
already the first step of the first-order approximation is very accurate except for the smallest con-
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Figure 7.9: Geometric reliability index β as function of the mean load level µF for the knee frame in
Fig. 7.8.

sidered value of µF ( i.e. for µF = 0.55 [MN]) (CPU time to obtain the zero-order approximation
and the first step of the first-order approximation was some few minutes per point). The first-order
analysis with iterative changing of the most central point ended up giving perfect agreement with
correct FORM result also for µF = 0.55 [MN] (CPU time 10 minutes).

Further details on this example and another example including details about the formulation of
the finite-element model are given in [7.10]. Successful applications of the model-correction-factor
method are illustrated for other types of structural behavior in [7.6] and [7.12]. �

7.7 Historical and bibliographical notes

The necessity of standardization of types of transformations or distributions for the removal of
informational symmetry disturbances was discussed by O. Ditlevsen in 1979 [6.4]. The Nataf
distribution [7.14] was suggested and analyzed by A. Der Kiureghian and P-L. Liu in 1986 [7.3,
7.13] as a useful candidate for a multidimensional code specified distribution for the evaluation of
structural reliability in cases where solely the marginal distribution types are given.

The Hermite polynomial transformation has been investigated for a variety of reliability appli-
cations by S.R. Winterstein in 1985, 1987 [7.19] and later.

The usefulness of the Rosenblatt transformation [7.17] for the calculation of reliability indices
on the basis of completely specified joint distribution information was demonstrated by M. Hohen-
bichler and R. Rackwitz in 1981 [7.7].

The simple idea to approximate distribution tails by normal distribution tails is old, of course.
In investigations for setting up a rational basis for codes of structural reliability the principle was
applied by J. Benjamin and N. C. Lind in 1969 [7.1] and by E. Paloheimo and M. Hannus in
1974 [7.15]. An algorithm for the construction of a sequence of increasingly better approximating
normal distributions was formulated and tested on a special probability problem (see the chapter
on load combinations) by R. Rackwitz and B. Fiessler in 1978 [7.16] and more generally by M.
Hohenbichler and R. Rackwitz in 1981 [7.7]. In its point sequence construction the algorithm
works as the well-known Newton-Raphson iteration principle and it has in parallel with optimiza-
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tion methods gained wide spread application under the name Rackwitz-Fiessler’s algorithm for the
calculation of the geometric reliability index.

O. Ditlevsen and H.O. Madsen gave in 1980 [7.4] and 1981 [7.5] the clarifying interpretation
of the algorithm based on Theorem 7.1 that it in the case of convergence leads to a locally most
central point on the image in the Gaussian formulation space of the limit-state surface.

The method of calculating approximative distribution function values of the multidimensional
normal distribution by use of FORM or SORM was suggested by M. Hohenbichler in 1982 [7.8]
and investigations of the accuracy of the method was published by M. Hohenbichler and R. Rack-
witz in 1983 [7.9].

Response-surface methods for dealing with complicated limit states in structural reliability
have been used first by D. Veneziano et al in 1983 [7.18] and further investigated by L. Faravelli
[7.2]. In particular, she investigated the use of methods of experimental planning to numerical
experiments for determination of response surfaces. The basis for the model-correction-factor
method was formulated in 1991 by O. Ditlevsen. Detailed investigations on examples have been
made by T. Arnbjerg-Nielsen et al, J.M. Johannesen et al, and P. Franchin et al [7.6, 7.10, 7.12,
7.20].
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Chapter 8

SENSITIVITY ANALYSIS

8.1 Measure for the importance of input variables

For almost plane limit-state surfaces in the standardized Gaussian space (in which the points will
be denoted by u) we can with sufficient accuracy approximate the generalized reliability index by
the simple reliability index

β = E[M]

D[M]
(8.1.1)

where the linear safety margin M corresponds to the tangent hyperplane at the globally most central
limit-state point. In particular we can let M have the form

M = β − αTU (8.1.2)

where U is a standard Gaussian vector and α is the normal unit vector to the limit-state surface at
the most central point. Then

Var[M] = α2
1 + . . . + α2

n = 1 (8.1.3)

implying that α2
i is the fraction of the variance of the safety margin that is caused by the standard-

ized normally distributed random variable

Ui = aT
i (X − µ) (8.1.4)

where X is the vector of random input variables and µ is the mean value vector of X. If the
transformation matrix [a1 . . . an]T is a diagonal matrix, the variables X1, . . . , Xn are uncorrelated.
Then α2

i is that fraction of the variance of the safety margin that originates from Xi .

If the input variables contained in X are mutually dependent, the interpretation of α2
i must be

more cautious because α2
i is related to the linear combination (8.1.4). However, often the input

variables can be separated into several sets that are mutually uncorrelated. For each such set the
sum of the α2

i -parameters gives the fraction of the variance of the safety margin originating from
the uncertainty in this set.

147
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Another useful measure for the importance of the uncertainty of an input variable is the omis-
sion sensitivity factor. This factor expresses the relative error in the value of the geometric relia-
bility index if an input variable is replaced by a fixed value.

If the i th random variable Ui in U is replaced by a fixed value ui , the safety margin M in (8.1.2)
is changed to the conditional safety margin

M(U | Ui = ui ) = β − αi ui −
∑
j �=i

α jU j (8.1.5)

with the simple reliability index

βM |Ui=ui = E[M | Ui = ui ]

D[M | Ui = ui ]
= β − αi ui√

1 − α2
i

(8.1.6)

The omission sensitivity factor is then defined as

ζ(Ui = ui ) = βM |Ui=ui

β
= 1 − αi ui/β√

1 − α2
i

(8.1.7)

More generally, we define the omission sensitivity factor

ζ(U1 = u1, . . . , Uq = uq) = 1 − �i∈I αi ui/β√
1 − �i∈I α

2
i

(8.1.8)

where u1, . . . , uq are fixed replacement values for U1, . . . , Uq and I = {1, . . . , q}. For simplicity
of notation we have assumed that it is the q first elements of U that are replaced by fixed values.

Assume that the transformation from the random input vector X to the normalized Gaussian
vector U is the marginal transformation, that is, assume that Ui is determined solely by Xi for
all i = 1, . . . , n, see (7.2.1). Then the omission sensitivity factor (8.1.8) by its deviation from 1
measures the effect of X1, . . . , Xq being replaced by the fixed values x1, . . . , xq . These values
are transformed into

uk = �−1[FXk (xk)] (8.1.9)

before substitution into (8.1.8). If xk is chosen as the median in the distribution for Xk , we get
uk = 0. By this the omission sensitivity factor formula gets its numerator equal to 1.

Two important practical applications of the omission sensitivity factor are as follows:

1. If the value αi in absolute value is less than 0.14, the relative error of the geometric reliability
index is less than 1% if Xi is replaced by its median. In practical situations it is therefore possible
to identify random input variables that can be replaced by fixed values without introducing any
essential error in the value of the geometric reliability index.

2. The globally most central point is often determined by iterative methods. These methods
use the value of the gradient vector to the limit-state function in each iteration, see (7.4.9). Many
general computer programs contain a numerical method for the calculation of the gradient vector.
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Dependent of the applied difference operator this calculation requires one or two extra calls to
the limit-state function for each input variable. Since the total computer time by and large is
proportional to the number of calls to the limit-state function it is important that the number of
calls is made as small as possible. A call to the limit-state function may, for example, imply
solution of large systems of equations or numerical solution of differential equations. It is seen
from (8.1.7) that if the normalized variable Ui is replaced by βαi/2, then the relative error in the
value of the simple reliability index is

ζ(Ui = βαi/2) ≈ 1 − α2
i /2√

1 − α2
i

= 1 + 1

8
α4

i + O(α6
i ) (8.1.10)

Thus the error is without any practical importance if αi is small. The following strategy can
therefore be applied to reduce the number of calls to the limit-state function: After the first iteration
the input variables with α-values less than a chosen threshold value are identified. In the following
iterations these input variables are replaced by the fixed values u(m)

i = β(m)α
(1)
i /2 in which the

upper index denotes the iteration number. In this way the value of β is updated in each iteration.
Upon reaching a stop criterion for β and the reduced α-vector a control iteration with the complete
set of random input variables may be performed. Thereby the error is controlled in situations where
the value α

(1)
i is far away from the value αi that corresponds to the locally most central limit-state

point. It is noted that the omission sensitivity factor increases according to the formula

ζ(U j = βα j/2; j = 1, . . . , k) ≈
1 − �α2

j/2√
1 − �α2

j

= 1 + 1

8
(�α2

j )
2 + O(�α2

j )
3 (8.1.11)

with the number of input variables that are replaced by fixed values. This should be taken into
account when choosing the threshold value of omission.

In order to generalize the omission sensitivity factor to the case of mutual dependency between
the input variables X1, . . . , Xn we will consider the effect of assigning fixed values to one or more
linear combinations of the standardized Gaussian variables U1, . . . , Un . In such a situation the
omission sensitivity factor is determined by the ratio, see (4.4.14),

ζ(N = 0) = βM |N=0

βM
(8.1.12)

where M is the linear safety margin (8.1.2) corresponding to the globally most central limit-state
point while N is the vector of linear safety margins (or event margins) that correspond to the
mentioned linear combinations of U1, . . . , Un . With N written as

N = z − KU (8.1.13)

we then get from (4.4.14) to (4.4.17) that

ζ(N = 0) = 1 − αTKT(KKT)−1z/β√
1 − αTKT(KKT)−1Kα

(8.1.14)
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where β = βM = E[M]/D[M]. If KKT is a unit matrix, (8.1.14) is reduced to (8.1.8). In general
the transformation between X and U is nonlinear. We then have functions h1, . . . , hn such that

xi = hi (u1, . . . , un) (8.1.15)

where hi is not necessarily linear. If the random input variable Xi is kept fixed at the value xi , it
therefore means that U = (U1, . . . , Un) is tied to be situated on the surface defined by (8.1.15)
in the normalized Gaussian space. If hi is linear, (8.1.15) defines a hyperplane so that a Gaussian
subspace is obtained. If hi is nonlinear and a function of two or more variables, this Gaussian
subspace property is lost, however. Therefore it is necessary to define a new transformation from
the parallel shifted subspace of the space of input variables that corresponds to the fixing of xi at
a constant value. This complicates the formulation of a general omission sensitivity factor. There
is another way, however. When considering the purpose of replacing Xi with the constant value
xi , namely to obtain a cut down of the number of variables without an essential change of the
reliability index, we may just as well let Xi have some random variation as obtained by linearizing
the right side of (8.1.15) at a suitable point that satisfies (8.1.15). Such a point might be the most
central point on the surface defined by (8.1.15). This defines a linear safety margin that can be
included as an element of N.

8.2 Importance measures related to input parameters for ele-
ment reliability

8.2.1 One parameter case

The deterministic input variables and the parameters in the distributions for the random input
variables are denoted as input parameters. The sensitivity of the reliability measure with respect to
changes in these input parameters is important for an easy evaluation of the change of the reliability
for a given change of the design of the structure. In connection with an optimization procedure
aiming at minimal total costs, the sensitivities can be used in the iterative solution methods.

For a locally most central point y on the limit-state surface in the standardized Gaussian space
of points u we have, see (8.1.1) and (8.1.2),

y = αβ (8.2.1)

α ∝ −∇g(y; θ), ∇ =
{

∂

∂yi

}
(8.2.2)

αTα = 1 (8.2.3)

g(y; θ) = 0 (8.2.4)

where θ is a parameter and g(·; θ) is the limit-state function. It follows from this that β is a function
of θ . The sensitivity of β with respect to changes in θ are measured by the derivative dβ/ dθ .

For calculation of dβ/ dθ it is convenient to define the limit-state function such that the gradient
of g has the length 1 everywhere on the limit state surface, that is, such that

||∇g(u; θ)|| = 1 for all u for which g(u; θ) = 0 (8.2.5)
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Remark 8.1 If g is not defined such that (8.2.5) is satisfied, we only need to divide g by ||∇g||.
This follows from the fact that

∂

∂θ

g

||∇g|| =
||∇g||∂g

∂θ
− g

∂

∂θ
||∇g||

||∇g||2 = 1

||∇g||
∂g

∂θ
(8.2.6)

at all points u at which g(u; θ) = 0, that is, (8.2.6) is valid everywhere on the limit-state surface.
This shows that (8.2.5) is valid with g replaced by g/||∇g||. �

The formulas (8.2.1) and (8.2.3) show that

β = αTy (8.2.7)

from which it follows that

dβ

dθ
= dαT

dθ
y + αT dy

dθ
= αT dy

dθ
(8.2.8)

The first term on the right-hand side of (8.2.8) is zero because dα/ dθ and α are mutually orthogo-
nal and y = αβ. The orthogonality is verified directly by differentiation of (8.2.3). Differentiation
of (8.2.4) gives

dg

dθ
= ∂g

∂θ
+

n∑
i=1

dyi

dθ

(
∂g

∂ui

)
u=y

= ∂g

∂θ
− αT dy

dθ
= 0 (8.2.9)

using (8.2.2). By comparison of (8.2.8) and (8.2.9) it is seen that dβ/ dθ = ∂g/∂θ . If (8.2.5) is
not satisfied, we use (8.2.6) and find the parameter sensitivity

dβ

dθ
= 1

||∇g||
∂g

∂θ
(8.2.10)

to be calculated at that locally most central limit-state point that corresponds to the considered
geometric reliability index.

Under the assumption (8.2.5) the derivative of the normal unit vector α with respect to the
parameter θ becomes

dα

dθ
= − d∇g

dθ
= − d

dθ

(
∂g

∂ui

)
u=y

=
[
−

{
n∑

j=1

∂2g

∂ui∂u j

dy j

dθ

}
− ∂∇g

∂θ

]
u=y

(8.2.11)

or, by differentiation of (8.2.1) to obtain dy j/ dθ , and rearrangement:

dα

dθ
+ D

(
dα

dθ
β + α

dβ

dθ

)
+ ∂∇g

∂θ
= 0 (8.2.12)

where

D =
{

∂2g

∂ui∂u j

}
u=y

=
[
− ∂α

∂u1
. . . − ∂α

∂un

]
u=y

(8.2.13)
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It is seen from (8.2.13) that Dα = 0. Using this in (8.2.12) we get

dα

dθ
= −(I + βD)−1 1

||∇g||
∂∇g

∂θ
(8.2.14)

where ∂∇g/∂θ = ∇∂g/∂θ , and where the formula has been corrected to the general case where
||∇g|| may be different from 1, also implying that

D = 1

‖∇g‖
[ ∂2g

∂ui∂u j
− 1

‖∇g‖
( ∂g

∂ui

∂‖∇g‖
∂u j

+ ∂g

∂u j

∂‖∇g‖
∂ui

)]
u=y

(8.2.15)

The interpretation of the derivatives appearing in (8.2.14) is that ∂∇g/∂θ is calculated at the most
central point y on the limit-state surface corresponding to θ being fixed at the actual value θ0. The
vectorial increment dα, however, represents the change of α as a consequence of the shift of the
most central point as it shifts together with the limit-state surface when θ varies from θ0 to θ0 + dθ .

8.2.2 The two main cases

Two different main cases of application of the formula (8.2.10) for dβ/ dθ deserve attention. The
first case appears if θ is a deterministic input variable, that is, a parameter that concerns the def-
inition of the limit state. We can then express the two to each other corresponding limit-state
functions in the space of the free physical input variables and in the standardized Gaussian space
by

g(u; θ) = g[T (x); θ ] = G(x; θ) (8.2.16)

where u = T (x) is the given transformation. It then follows that

∂g

∂θ
= ∂G

∂θ
(8.2.17)

The second case appears if θ is a distribution parameter. Such a parameter has no influence on the
limit state in the free physical formulation space. The influence on the limit state in the standard-
ized Gaussian space is solely through the transformation u = T (x; θ). We have

g(u; θ) = G(x) (8.2.18)

where the right side is independent of θ . Therefore the partial derivative of the left hand side of
(8.2.18) with respect to θ is zero identically, that is,

∇gT ∂u
∂θ

+ ∂g

∂θ
≡ 0 (8.2.19)

By application of (8.2.2) the formula (8.2.10) then gives

dβ

dθ
= αT

(
∂u
∂θ

)
u=y

(8.2.20)

Comparison of (8.2.20) and (8.2.8) shows that ∂u/∂θ = ∂T (x; θ)/∂θ has the same component as
dy/ dθ in the direction of α when calculated at the considered locally most central limit-state point
u = y.

Similar formulas apply to (8.2.14).
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8.2.3 Several parameters

Usually there will be several parameters θ1, . . . , θm in the limit-state equation. In that case the
derivatives dα/ dθ1, . . . , dα/ dθm should be interpreted as partial derivatives in the sense that
dα/ dθi is calculated with θ1, . . . , θi−1, θi+1, . . . , θm kept constant but with the most central point
y varying in dependence of θi . To avoid confusion we will use the notation δα/δθi for these special
partial derivatives. The need for this special notation appears directly in the following derivation
of a sensitivity measure that has useful applications in connection with the code calibration calcu-
lations treated in Appendix 1.

Let θ1 = r be some design parameter (a deterministic resistance parameter, say) and let θ2 = θ

be some other parameter, both having influence on the limit-state surface defined by the equation

g(u; r, θ) = 0 (8.2.21)

Thus the geometric reliability index β as well as the unit normal vector α at the most central point
y depend on r and θ . The differentials are

dβ = δβ

δr
dr + δβ

δθ
dθ (8.2.22)

dα = δα

δr
dr + δα

δθ
dθ (8.2.23)

For code calibration investigations it is relevant to consider the subfamily of limit state surfaces
defined by (8.2.21) such that β(r, θ) = βt = constant target reliability index. For judging the ef-
fects of variations within this subfamily the sensitivity dα/ dθ is useful. Setting dβ = 0, (8.2.22)
and (8.2.10) give

dr

dθ
= −δβ/δθ

δβ/δr
= −∂g/∂θ

∂g/∂r
(8.2.24)

whereupon (8.2.23) by use of (8.2.14) gives the sensitivity

dα

dθ
= −(I + βD)−1 1

||∇g||
(

−∂g/∂θ

∂g/∂r
∇∂g/∂r + ∇∂g/∂θ

)
(8.2.25)

of α with respect to θ for fixed geometric reliability index β. Under this condition the sensitivity
of the most central point y is

dy
dθ

= β
dα

dθ
(8.2.26)

Example 8.1 Let the input variables be mutually independent and let X1 be Gaussian with mean
value µ1 and standard deviation σ1. The transformation u = T (x) can be chosen as the marginal
transformation. In the first variable it is

u1 = x1 − µ1

σ1
(8.2.27)
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According to (8.2.20) the sensitivities with respect to the parameters µ1 and σ1 are then

δβ

δµ1
= α1

∂

∂µ1

(
x1 − µ1

σ1

)
u1=y1

= −α1

σ1
(8.2.28)

δβ

δσ1
= α1

∂

∂σ1

(
x1 − µ1

σ1

)
u1=y1

= −α1

(
x1 − µ1

σ 2
1

)
u1=y1

= −α1y1

σ1
= −βα2

1

σ1
(8.2.29)

�

Exercise 8.1 Let the input variables be mutually independent and let X2 be logarithmic normally
distributed with mean value µ2 and coefficient of variation V2. Show that

δβ

δµ2
= − α2

µ2

√
log(1 + V 2

2 )

(8.2.30)

δβ

δV2
= − α2V2

(1 + V 2
2 )

√
log(1 + V 2

2 )

⎛
⎝ βα2√

log(1 + V 2
2 )

− 1

⎞
⎠ (8.2.31)

�

8.2.4 Choice of expansion function

The FORM-approximation to the failure probability is

P(F) = �(−β) (8.2.32)

The derivative of the failure probability is

dP(F)

dθ
= −ϕ(−β)

dβ

dθ
(8.2.33)

Correspondingly the derivative of the natural logarithm to P(F) is

d log P(F)

dθ
= − ϕ(β)

�(−β)

dβ

dθ
(8.2.34)

For large values of β the asymptotic formula ϕ(β)/�(−β) ≈ β is valid, whereby the result is
simplified.

If P(F) is mapped as a function of an input parameter, the image graph is in most cases
strongly curved. However, if β or log P(F) is mapped as a function of the input parameter, most
often the graph is only slightly curved. Assume that the failure probability is known for a value θ of
the input parameter. We want to determine the failure probability corresponding to the parameter
value θ + 	θ . A calculation based on

P[F(θ + 	θ)] ≈ P[F(θ)] + dP[F(θ)]

dθ
	θ (8.2.35)
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therefore often will be quite inaccurate except for very small values of �θ . However, a calculation
based on

P[F(θ + �θ)] = �[−(β + �β)] ≈ �

[
−

(
β + dβ

dθ
�θ

)]
(8.2.36)

is often a reasonable approximation even for large values of �θ . Correspondingly we will get a
reasonable approximation by setting

P[F(θ + �θ)] ≈ exp

{
log P[F(θ)] + d log P[F(θ)]

dθ
�θ

}
(8.2.37)

8.3 Importance measures related to the input
parameters for parallel-system reliability*

In this section we will consider a failure set of the form

F =
m⋂

i=1

Fi (8.3.1)

that is, a failure set of parallel-system type. The limit-state function corresponding to Fi in the
standardized Gaussian space is denoted gi (·; θ), where θ is an input parameter, and it is defined
such that its gradient everywhere on the corresponding limit-state surface has the length 1, see
(8.2.5). The globally most central point y on the boundary ∂F is determined as the solution to the
optimization problem

min |u| given g1(u; θ) ≤ 0, . . . , gm(u; θ) ≤ 0 (8.3.2)

The individual failure sets Fi are numerated such that

g1(u; θ) = 0, . . . , gq(u; θ) = 0

gq+1(u; θ) < 0, . . . , gm(u; θ) < 0 (8.3.3)

for the optimal solution u = y.

The FORM-approximation (single-point multiple FORM) to the failure probability is then
given by the formula (6.6.7):

P(F) ≈ �q(−β; P) (8.3.4)

where P is the matrix of correlation coefficients between the linearized safety margins at the point
y. The derivative of �q(−β; P) with respect to the input parameter θ is

d�q(−β; P)

dθ
=

q∑
i=1

[
−∂�q

∂xi

dβi

dθ
+

i−1∑
j=1

∂�q

∂ρi j

dρi j

dθ

]
x=β

(8.3.5)
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For the partial derivative of �q we have, see Remark 8.2,

∂�q(−β; P)

∂xi
= ϕ(xi )�q−1

(
xi − ρi

i xi ; Pi − ρi
iρ

iT
i

)
x=β

(8.3.6)

∂�q(−β; P)

∂ρi j
= ∂2�q(−β; P)

∂xi∂x j
= ϕ2(xi , x j ; ρi j ) ·

�q−2

(
xi j −

[
ρ

i j
i ρ

i j
j

] [
1 ρi j

ρi j 1

]−1 [
xi

x j

]
; Pi j −

[
ρ

i j
i ρ

i j
j

] [
1 ρi j

ρi j 1

]−1
[
ρ

i jT
i

ρ
i jT
j

])

(8.3.7)

In these formulas xi is obtained from x by removing the i th row, that is, the element xi . Corre-
spondingly xi j is obtained from x by removing both the i th row and the j th row, that is, both the
elements xi and x j . The column vector ρ

j
i is the i th column in P after removal of the j th row,

and ρ
i j
i is the i th column in P after removal of both the i th and the j th row; the square matrix

Pi is obtained from P by removal of the i th row and the i th column, and the square matrix Pi j is
obtained by removal of both the i th and the j th row and column from P.

The vector β of simple reliability indices corresponding to the q tangential hyperplanes at point
y can be written as

β = ATy (8.3.8)

where A = [α1 α2 . . . αq] with αi being the normal unit vector to the i th hyperplane. The vector
of the corresponding safety margins can then be written as

M = β + ATU (8.3.9)

from which it follows that the correlation matrix P is determined by

P = Cov[ATU, UTA] = ATA (8.3.10)

Since y is the most central point in the intersection of the q tangential hyperplanes, the point y
must be a point of the q-dimensional subspace spanned by α1, . . . ,αq . If not, the projection of y
on this subspace would be a point in the intersection having less distance to the origin. From this
it follows that there is a q-dimensional vector λ such that

y = Aλ (8.3.11)

By multiplication of (8.3.11) from the left by AT and by use of (8.3.8) and (8.3.10) it is seen that

β = Pλ (8.3.12)

Differentiation of (8.3.11) with respect to the parameter θ gives

dy
dθ

= dA
dθ

λ + A
dλ

dθ
(8.3.13)
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where

dA
dθ

=
[

n∑
i=1

∂A
∂ui

dyi

dθ
+ ∂A

∂θ

]
u=y

= ∇A ∗ dy
dθ

+ ∂A
∂θ

(8.3.14)

with

∇A =
[

∂A
∂u1

. . .
∂A
∂un

]
u=y

(8.3.15)

The composition rule ∗ is defined by (8.3.14) as a generalized row-column multiplication. Since

q∑
j=1

(
n∑

k=1

∂ai j

∂uk

dyk

dθ

)
λ j =

n∑
k=1

(
q∑

j=1

∂ai j

∂uk
λ j

)
dyk

dθ
(8.3.16)

it is seen that[
∇A ∗ dy

dθ

]
λ = [∇A ◦ λ]

dy
dθ

(8.3.17)

where the composition rule ◦ is defined by

∇A ◦ λ =
[

∂A
∂u1

λ . . .
∂A
∂u1

λ

]
(8.3.18)

By substitution of (8.3.14) in (8.3.13) and use of (8.3.17) we get

dy
dθ

= [∇A ◦ λ]
dy
dθ

+ ∂A
∂θ

λ + A
dλ

dθ
(8.3.19)

Implicit differentiation of the equation g(u; θ) = 0 (the first line of (8.3.3)) gives

AT dy
dθ

= ∂g
∂θ

(8.3.20)

because ∇g = −AT under the assumption that ||∇g1|| = . . . = ||∇gq || = 1. Since ATA = P,
(8.3.19) can be solved with respect to dλ/ dθ after (8.3.19) has been multiplied from the left by
AT. Use of (8.3.20) then gives

dλ

dθ
= P−1

[
∂g
∂θ

− AT(∇A ◦ λ)
dy
dθ

− AT ∂A
∂θ

λ

]
(8.3.21)

This result is substituted into (8.3.19) which upon rearrangement becomes

[I + (AP−1AT − I)(∇A ◦ λ)]
dy
dθ

= AP−1 ∂g
∂θ

− (AP−1AT − I)
∂A
∂θ

λ (8.3.22)

After this the derivative dβ/ dθ to be used in (8.3.5) can be written as

dβ

dθ
= dAT

dθ
y + AT dy

dθ
= (∇AT ◦ y)

dy
dθ

+ ∂AT

∂θ
y + ∂g

∂θ
(8.3.23)
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in which the last term on the right side is obtained by use of (8.3.20) while the first term follows
from (8.3.14) and (8.3.17) with AT in place of A and with y in place of λ. By solution of (8.3.22)
with respect to dy/ dθ and substitution into (8.3.23) we get the the final result

dβ

dθ
= (∇AT ◦ y)

{
I + (AP−1AT − I)

[∇A ◦ (P−1β)
]}−1

·
[

AP−1 ∂g
∂θ

− (AP−1AT − I)
∂A
∂θ

P−1β

]
+ ∂AT

∂θ
y + ∂g

∂θ
(8.3.24)

In the special case where q = n, the matrix product AP−1AT reduces to the unit matrix I such that
(8.3.24) becomes

dβ

dθ
= (∇AT ◦ y)(AT)−1 ∂g

∂θ
+ ∂AT

∂θ
y + ∂g

∂θ
(8.3.25)

This corresponds to the situation where dy/ dθ can be determined directly from (8.3.20).

For the other extreme case where q = 1 we have A = α, β = β, y = βα, g = g, λ = β such
that (8.3.22) reduces to

[I − β∇α]
dy
dθ

= α
∂g

∂θ
+ ∂α

∂θ
β (8.3.26)

by use of αT∇α = 0T and αT∂α/∂θ = 0.

Since dy/ dθ = β dα/ dθ + α dβ/ dθ , ∇αTα = 0, ∂α/ dθ = −∂∇g/∂θ , dβ/ dθ = ∂g/∂θ

the formula (8.3.26) is further reduced to the expression (8.2.14) for dα/ dθ .

The derivatives dρi j/ dθ of the correlation coefficients are needed in (8.2.5). By differentiation
of (8.2.10) we get

dP
dθ

= dAT

dθ
A + AT dA

dθ
(8.3.27)

with, see (8.2.14),

AT dA
dθ

= AT
(

∇A ∗ dy
dθ

)
+ AT ∂A

∂θ
= (AT ◦ ∇A) ∗ dy

dθ
+ AT ∂A

∂θ
(8.3.28)

where dy/ dθ is determined by (8.2.33). The derivatives dβ/ dθ and dP/ dθ are all calculated at
the globally most central limit state point y. It is emphasized once more that all formulas are based
on the property that ||∇gi || = 1 on the i th limit-state surface for all i ∈ {i, . . . , q}.

When the derivative of the approximation to P(F) is determined, the derivative of the corre-
sponding generalized reliability index β is determined by

dβ

dθ
= − dP(F)/ dθ

ϕ(β)
(8.3.29)

Remark 8.2 The formula (8.3.6) for the partial derivative of the q-dimensional normal distribu-
tion function �q(x; P) with respect to xi is obtained by the following consideration, see Fig. 8.1.
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The partial derivative times the increment dxi is the probability of getting an outcome in the in-
finitesimal domain indicated by the shading in Fig. 8.1. Obviously this probability is

P(X ≤ x | Xi = xi )ϕ(xi ) dxi (8.3.30)

The conditional probability P(X ≤ x | Xi = xi ) is solely a function of xi and it is the (q − 1)-
dimensional normal distribution function that corresponds to the mean value vector, see (4.3.4),

E[Xi | Xi ] = Cov[Xi , Xi ]Xi = ρi
i Xi (8.3.31)

and the covariance matrix, see (4.3.5),

Cov[Xi , XiT | Xi ] = Cov[Xi , XiT] − Cov[Xi , Xi ]Cov[Xi , XiT] = Pi − ρi
iρ

iT
i (8.3.32)

This shows that (8.3.6) is valid. The formula (8.3.7) is derived in a similar way, see Fig. 8.2.

Figure 8.1: Drawing aiding the determination of ∂�q(x, P)/∂xi .

Figure 8.2: Drawing aiding the determination of ∂2�q(x, P)/∂xi∂x j .

The second derivative with respect to xi and x j becomes

P(X ≤ x | Xi = xi , X j = x j )ϕ2(xi , x j ; ρi j ) dxi (8.3.33)

The conditional probability is solely a function of xi j and it is the (q − 2)-dimensional normal
distribution function corresponding to the mean value vector, see (4.3.4),

E[Xi j | Xi , X j ] = Cov
[
Xi j , [Xi X j ]

] [
1 ρi j

ρi j 1

]−1 [
Xi

X j

]

=
[
ρ

i j
i ρ

i j
j

] [
1 ρi j

ρi j 1

]−1 [
Xi

X j

]
(8.3.34)
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and the conditional covariance matrix, see (4.3.5),

Cov[Xi j , Xi jT | Xi , X j ]

= Cov[Xi j , Xi jT] − Cov
[
Xi j , [Xi X j ]

] [
1 ρi j

ρi j 1

]−1

Cov

[[
Xi

X j

]
, Xi jT

]

= Pi j −
[
ρ

i j
i ρ

i j
j

] [
1 ρi j

ρi j 1

]−1
[
ρ

i j
i

ρ
i j
j

]
(8.3.35)

This proves the right side of (8.3.7).

A proof of the identity

∂�q(x; P)

∂ρi j
= ∂2�q(x; P)

∂xi∂x j
(8.3.36)

is given in [8.2], see also Exercise 4.3. �

8.4 Importance measures related to input
parameters in series-system reliability*

For a series system the failure set is defined as in Section 6.6 by the union

F =
m⋃

i=1

Fi (8.4.1)

The situation is illustrated in Fig, 6.8. By multipoint FORM the failure probability P(F) is ap-
proximated by

1 − P(M1 > 0, . . . , Mm > 0) = 1 − P(−M1 < 0, . . . ,−Mm < 0) = 1 − �m(β; P) (8.4.2)

where Mi is the linear safety margin corresponding to the tangent hyperplane at the globally most
central point on the limit-state surface ∂Fi . The corresponding simple reliability indices are col-
lected in the vector β = (β1, . . . , βm) while P = {ρi j } = {α′

iα j } is the correlation matrix of
M = (M1, . . . , Mm). The vector αi is the unit normal vector to the i th limit-state surface ∂Fi at
the globally most central point on ∂Fi .

The derivative of the right side of (8.4.2) with respect to an input parameter θ is

d[1 − �m(β; P)]

dθ
= −

m∑
i=1

[
−∂�m

∂xi

dβi

dθ
+

i−1∑
j=1

∂�m

∂ρi j

dρi j

dθ

]
x=β

(8.4.3)

in which dρi j/ dθ is given by (8.3.27) and (8.3.28), and dβi/ dθ is given by (8.2.10). Once more
it is emphasized that (8.3.28) is valid only under the assumption that all the limit-state functions
gk , k ∈ {1, . . . , m}, are defined such that ||∇gk || = 1 everywhere on the kth limit-state surface.
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8.5 Historical and Bibliographical notes

The technique of the sensitivity analysis is as old as the differential calculus. In connection with
reliability analysis its usefulness is pointed out in particular by H.O. Madsen who defined the
omission sensitivity factor in 1988 [8.3].

It was shown by M. Hohenbichler in 1984 [8.1] that the generalized reliability index and the
geometric reliability index asymptotically (in the same sense as in Section 6.4) have the same
parameter sensitivity. For finite values of the geometric reliability index this asymptotic result is
better, naturally, for almost plane limit state surfaces than, for example, for limit-state surfaces
that correspond to parallel systems for which the globally most central point is in the intersection
between the individual element limit-state surfaces.

This less accuracy of the asymptotic result for parallel systems motivated H.O. Madsen to
derive the extensive explicit formulas in Section 8.3.
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Chapter 9

MONTE CARLO METHODS

9.1 Simulation principle

The technique of solving integration problems by Monte Carlo methods is based on the fact that
the theory of probability among its several interpretations has the interpretation as a mathematical
theory for the behavior of sample averages and the tendency of these to stabilize as the sample size
increases. This interpretation is empirically well documented. This means that in place of solving
a given integration problem by analytical or numerical mathematical methods it can be used that
the integral can be interpreted as a mean value in a suitable stochastic experiment (see below) and
that it therefore is possible to obtain a central estimate of the value of the integral by averaging a
suitably large number of independent outcomes of this experiment. The accuracy of the estimate
can be judged by use of standard statistical methods.

Probability theory itself predicts that the number of mutually independent outcomes often must
be very large in order to obtain a sufficient accuracy by this empirical method that in its principle
corresponds to gambling at the roulette in Monte Carlo. Therefore it has not been a realistic
method of solution before after the development of fast computers. The mechanical roulette is
replaced by an algorithm that programmed into the computer very quickly generates a sequence
of so-called pseudo random numbers belonging to the interval ]0,1] . The algorithm is based on a
recursive mathematical formula and with some few starting numbers (called the seed, e.g. the first
3 elements of the sequence) all the following numbers of the sequence are generated. Thus the
generating mechanism is completely deterministic. However, the applied mathematical formalism
is constructed such that it generates results that show chaotic behavior. There are surprisingly many
different simple algorithms that generate number sequences with chaotic behavior. It is a matter
of experience that among these there are some that give number sequences with properties that
are difficult to distinguish from the properties that the probability theory predicts are properties
of sequences of mutually independent random numbers that are uniformly distributed between
zero and one. The goodness of such a generator of random numbers is judged by subjecting the
generated sequence to a series of statistical tests for independence and uniform distribution. There
will always be a test that on the basis of a sufficiently long but finite part of the sequence can reveal
that it is deterministically generated. This follows from a result in the theory of finite codes stating
that it is possible even to reconstruct uniquely the mathematical generating mechanism solely on

163
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the basis of a sufficiently long string of numbers from the sequence. Whether or not the generator
is applicable for the solution of a given integration problem is thus a question about the robustness
of the integral with respect to deviations from independence and uniformity. The problems for
solution by Monte Carlo simulation using a given random number generator should therefore not
be more sensitive to such deviations as the tests to which the generator has been put and has passed.

In the literature an over-optimistic faith is often seen about the truth of the results obtained by
Monte Carlo simulation e.g. showing up by characterizing such results as being exact. However,
for a given application it should always be considered whether the goodness of the generator is
sufficient for the purpose. Generally the more strong test requirements the more complicated
random number generator must be chosen with increased computation time as a consequence. For
robust problems it is therefore rational to use a less good but simple generator while less robust
problems require a more complicated generator. The software sold together with computers on
the market often contains a random number generator that for many important applications is of
insufficient quality. A well tested generator is given in [9.4].

As mentioned Monte Carlo methods aim at estimating the value of an integral of a given func-
tion h(x) of x ∈ R

n over a given subset F ⊂ R
n . Let Z be an arbitrary n-dimensional random

vector with a density function fZ(z) which is positive everywhere in F . We then have∫
F

h(x) dR
n =

∫
F

h(x)

fZ(x)
fZ(x) dR

n = E

[
1z∈F

h(Z)

fZ(Z)

]
(9.1.1)

where dR
n is short for the volume measure L(dR

n) of the n-dimensional infinitesimal volume
element dR

n .

If we are able to generate a sample of mutually independent outcomes of the random variable
X = 1z∈Fh(Z)/ fZ(Z), then the average of this sample will be a central estimator of the expectation
(9.1.1), that is, for the value of the given integral. The less variation there is in the sample the faster
a stable average is obtained. If, for example, h(z) is positive everywhere in F and the integral is
finite, then the function h(x)1z∈F is proportional to a density function. If Z is chosen as the random
vector with this density, then the random variable X will be a constant. Thus for a non-negative
integrand in (9.1.1) it is possible by a suitable choice of the distribution of Z in principle to get an
arbitrarily small variation in the sample. However, the practical problem is to generate an outcome
of Z, and in general this limits the possible choices of distribution of Z. The distribution of Z will
be called the simulation distribution.

In structural reliability the integration problem is relevant in connection with the determination
of the failure probability

pf =
∫
F

fX(x) dR
n =

∫
Rn

1x∈F fX(x) dR
n = E[1x∈F ] (9.1.2)

This formula may lead one to define Z = X, that is, to simulate outcomes of X. Since pf usually
is extremely small, most of the outcomes of 1x∈F are 0 , and only extremely rarely will the value
1 show up. It is obvious that such a simulation method functions very badly. Naturally it is much
more appropriate to choose the simulation distribution such that the density is zero over as large
parts of the safe set S as possible while being positive everywhere inF . Many different suggestions
of simulation distributions can be found in the literature. The best of these choices are supported
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on information from FORM or SORM analyses about where in F the most essential contributions
to the failure probability are located.

Here is not the place to treat the different suggested possibilities of intelligent Monte Carlo
simulation. We will be content with a demonstration of a special procedure that has turned out to
be quite effective to estimate small failure probabilities.

9.2 Directional simulation

Let us assume that the complementary set S to the integration set F in (9.1.1) has the property of
being star shaped with respect to the zero point in a polar coordinate system. A set is said to be
star shaped with respect to a point Q in the set itself if any half-line starting from Q intersects the
boundary of the set in one and only one point (which may be in the infinite). Then we can in a
simple way reduce the integral (9.1.1) in such a polar coordinate system to∫

F
h(x) dR

n =
∫

unit sphere

[∫ ∞

r(α)

h(sα)

fZ(sα)
fR(s | α) ds

]
fA(α) dα

= E

[∫ ∞

r(A)

h(sA)

fZ(sA)
fR(s | A) ds

]
(9.2.1)

where α is the directional vector, r(α) is the radius vector in the direction of α to the boundary
∂F of F , while fR(s | α) is the conditional density of R given A = α, where R and A are
the radius vector component and the directional unit vector component, respectively, in the polar
representation

Z = RA (9.2.2)

of Z. For the particular choice where F is the failure set and h(x) = fX(x), the integral (9.2.1) is
the failure probability pf given in (9.1.2).

From (9.2.1) it is seen that we can apply a Monte Carlo method where in place of direct use
of the simulated outcomes of Z in (9.1.1) we use the simulated direction A determined by the
simulated outcome of Z. We simply have that (9.2.2) gives

A = Z
||Z|| (9.2.3)

where ||Z|| = R =
√

Z2
1 + . . . + Z2

n . For the outcome α of A the value of the simulation variable∫ ∞

r(α)

h(sα)

fZ(sα)
fR(s | α) ds (9.2.4)

is next computed by a suitable numerical integration formula like the trapezium formula or, if
possible, by a closed form solution of the integral.

Such a closed form formula exists for example if h(x) is the n-dimensional standard normal
density ϕn(x), and the simulation distribution is chosen as the same distribution, see Fig. 9.1. Then
R2 is χ2-distributed with n degrees of freedom. Therefore the integral (9.2.4) reduces to
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Figure 9.1: Uniform directional simulation.

∫ ∞

r(α)

fR(s | α) ds = 1 − Kn[r(α)2] (9.2.5)

where Kn(·) is the χ2-distribution function with n degrees of freedom. The following closed form
formula is valid:

Kn(r
2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − exp

(
− r2

2

) ∑(n−2)/2
q=0

1

q!

(
r2

2

)q

for n even

2�(r) − 1 − exp

(
− r2

2

) ∑(n−2)/2
q=0

1

�[(2q + 3)/2]

(
r2

2

)(2q+1)/2

for n odd

(9.2.6)

Applied for estimation of small failure probabilities the Monte Carlo directional simulation method
based on (9.2.1) with an intelligently chosen sampling distribution avoids the problem which was
obvious in connection with (9.1.2), namely that only very few of the simulated points would fall
in F . Contributions different from zero are obtained by directional simulation each time a finite
value r(α) is obtained of the radius vector. For a direction α, where the boundary ∂F is in the
infinite, we naturally get r(α) = ∞ implying that the integral (9.2.4) gives the sample value zero.
In structural reliability analysis the failure set F is often close to filling up a half-space. If the
simulation distribution is chosen such that A is uniformly distributed on the unit sphere it should
be expected that an essential part of the outcomes will give r(α) < ∞. (It is left over to the reader
to see that for each simulated direction α also the opposite direction −α can be used so that it very
frequently will be so that either r(α) < ∞ or r(−α) < ∞. It is emphasized that it is the average
of the results from direction α and direction −α which should be taken as a single independent
outcome in the sample. Further directions fixed relative to the simulated direction α according to
some rule can be included. This is treated in the literature [9.3,9.5]). However, the choice of the
uniform distribution on the unit sphere as sampling distribution for A is not particularly wise in
case F is like a half-space and the dimension n of the space is not very small. Even though most
of the outcomes of r(A) are finite they very frequently become excessively large and the larger
the dimension n of the space the larger they become. Except for small space dimensions use of
uniform sampling on the unit sphere will create exactly the same problem as for direct Monte Carlo
simulation based on (9.1.2), namely that most of the sample will consist of near zero values with
only few significant values coming from the important region of F around the most central point
on ∂F .
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Example 9.1 Let X = (X1, . . . , Xn) be a Gaussian random vector. The sum

Y =
n∑

i=1

max{0, Xi } (9.2.7)

is used in Section 2.7 on load combinations. The distribution function of the sum can in a simple
way be estimated by Monte Carlo directional simulation with uniform distribution of A over
the unit sphere in R

n and use of (9.2.5) as simulation variable. For this, X is first expressed
by a standard normally distributed vector U = (U1, . . . , Un) through the linear substitution X =
TU+µ, where µ is the mean value vector of X and the matrix T is determined from the covariance
matrix Cov[X, XT]. Let the i th row in T be tT

i and let U be given as the polar representation
U = RA. Then we can write (9.2.7) as

Y =
n∑

i=1

max{0, tT
i AR + µi } (9.2.8)

The function

g(r | α) =
n∑

i=1

max{0, tT
i Ar + µi }, r ∈ R (9.2.9)

is built as the sum of convex functions of r and it is therefore itself a convex function of r . This
implies that the set

{r ∈ R | g(r | α) ≤ y} (9.2.10)

is an interval [r1, r2] , see Fig. 9.2. If r1 ≥ 0 we have

Figure 9.2: Graph of the convex function (9.2.9).

P(Y ≤ y | A = α) = Kn(r
2
2 ) − Kn(r

2
1 ), P(Y ≤ y | A = −α) = 0 (9.2.11)

If r1 < 0 and r2 ≥ 0 we have

P(Y ≤ y | A = α) = Kn(r
2
2 ), P(Y ≤ y | A = −α) = Kn(r

2
1 ) (9.2.12)

If r2 < 0 we have

P(Y ≤ y | A = α) = 0, P(Y ≤ y | A = −α) = Kn(r
2
1 ) − Kn(r

2
2 ) (9.2.13)
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From this it follows that we generally have

1

2
P(Y ≤ y | A = α) + 1

2
P(Y ≤ y | A = −α) = 1

2
sign(r2)Kn(r

2
2 ) − 1

2
sign(r1)Kn(r

2
1 ) (9.2.14)

which according to the remark in parenthesis just above this example is our simulation variable
when A is simulated with uniform distribution on the unit sphere and we use both A and −A. We
note that the event {Y ≤ y} not necessarily defines a star shaped set with respect to the origin
in the standard Gaussian space (the space of U). However, it has almost as simple a property
namely that the radius vector at most intersects the boundary at two points. The assumption that
the set S should be star shaped is not essential. It only serves the purpose that the formulas in the
presentation can be written as simple as possible. �

Remark 9.1 To simulate outcomes of A = U/||U|| we must be able to simulate outcomes of the
n-dimensional standard Gaussian vector U. Outcomes x of an arbitrary random variable X can
always be generated by use of the formula

x = F−1
X (y) (9.2.15)

where y is an outcome of a random variable which is uniformly distributed over the interval ]0, 1[.
Such an outcome is obtained by use of a random number generator.

Occasionally it is faster to use another formula than (9.2.15). For example, it is possible to
generate two mutually independent outcomes u1, u2 of a standard normal variable U by use of the
formulas

u1 =
√

−2 log y1 cos(2πy), u2 =
√

−2 log y1 sin(2πy) (9.2.16)

where y1 and y2 are mutually independent outcomes from the uniform distribution over ]0, 1[.
These formulas are derived directly from the polar representation for n = 2, since P(R >

r) = exp[−1
2r2], which according to (9.2.15) shows that an outcome of R can be generated as√−2 log y1. �

Example 9.2 Consider two subsums Y1 and Y2 of (9.2.7) and the corresponding subsums of
(9.2.8). For each of these we can define functions g1(r | α) and g2(r | α) as in (9.2.9). Then

{r ∈ R | g1(r | α) ≤ y1} = [r11, r12], {r ∈ R | g2(r | α) ≤ y2} = [r21, r22] (9.2.17)

and thus that the intersection

{r ∈ R | g1(r | α) ≤ y1, g2(r | α) ≤ y2} = [r11, r12] ∩ [r21, r22] (9.2.18)

is an interval [r1, r2]. Therefore we can estimate the distribution function

FY1,Y2(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2) (9.2.19)

by uniform directional simulation by use of (9.2.14) as simulation variable.

Due to the piecewise linearity of the functions g1(r | α) and g2(r | α) it is possible also by di-
rectional simulation to obtain an estimate of the value of the distribution function of the difference
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Y1 − Y2 at an arbitrary point y. What is needed is just to determine the finitely many intervals in
which g1(r | α) − g2(r | α) ≤ y. �

Example 9.3 Also the value of the density function for the sum (9.2.7) in Example 9.1 can be
determined by Monte Carlo directional simulation. This is seen by differentiating the formula

FY (y) = E

[
1

2
P(Y ≤ y | A) + 1

2
P(Y ≤ y | − A)

]
(9.2.20)

with (9.2.14) substituted. We get

fY (y) = E[sign(r2)kn(r
2
2 )r2r ′

2 − sign(r1)kn(r
2
1 )r1r ′

1] (9.2.21)

where kn(·) is the density function corresponding to the distribution function Kn(·), and where r ′
1

and r ′
2 are given by

r ′ = 1∑
i∈Jr

t′i A
(9.2.22)

Jr = {i | t′i A + µi > 0} (9.2.23)

for r = r1 and r2, respectively. For kn(r2) we have the closed form formula

kn(r
2) = rn−2 exp(−1

2r2)

2n/2�(n/2)
(9.2.24)

�

9.3 A class of useful directional simulation distributions *

A useful class of directional simulation distributions is defined in the following. However, first
we will explicitly give three examples from the class. These are characterized by the property that
generation of outcomes is simple. In the previous section we already considered the first of the
examples. We list the examples with reference to (9.2.1):

1. Z is standard Gaussian and centered at the origin, see Fig. 9.1:

fZ(sA) ∝ exp(−s2/2) (9.3.1)∫
F

h(x) dR
n = (2π)n/2

K
E

[∫ ∞

r(A)

h(sA)sn−1 ds

]
(9.3.2)

K = �(n/2)2(n/2)−1 (9.3.3)

For h(x) = ϕn(x) the simulation variable (9.2.5) is obtained.

2. Z is standard Gaussian and centered at the point µ, see Fig. 9.3:

fZ(sA) ∝ ϕn(sA − µ) (9.3.4)∫
F

h(x) dR
n = (2π)1/2

ϕn(µ)
E

[
ϕ(ATµ)

K (ATµ)

∫ ∞

r(A)

h(sA)sn−1 ds

]
(9.3.5)
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Figure 9.3: Illustration of the use of a simulation distribution which is standard Gaussian and centered at
the point µ.

where K (ATµ) is given by the function

K (x) =
∫ ∞

0
sn−1 exp

[
1

2
(s − x)2

]
ds (9.3.6)

with K (0) = K given by (9.3.3). For h(x) = ϕn(x − µ) we get∫
F

ϕn(x − µ) dR
n = E

[
1 − FR[r(A) | A]

]
(9.3.7)

where the conditional distribution function FR[x | α] can be determined by an algorithm which is
recursive in n , see Remark 9.2.

Remark 9.2 The integral

In−1(x, y) =
∫ ∞

x
sn−1 exp

(
−1

2
(s − y)2

)
ds (9.3.8)

can by integration by parts be written as

In−1(x, y) =
[

1

n
sn exp

(
−1

2
(s − y)2

)]∞

x
+ 1

n

∫ ∞

x
(s − y)sn exp

(
−1

2
(s − y)2

)
ds

= 1

n

[
−xn exp

(
−1

2
(x − y)2

)
+ In+1(x, y) − y In(x, y)

]
(9.3.9)

such that we have the recursive formula

In+1(x, y) = nIn−1(x, y) + y In(x, y) + xn exp

(
−1

2
(x − y)2

)
(9.3.10)

It is directly obtained that

I0(x, y) =
√

2π�(y − x) (9.3.11)

I1(x, y) =
√

2π�(y − x)x + exp

(
−1

2
(x − y)2

)
(9.3.12)
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The function in (9.3.6) is given by

K (x) = In−1(0, x) (9.3.13)

while the complementary conditional distribution function in (9.3.7) is

1 − FR[x | α] = In−1(x, αTµ)

In−1(0, αTµ)
(9.3.14)

�
3. Z is mixed standard Gaussian and half space truncated standard Gaussian, see Fig. 9.4:

fZ(sA) = pϕn(sA) + (1 − p)ϕtr(sA; ν, d) (9.3.15)

where p is the mixing probability and

ϕtr(x; ν, d) = ϕn(x)

�(−d)
1xTν >d (9.3.16)

is the half space truncated standard Gaussian density corresponding to the truncation hyperplane
defined by the normal unit vector ν and the distance d from the origin.

∫
F

h(x) dR
n = (2π)n/2 �(−d)

K
E

⎡
⎣ ∫ ∞

r(A)
h(sA)sn−1 ds

p�(−d) + (1 − p)
(

1 − Kn

[(
d/ATν

)2
])

1xTν >d

⎤
⎦

(9.3.17)

with K given by (9.3.3) and Kn(·) given by (9.2.6). For h(x) = ϕn(x) in particular:

∫
F

ϕn(x) dR
n = �(−d)E

⎡
⎣ 1 − Kn[r(A)2]

p�(−d) + (1 − p)
(

1 − Kn

[(
d/ATν

)2
])

1xTν >d

⎤
⎦ (9.3.18)

Figure 9.4: Illustration of the use of a simulation distribution which is mixed standard Gaussian and half
space truncated standard Gaussian.
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On the basis of Remark 9.1 the generation of outcomes from the simulation densities (9.3.1)
and (9.3.4) are without problems. For the simulation density (9.3.15) outcomes are generated in
more steps. First the draw of a random number determines from which population of the two in
the mix the generation should be made. A draw from the half space truncated standard Gaussian
density is made by first generating an outcome of an n-dimensional standard Gaussian vector U
and then projecting this vector onto the hyperplane through the origin parallel to the truncation
hyperplane. Thereby an outcome of the singular n-dimensional Gaussian vector U − (νTU)ν is
obtained. Now adding Wν, we get

Z = U + (W − νTU)ν (9.3.19)

where W is a random variable with the truncated Gaussian complementary distribution function

F̄W (x) = �(−x)

�(−d)
, x ≥ d (9.3.20)

These three examples belong to the class of mixed distributions between a standard Gaussian
distribution and a D-truncated standard Gaussian distribution both centred at the point µ. The
symbol D stands for a subset of R

n . In the third example D is a half space while D = R
n in the

two first examples. We have

fZ(sA) = ϕn(sA − µ)

[
p + (1 − p)

1sA∈D∫
D ϕn(x − µ) dRn

]
(9.3.21)

∫
F

h(x) dR
n =

√
2π

ϕn(µ)

∫
D

ϕn(x − µ) dR
n

·E
[

ϕ(ATµ)
∫ ∞

r(A)
h(sA)sn−1 ds

pK (ATµ)
∫
D ϕn(x − µ) dRn + (1 − p)

∫ ∞
0 1sA∈Dsn−1 exp

(−1
2(s − ATµ)2

)
ds

]
(9.3.22)

Besides depending on the possibility of fast simulation of outcomes of A = Z/||Z|| the appro-
priateness of applying the Monte Carlo directional simulation technique to determine an estimate
for the expectation in (9.3.22) depends on the calculations that are needed to obtain the values of
the integrals∫ ∞

r(A)

h(sA)sn−1 ds (9.3.23)∫ ∞

0
1sA∈Dsn−1 exp

(
−1

2
(s − ATµ)2

)
ds (9.3.24)

for each outcome of A. If closed form formulas are not available for these integrals, numerical
integration can be applied. Moreover the value of the integral∫

D
ϕn(x − µ) dR

n (9.3.25)
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must be known. A separate Monte Carlo integration can be applied to get a sufficiently accurate
value.

Example of more general truncation setsD than half spaces are studied in the literature [9.2,9.7].

Example 9.4 The frame structure in Fig. 6.7 is considered. The yield moments Y1, . . . , Yn are
assumed to be mutually independent random variables with a common log-normal distribution.
We will here be content with studying the mechanism in the lower left corner of Fig. 6.7. The
plastic dissipation is D = Y1 + 2Y3 + 2Y4 + Y5, while the corresponding external work is w =
Fa + Gb. The probability of collapse is obviously equal to P(D ≤ w) = FD(w). It is convenient
to express the yield moments and the external work in a unit which equals the common mean value
of the yield moments. Thus we put this mean value to 1 and introduce the normalized variables
X1 = (Y1 − 1)/γ , X2 = (Y3 − 1)/γ, . . . , X4 = (Y5 − 1)/γ , where γ is the common coefficient
of variation of the yield moments. Thereby the dissipation can be written as

D = γ (X1 + 2X2 + 2X3 + X4) + 6 (9.3.26)

The simple reliability index corresponding to the linear safety margin D − w is thus

β = 6 − w

γ
√

10
(9.3.27)

As an example let γ = 0.25 and β = 3.1, such that w = 3.55. For these values it turns out that
Monte Carlo directional simulation gives a value of the generalized reliability index close to 4.0 .
Due to the lognormal distribution and the rather large coefficient of variation the simple reliability
index thus underevaluates the safety significantly as compared to the generalized reliability index.

The failure set corresponding to the event D ≤ w is the part of the set {x ∈ R
4 | γ x1 >

−1, . . . , γ x4 > −1} that is situated below the hyperplane

H : γ (x1 + 2x2 + 2x3 + x4) + 6 − w = 0 (9.3.28)

Guided by this we will choose a simulation distribution which is a D-truncated standard Gaussian
distribution centered at a point µ ∈ H , where D is the half space situated below the hyperplane
H . Therefore the formula (9.3.22) applies with p = 0, n = 4 and∫

D
ϕn(x − µ) dR

n = 1

2
(9.3.29)

and, see Example 7.1,

h(x) =
4∏

i=1

[
γ

(1 + γ xi )
√

log(1 + γ 2)
ϕ

(
log[(1 + γ xi )

√
1 + γ 2 ]√

log(1 + γ 2)

)]
(9.3.30)

We get

FD(w) = 1

2
(2π)n/2 exp

(
1

2
||µ||2

)
E

⎡
⎣exp

[−1
2(ATµ)2

] ∫ r2(A)

r1(A)
h(sA)sn−1 ds∫ ∞

r1(A)
sn−1 exp

(−1
2(s − ATµ)2

)
ds

⎤
⎦ (9.3.31)
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where r1(A) is the radius vector to H in the direction A, while r2(A) is the radius vector to the
boundary of the set {x ∈ R

4 | γ x1 > −1, . . . , γ x4 > −1}. The normal unit vector to H is
µ = −(1, 2, 2, 1)/

√
10, while the distance from the zero point to H is d = β, (9.3.27). Thus we

have

r1(α) = d

νTα
= 6 − w

γ (−α1 − 2α2 − 2α3 − α4)
(9.3.32)

r2(α) = 1

γ
min

{
1

−α1
,

1

−α2
,

1

−α3
,

1

−α4

}
(9.3.33)

A suitable choice of µ ∈ H is the point νd ∈ H closest to the origin. For each generated outcome
α of A the integral in the numerator in (9.3.31) is computed by use of the trapezium rule, while the
denominator can be computed by use of the formula given in Remark 9.2. Here we will not make
considerations about the accuracy of the numerical integration but just refer to [9.7]. The curve in
full line in the diagram in the upper left corner of Fig. 9.5 shows the development of the estimate
of FD(3.55) with increasing sample size. The two dotted curves give the boundaries of the 95%
confidence interval estimated from the sample. By this we get an impression of the accuracy that
is achieved by the simulation. For large sample sizes asymptotic normal distribution theory can
be applied as the basis for this accuracy evaluation. It is seen that FD(3.55) ≈ 3.0 · 10−5, which
corresponds to the generalized reliability index βG = 4.011. During the solution of practical
integration problems such a diagram should always be made because it is noted that the results
only get a reasonable stability for suitably large sample sizes. In practice it is extremely difficult
by theoretical means to predict a sufficient sample size for achieving a reliable result. One of the
reasons is that the distribution of the complicated simulation variable usually is unknown. The
sample size should therefore be sufficiently large for asymptotic normal distribution theory to be
applicable. However, what can be termed as sufficient depends on the distribution of the simulation
variable.

Now one can raise the question whether another choice of µ ∈ H than νd will give a smaller
variation in the sample. By using the information that is obtained currently as the simulation
proceeds it is possible to improve the choice of µ. As indicator we can use the sequence of
simulated sample values S1, S2, . . . , Si , . . . , where Si is the sample value obtained by the i th
simulation. In each step it is controlled whether Si > Smax = max{S1, S2, . . . , Si−1}. If this is the
case the point µ is changed to

µ = αi r(αi ) (9.3.34)

in the continued simulation. If Si ≤ Smax the point µ is kept unchanged. Thus it is achieved that the
central part of the simulation distribution, after the lapse of some simulation time, will be placed
such that the directions that contribute the most to the integral also will be drawn the most frequent.
This strategy is supported on intuition and is based on the same principles as those behind FORM
and SORM. However, no proof is given that this procedure represents the best strategy under the
given restrictions. These are that µ ∈ H , and that the truncation half space of the simulation
distribution is kept fixed with H as the boundary hyperplane. More generally, more parameters
that define the simulation distribution can naturally be changed during the simulation.

The curve shown in the lower left corner of Fig. 9.5 is obtained by use of this updating strategy.
Except in the beginning of the simulation run there is no drastic difference in behavior as compared
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to the results obtained without updating as shown in the upper left corner diagram. For a given
sample size, the standard deviation obtained in the method with updating is found to be about
83% of the standard deviation obtained without updating. A comparison of the standard deviations
obtained for the same sample size gives, however, an incorrect measure of the relative effectivity of
the two procedures. The computation time should also be included in the comparison. A definition
of a reciprocal effectivity measure with reasonable properties is

reciprocal effectivity = V (N )
√

T (N ) (9.3.35)

where T (N ) is the computation time corresponding to the sample size N and V (N ) is a particular
coefficient of variation defined by

V (N ) =
√∑N

i=1(Si − S̄)2

N (N − 1)
·

⎧⎪⎨
⎪⎩

1

S̄
for S̄ ≤ 0.5

1

1 − S̄
for S̄ > 0.5

(9.3.36)

where

S̄ = 1

N

N∑
i=1

Si (9.3.37)

The reciprocal effectivity is asymptotically independent of the sample size N and thus also of the
computation time T (N ) for N → ∞. Of course it depends on the applied computer and of the
effectivity of the program. Applied to the same computer the reciprocal effectivity is therefore well
suited for comparisons of two different simulation programs for the same problem.

For the two considered simulations without and with updating of the reciprocal effectivity is
computed to be 1.32 and 1.11, respectively. The updating thus improves the reciprocal effectivity
with a factor of 0.84.

The problem in this example has also been solved by first transforming the problem into the
standard Gaussian space. In this space a uniform directional simulation is thereafter made in the
same way as in Example 9.1 (using both A and −A). This simulation has given the diagram
to the right in Fig. 9.5. It is seen that the standard deviation for a given sample size is about 4
times larger than in the diagram in the lower left corner. This convincingly illustrates the effect
of intelligent choice of the simulation distribution. However, as emphasized above we should not
use this comparison but instead compute the reciprocal effectivity. It is found to be 1.88. From
this method with uniform directional simulation in the standard Gaussian space to the considered
intelligent directional simulation with updating the improvement of the reciprocal effectivity is
thus only by a factor of 0.59.

General conclusions cannot be drawn from this example. Due to the lognormal distribution and
the independence, the transformation to the standard Gaussian space is very simple. The extremely
simple radius vector determinations (9.3.32) and (9.3.33), however, are replaced by the more time
consuming determination of r(α) by a suitable iterative solution procedure. On the other hand,
the closed form formula (9.2.7) for the simulation variable can be an advance as compared to the
numerical integration needed for the use of (9.3.31). �
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Figure 9.5: Simulation realization of the sample average as function of the sample size for the simulation
variables that are constructed with the purpose of estimating the distribution function value FD(w) for
w = 3.55 (Example 9.4). The diagrams to the left correspond to a simulation distribution which is a half
space truncated ({D ≤ w}) standard Gaussian distribution centered at µ ∈ H (H = {D = w}). In
the upper diagrams the point µ has been kept fixed at the projection of the origin onto H and in the lower
diagram µ ∈ H has been successively updated. The inverse effectivities are 1.32 and 1.11, respectively. The
diagram to the right corresponds to uniform directional simulation in the standard Gaussian space obtained
by transformation. The inverse effective has been determined to be 1.88.

9.4 Sensitivity factors*

Assume that the integration domain F depends on a parameter θ , and write F as F(θ). The
derivative of (9.3.22) with respect to θ then becomes

∂

∂θ

∫
F(θ)

h(x) dR
n

=
√

2π

ϕn(µ)

∫
D

ϕn(x − µ) dR
n E

⎡
⎢⎣−ϕ(ATµ)h[r(A)A]r(A)n−1 ∂r(A)

∂θ

same denominator as in (9.3.22)

⎤
⎥⎦ (9.4.1)

where ∂r(A)/∂θ is obtained by implicit differentiation of the equation G(x; θ) = 0 for the bound-
ary ∂F(θ) with x put to x = r(A)A. This gives(

n∑
i=1

∂G

∂xi
Ai

)
∂r(A)

∂θ
+ ∂G

∂θ
= 0 (9.4.2)
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or

∂r(A)

∂θ
=

[−∂G/∂θ

∇GTA

]
x=r(A)A

(9.4.3)

Thus the sensitivity of the integral (9.3.22) with respect to θ can be determined by the same di-
rectional simulation as the integral itself. Only the simulation variable has been changed to the
variable defined in (9.4.1). Earlier this principle has been applied in Example 9.3 for density
function determination.

Assume that instead of the integration domain F it is the integrand h(x) that depends on a
parameter θ , and let us write h(x) as h(x, θ). Then (9.3.22) gives

∂

∂θ

∫
F

h(x, θ) dR
n

=
√

2π

ϕn(µ)

∫
D

ϕn(x − µ) dR
n E

[
ϕ(ATµ)

∫ ∞
r(A)

∂h(sA; θ)/∂θ sn−1 ds

same denominator as in (9.3.22)

]
(9.4.4)

where in general as in (9.3.22) numerical integration is applied for each simulated outcome of A.

Example 9.5 The density function fD(w) of the random variable D in Example 9.4 is obtained
by differentiation of (9.3.31) with respect to w solely through r(A) (corresponding to (9.4.1) with
θ = w). All other dependencies of w are kept constant because it is only the limit state hyperplane
that should be varied with w and not the truncation hyperplanes for the simulation distribution. We
get

fD(w) = 1

2
(2π)n/2 exp

(
1

2
||µ||2

)
(6 − w)n−1(

γ
√

10
)n

·E

⎡
⎢⎢⎣

exp
[−1

2(ATµ)2
]

h

(
d

νTA
A

)
(νTA)n

∫ ∞
d/νTA sn−1 exp

(−1
2(s − ATµ)2

)
ds

⎤
⎥⎥⎦ (9.4.5)

Fig. 9.6 shows in the upper diagram the curve obtained for fD(w) as a function of the sample size
when the computation is made by use of the same simulations that were used to produce the lower
diagram in Fig. 9.5. The reciprocal effectivity is found to 0.95, noting that this corresponds to
simultaneous computation of FD(w), for which the reciprocal effectivity was determined to 1.11.
If updating is made under the use of the simulation variable in (9.4.5) the lowest two diagrams
in Fig. 9.6 are obtained for FD(w) and fD(w). The two reciprocal effectivities become 1.16 and
1.01, respectively. By exclusively computing fD(w) a reciprocal effectivity of 0.21 is obtained.
�

9.5 Historical and bibliographical notes

With the development of fast computers the simulation methods have become very popular as
tools for computation of failure probabilities. On simulation in general can be referred to R.Y.
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Figure 9.6: Simulation realizations for both the distribution function value FD(w) and the density function
value fD(w) for w = 3.55, see Example 9.5.

Rubinstein [9.11]. Applications in the structural reliability analysis have been given by G. Augusti
et al [9.1], A. Harbitz [9.8], M. Hohenbichler and R.Rackwitz [9.9], R.E. Melchers [9.10], M.
Shinozuka [9.12], G.I. Schuëller et al [9.13] among many other researchers.

The particular directional simulation method described in the previous sections was first used
by I. Deák in 1980 [9.3] for the computation of distribution function values in the n-dimensional
normal distribution. The possibilities of the method in structural reliability was pointed out to O.
Ditlevsen by A.M. Hasofer in 1984 with several publications of O. Ditlevsen et al as a result [9.4-
7]. Contributions to this development are also given by P. Bjerager [9.2] and by R.E. Melchers
some of which in cooperation with O. Ditlevsen et al [9.7].
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Chapter 10

LOAD COMBINATIONS

10.1 Ferry Borges-Castanheta load model

Within the probabilistic reliability analysis the loads are in principle modeled as random variables
that are functions of both time and position on the structure. Usually such random functions are
denoted as random (or stochastic) processes when they are considered as functions of time and
random fields when it is their variation in space (that is, over the structure) that is considered. In
this chapter we will treat a load model which is constructed in a particular simple way with respect
to the time variation. The model is idealized to such a degree that one hardly can state that it
reflects realistic details in the load history. On the other hand, the model captures the essential
influence on the failure probability of random changes of the load level. Moreover, the structure
of the model makes it well suited for load combination investigations in which additions are made
of the effects of several load histories of this type. Another advantage is that the model is easy to
describe in a code specification because it can be considered as a direct detailing of the idealized
deterministic load configurations that are specified in most current load codes concerning statically
acting loads.

The load model will be denoted as the FBC load model after J. Ferry Borges and M. Castan-
heta, who suggested it for code specification [10.1]. First we define a scalar FBC process as a
sequence of rectangular load pulses of fixed duration τ following immediately after each other,
Fig. 10.1. The elements in the corresponding sequence of pulse amplitudes are mutually inde-
pendent identically distributed random variables (that is, the sequence of amplitudes is a so-called
Bernoulli sequence). The process starts at time t = 0. It is written as X (t, τ ).

Figure 10.1: Realization (sample curve) of FBC process X (t, τ ).

An n-combination FBC process is a vector [X1(t, τ1), . . . , Xn(t, τn)] of scalar FBC processes
ordered with respect to element number such that the pulse durations are never increasing, that is,

181



182 Chapter 10. LOAD COMBINATIONS

Figure 10.2: Realization of four-combination FBC process [X1(t, 12), X2(t, 6), X3(t, 2), X4(t, 1)].

Figure 10.3: Realization of FBC process X (t, 1) with corresponding realization of the T -duration envelope
X (t, 3) with T = 3.

such that τ1 ≥ τ2 ≥ . . . ≥ τn , and which relative to each other have the particular property that
τi/τ j is an integer for all i ≤ j , Fig. 10.2.

It turns out to be convenient to introduce a special family of envelope processes to an FBC
process: the T -duration envelope to an FBC process X (t, τ ) is an FBC process denoted as X (t, T ),
in which the pulse duration T is an integer multiple of τ and in which the amplitude is defined as
the maximum of X (t, τ ) over the considered pulse interval for X (t, T ), Fig. 10.3. For T = τ the
envelope and the FBC process are identical.

Assume now that the different FBC load processes contribute linearly to a load effect with
positive influence coefficients. Moreover, assume that all load pulse amplitudes are non-negative
with probability one. It is then sufficient to study the sum

X1(t, τ1) + . . . + Xn(t, τn) (10.1.1)

of the elements in an n-combination FBC process. We ask for the probability distribution of the
maximal load effect within the time interval [0, τ1]. By considering Fig. 10.2 it is directly seen
that the nth term Xn(t, τn) in the sum (10.1.1) can be replaced by the corresponding τn−1-envelope
Xn(t, τn−1) without changing the maximal load effect. Since

Zn−1(t, τn−1) ≡ Xn−1(t, τn−1) + Xn(t, τn−1) (10.1.2)

is an FBC process, the n-combination problem is by this reduced to an (n − 1)-combination
problem corresponding to the (n − 1)-combination FBC process [X1(t, τ1), . . . , Xn−2(t, τn−2),

Zn−1(t, τn−1)].
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The distribution function of the amplitudes of Zn−1(t, τn−1) is the convolution

FZn−1(t,τn−1) =
∫ ∞

−∞
FXn(t,τn−1)(z − x) fXn−1(t,τn−1)(x) dx (10.1.3)

between the density function fXn−1(t,τn−1)(x) and the distribution function

FXn(t,τn−1)(x) = [FXn(t,τn)(x)]τn−1/τn (10.1.4)

for the τn−1-envelope of Xn(t, τn).

It follows from this reduction of the dimension of the problem that the distribution function of
the maximal load effect is determined by n − 1 subsequent convolution integrations. Generally
such a computation is difficult to do by use of standard analytical or numerical methods.

If we assume that all the amplitude distributions are absolutely continuous (definition in Sec-
tion 7.2), and that we only want to find fractile values in the upper tail of the distribution of the
maximal load effect, it is usually so that we can achieve a sufficient accuracy for practical purposes
by applying FORM.

However, the assumption of absolutely continuous amplitude distributions cannot be kept for
all FBC processes in a realistic n-combination problem. For several load types of intermittent
nature such as load histories where the load pulses are caused by extraordinary events (conglom-
eration of people at party events, strong winds, etc.) the FBC processes that model these load
histories must be such that there are large probabilities for having zero load amplitude in a given
pulse duration interval. This means that the corresponding distribution functions for the amplitudes
have jumps at zero. In this case there is no unique mapping of the physical formulation space onto
a standard Gaussian space. However, the existence of such a mapping is necessary for a direct
application of FORM.

It is a consequence of (10.1.4) that if the distribution function of Xn(t, τn) is zero on the neg-
ative axis and has the jump p at zero, then the corresponding τn−1-envelope has an amplitude
distribution function with the jump pτn−1/τn at zero. If this jump is suitably small as compared to
1 a direct application of FORM gives no problems. If pτn−1/τn has a disturbingly large size, the
problem can be solved by a combined application of FORM and Monte Carlo methods that cause
a reduction of the jump [9.4].

Next section illustrates the particular application of the normal tail approximation principle that
appears for the FBC n-combination problem under the assumption that all amplitude distributions
are absolutely continuous. The iteration algorithm known as the Rackwitz-Fiessler algorithm [7.6]
appeared first in this special form.

10.2 Rackwitz-Fiessler algorithm for absolutely continuous
distribution functions

Due to the recursive reduction of the n-combination problem it is sufficient first to consider the
case n = 2. The RF algorithm computes an approximation to the value of both the distribution
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function and the density function of

Z1(t, τ1) = X1(t, τ1) + X2(t, τ1) (10.2.1)

for an arbitrary choice of the argument z in the following way. Choose a point (x1, x2) on the
straight line

x1 + x2 = z (10.2.2)

and determine (µ1, σ1) and (µ2, σ2) by use of (7.4.25) and (7.4.26) for i = 1 and 2, where F1 =
FX1(t,τ1) and F2 = FX2(t,τ1), that is, �[(xi − µi )/σi ] = Fi (xi ), ϕ[(xi − µi )/σi ]/σi = fi (xi ),
i = 1, 2. Hereby the density function and the distribution function of Z1(t, τ1) get their values at z
approximated by the values at z of the density function and the distribution function, respectively,
of the normal distribution with parameters

µ = µ1 + µ2, σ =
√

σ 2
1 + σ 2

2 (10.2.3)

It is obvious that the results depend on the approximation point (x1, x2). For each choice of z
we therefore should look for the “best” approximation point. This is made by the “backward”
part of the RF algorithm in the following way. A new approximation point (x1, x2) is chosen
as the point on the straight line (10.2.2), at which the product of the two approximating normal
density functions with parameters (µ1, σ1) and (µ2, σ2) has maximal value. Using the Lagrangian
multiplyer method this point is obtained by minimalizing [(x1 − µ1)/σ1]2 + [(x2 − µ2)/σ2]2 −
2λ(x1 + x2 − z). Setting the partial derivatives to zero we get x1 − µ1 = λσ 2

1 and x2 − µ2 = λσ 2
2 ,

which by addition gives z − µ = λσ 2. Thus

(x1, x2) = (µ1 + βα1σ1, µ2 + βα2σ2) (10.2.4)

in which

β = z − µ

σ
, (α1, α2) =

(σ1

σ
,
σ2

σ

)
(10.2.5)

The procedure is repeated with start at the new approximation point (x1, x2). By continued itera-
tion in this way a sequence of points (x11, x21), (x12, x22), . . . , (x1n, x2n), . . . is generated. If the
sequence converges to a point (x1, x2), this point is a locally most central point on the straight line
(10.2.2) and

FZ1(z) ≈ �

(
z − µ

σ

)
, fZ1(z) ≈ 1

σ
ϕ

(
z − µ

σ

)
(10.2.6)

Exercise 10.1 Show that the RF algorithm for n = 2 is identical with the algorithm (7.4.9) based
on Theorem 7.1. �

For n > 2 the RF algorithm runs as follows. Choose an approximation point (x1, . . . , xn) on
the hyperplane

x1 + . . . + xn = z (10.2.7)
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and define the subsums

zn = xn

zn−1 = xn−1 + zn

zn−2 = xn−2 + zn−1

...

z2 = x2 + z3

z1 = x1 + z2 (10.2.8)

by which z1 = z. In the first step of the algorithm, approximation values for the distribution func-
tion and the density function of Zn−1(t, τn−1) corresponding to the argument zn−1 are obtained as
explained for n = 2 before entering the backward part of the algorithm. With these approximation
values as input the same computation is made for

Zn−2(t, τn−2) = Xn−2(t, τn−2) + Zn−1(t, τn−2) (10.2.9)

where Zn−2(t, τn−2) is the τn−2-envelope of the FBC process Zn−1(t, τn−1). These computations
give approximation values for the distribution function and the density function of Zn−2(t, τn−2)

for the argument zn−2. By continuing recursively in this way we end up having determined ap-
proximation values of the distribution function and the density function, respectively, for

Z1(t, τ1) = X1(t, τ1) + Z2(t, τ1) = max{X1(t, τ1) + . . . + Xn(t, τn)} (10.2.10)

corresponding to the argument z.

For the search of a better approximation point the backward part of the algorithm is next used
n − 1 successive times as for n = 2. First x1 and z2 are obtained such that x1 + z2 = z ; next x2

and z3 are obtained such that x2 + z3 = z2, etc, see (10.2.8). With the new approximation point
(x1, . . . , xn) as starting point the algorithm is run from scratch. The iteration runs until some stop
criterion is satisfied.

10.3 Clipped random variables as load pulse amplitudes

For the application of Monte Carlo methods it turns out to be convenient to let the load pulse am-
plitudes be clipped random variables generated from random variables with absolutely continuous
distribution functions. A random variable Y is said to be generated by clipping of the random
variable X at zero, if

Y = max{0, X} (10.3.1)

In particular, if X is normally distributed with parameters µ, σ , we will say that Y is clipped
normally distributed with parameters µ, σ . A similar terminology will be used for other named
distribution types.
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That it is convenient to let the pulse amplitudes be modeled by random variables of the form
(10.3.1) is partly explained by the property that

max{max{0, X1}, . . . , max{0, Xn}} = max{0, max{X1, . . . , Xn}} (10.3.2)

and moreover that the event
n∑

i=1

max{0, Xi } ≤ z (10.3.3)

occurs if and only if all 2n − 1 subsums of the sum X1 + . . . + Xn are less or equal to z. The
probability of the event (10.3.3) can therefore in principle be computed by use of methods for
series systems defined by linear safety margins with absolutely continuous distribution functions.
These properties imply also that both the distribution function and the density function of the
sum in (10.3.3) in a simple way may be estimated by directional simulation such as illustrated in
Examples 9.1 and 9.3.

Remark 10.1 Any pulse amplitude Y with distribution function

FY (x) = p1x≥0 + (1 − p)F(x) (10.3.4)

where F(x) is an absolutely continuous distribution function which is zero on the negative axis
can be written as (10.3.1), where X has an absolutely continuous distribution function. All what is
needed is to define X such that it gets the distribution function

FX (x) = p
1 − F(b − ax)

1 − F(b)
1x<0 + [ p + (1 − p)F(x)]1x≥0 (10.3.5)

where a and b are arbitrary positive constants. If in particular we choose

a = 1 − p

p

f (0)

f (b)
[1 − F(b)] (10.3.6)

where f (x) is the density function corresponding to F(x), this ensures that the density function
for X is continuous at zero.

An example is

F(x) = �γ

(
x − µ

σ

)
(10.3.7)

where γ = −µ/σ and

�γ (x) = �(x) − �(γ )

1 − �(γ )
1x≥γ (10.3.8)

is the lower-truncated standard normal distribution function with truncation point γ . The constant
a in (10.3.6) becomes

a = 1 − p

p

ϕ(µ/σ)

ϕ[(µ − b)/σ ]

�[(µ − b)/σ ]

�(µ/σ)
(10.3.9)
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If we choose b = 2µ we get

a = 1 − p

�(µ/σ)

�(−µ/σ)

p
(10.3.10)

which gives a = 1 if p = �(−µ/σ). The random variable X is then normally distributed with
parameters µ, σ and thus max{0, X} is clipped normally distributed.

Another example is the exponential distribution

F(x) = (1 − e−λx)1x≥0 (10.3.11)

with λ > 0 as parameter. With (10.3.6) substituted, (10.3.5) becomes

FX (x) = p exp

(
1 − p

p
λx

)
1x<0 + [ p + (1 − p)(1 − e−λx)]1x≥0 (10.3.12)

�

Example 10.1 Let the load effect in a column in a multi-story house be the sum of a permanently
acting load effect max{0, X} and the sum of six intermittent floor loads all acting on the floors
above the column. Moreover, let there be a snow load contribution which is also of the intermittent
type. It is assumed that all the load amplitudes can be modeled as clipped normally distributed
random variables [9.4]. Specifically we assume that the maximal load effect within a time period
of one year is proportional to

L = max{0, X} + max{V, S} (10.3.13)

where V corresponds to the winter period and is defined as

V = 5
max
k=1

Tk (10.3.14)

with

Tk = max{0, Xk} + Uk (10.3.15)

Uk = 40
max
j=1

W jk (10.3.16)

W jk =
6∑

i=1

max{0, X jk + Xi jk} (10.3.17)

and S corresponds to the summer period and is defined as

S = 10
max
k=6

Uk (10.3.18)

Thus we have an FBC three-combination problem.

The sums X jk + Xi jk (i = 1, . . . , 6; j = 1, . . . , 40; k = 1, . . . , 10) represent the intermittent
floor loads which are assumed to be renewed 400 times per floor and per year. The variable Xk
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represents the snow load which is assumed to have five independent renewals per winter (assumed
to last half the year).

All X -variables are assumed to be mutually independent and normally distributed. The vari-
ables X jk + X1 jk, . . . , X jk + X6 jk that correspond to the same time interval are seen to be equicor-
related and jointly normally distributed. The correlation coefficient is ρ = Var[X jk]/(Var[X jk] +
Var[Xi jk]).

The following values are considered in dimensionless form (that is, the resulting load effects
are obtained after multiplication by a given physical unit for the relevant load effect):

E[Xi jk] = 0, D[Xi jk] =
√

1 − ρ

E[X jk] = −2, D[X jk] = √
ρ, ρ = 0.0, 0.5, 0.8, 1.0

E[Xk] = −0.15, D[Xk] = 0.34

E[X ] = 35, D[X ] = 1.2

Table 10.1 shows the corresponding values of FL(z) and fL(z) obtained by uniform directional
simulation, Fig. 9.1. The table also shows those values that are obtained by the RF-algorithm by
use of directional simulation in the first step of the forward part of the algorithm, as explained in
below.

ρ z FL(z) st. dev.
|dif|

st. dev.
fL(z) st. dev.

|dif|
st. dev.

method

0.0 38.5 0.936 0.007 0.049 0.009 SIM
0.938 0.3 0.097 5.3 RF

0.5 43,5 0.939 0.007 0.018 0.003 SIM
0.953 2.0 0.033 4.9 RF

0.8 45.0 0.782 0.012 0.040 0.004 SIM
0.782 0.05 0.096 14.4 RF
0.812 2.5 0.085 11,5 RF

1.0 51.0 0.962 0.006 0.009 0.002 SIM
0.956 1.1 0.022 7.1 RF

Table 10.1: Values of the distribution function and the density function for the total load effect L corre-
sponding to the FBC-model in Example 10.1.

The method SIM is pure directional simulation while the method RF is combined use of direc-
tional simulation and the RF-algorithm. For the last method the computation time in this example
is about 100 times shorter than for SIM. The sample size was 500 in both methods. The columns
marked “st.dev.” show the standard deviation of the estimator that has given the values in the
columns directly to the left of “st.dev.”. The abbreviation |dif| is the numerical difference between
the results obtained by SIM and RF, respectively. The two value sets corresponding to RF for
ρ = 0.8 correspond to different initial values (seads) for the applied random number generator (of
the type XOR [9.4]).
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The random variables W jk all have the same distribution function FW (z). According to Re-
mark 6.2 we have that

FW (0) =
∫ ∞

−∞
�

(βi + √
ρx√

1 − ρ

)6
ϕ(x) dx (10.3.19)

which varies between �(2)6 ≈ 0.871 for ρ = 0 and �(2) ≈ 0.977 for ρ = 1. With these large
values of the jump FW (0), the RF-algorithm is not applicable for computing the values of FW (z)
and fW (z) for z > 0. However, such values can be obtained by uniform directional simulation as
explained in Example 9.1.

It is next noted that the random variables U1, . . . , U10 are identically distributed with the dis-
tribution function

FU (z) = FW (z)40 (10.3.20)

such that

FU (0) =
[∫ ∞

−∞
�

(βi + √
ρx√

1 − ρ

)6
ϕ(x) dx

]40

(10.3.21)

This jump probability varies with ρ as shown in Fig. 10.4.

Figure 10.4: Referring to the assumptions of Example 10.1 the diagram shows the probability that 40
successive intervals are without load on all six floors. The abscissa ρ is the equicorrelation coefficient
between the loads on the six floors in the sense as defined in the example.

It is difficult to give general rules that state how big jumps can be tolerated before the appli-
cability of the RF-algorithm becomes doubtful. As for the applicability of FORM and SORM in
general the applicability on distributions with jumps at zero is a matter of experience that at present
only can be based on comparisons with results from Monte Carlo simulations. In the present ex-
ample it is seen from Fig. 10.4 that FU (0) < 0.1 for ρ < about 0.85, which is a sufficiently small
jump to make it reasonable to try to apply the RF-algorithm for computation of distribution func-
tion and density function values of Tk without considering the possibility that Uk = 0. However,
the possibility that Xk ≤ 0 should be considered. This event occurs with the large probability
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P(Xk ≤ 0) = �(0.15/0.34) ≈ �(0.44) ≈ 0.67, a jump so large that it cannot be neglected. Thus
we write the distribution function value Tk at z2 = x2 + x3 , see (10.3.2), as

FT (z2) = FU (z2)P(Xk ≤ 0) + P(Xk + Uk ≤ z2 | Xk > 0)P(Xk > 0) (10.3.22)

and find the conditional probability

P(Xk + Uk ≤ z2 | Xk > 0) (10.3.23)

in the first step of the forward part of the RF algorithm. For this we use the conditional distribution
function

FXk (x2 | Xk > 0) = �[(x2 + 0.15)/0.34] − �(0.44)

1 − �(0.44)
(10.3.24)

and the corresponding density function together with the distribution function and density function
values of Uk at x3 as obtained by directional simulation.

Since

Fmax{V,S}(z2) = FT (z2)
5 FU (z2)

5 (10.3.25)

is very small for z2 = 0 and P(X ≤ 0) = �(−35/1.2) is also very small, the second and last
step of the forward part of the RF-algorithm is running without problems. By this we obtain
approximation values for FL(z) and fL(z) for z = z2 + x1. After use of the backward part of the
RF-algorithm for obtaining a new starting point (x1, x2, x3) the whole computation is iterated until
a suitable stop criterion is satisfied.

It is important for the control of the convergence behavior that the simulated sample of di-
rectional vectors is unchanged through the entire iteration sequence. Otherwise the convergence
properties of the RF-algorithm may be disturbed by statistical fluctuations caused by the limited
sample size.

�

Remark 10.2 The distribution function of the sum

Y =
n∑

i=1

max{0, Xi } (10.3.26)

of n identically distributed and mutually independent clipped normally distributed random vari-
ables with parameters µ and σ = 1 can be well approximated by the distribution function

Fn(x; µ) = Fl(x)H(x) + Fu(x)[1 − H(x)] (10.3.27)

where Fl(x) < Fu(x) are distribution functions defined by

Fl(x) = �(−µ)n +
n∑

q=1

(
n
q

) [
�

(
x

q
− µ

)
− �(−µ)

]q

�(−µ)n−q (10.3.28)

Fu(x) = �

(
x − nµ√

n

)
(10.3.29)
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and where H(x) is a distribution function defined by

H(x) = exp{−axb exp[−c(log x)2]} (10.3.30)

The parameters a, b and c which define H(x) have for each value of n and m been determined by
curve fitting of Fn(x; µ) to the distribution function of Y obtained by directional simulation.

The parameter values can be read for n = 3, 4, . . . , 20 and different values of µ from the
diagrams put together in Fig. 10.5. These diagrams are taken from [9.4] in which information
about the accuracy of the approximation is given. Also an approximation for the density function
of Y is given which is more accurate than the approximation obtained by differentiation of F(x).

When σ �= 1, the variables x and µ must be replaced by x/µ and µ/σ , respectively, in (10.3.27)
- (10.3.30). �

Example 10.2 In Example 2.6 we obtained load reduction factors ψn under the assumption that
all load pulse amplitudes Xi j are mutually independent and normally distributed. Omitting the
distribution assumptions we have that the remaining assumptions of Example 2.6 imply that

F̄n[xc + (n − 1)ψnxc/γ ] = F̄1(xc) (10.3.31)

which is obtained by substitution of (2.7.11) into (2.7.8). Moreover we have that (2.7.12) is valid
asymptotically as n → ∞ and thus, according to (2.7.13),

ψ∞ = E[Xi j ]

xc
γ (10.3.32)

Finally it follows from (2.7.5) that the characteristic load value xc corresponding to max{Xi1,

. . . , Xi N } can be approximated by

xc ≈ F̄−1
1

( ε

N

)
(10.3.33)

for ε 	 1.

Assume that Xi j is clipped normally distributed with parameters (µ, σ ). Then

F̄1(x) = �

(
−x − µ

σ

)
, x ∈ R+ (10.3.34)

so that (10.3.33) gives

xc = µ − σ�−1
( ε

N

)
(10.3.35)

where ε/N is assumed to be small enough to make xc > 0. Moreover we find by elementary
calculations that

E[Xi j ] = σθ (10.3.36)

θ = ϕ
(µ

σ

)
+ µ

σ
�

(µ

σ

)
(10.3.37)
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Figure 10.5: The parameters a, b, and c that define the distribution function H(x) in (10.3.30).

which by substitution into (10.3.32) gives

ψ∞
γ

=
ϕ

(µ

σ

)
+ µ

σ
�

(µ

σ

)
µ

σ
− �−1

( ε

N

) (10.3.38)
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Figure 10.6: The ratio between the load reduction factor ψn and the partial coefficient γ for the column
load as function of the number of floors n above the column. The characteristic load value is defined as
the 98%-fractile in the distribution of the maximal load on a single floor as a result of N independent load
replacements. The load pulse amplitude of each single replacement is of clipped normal distribution type
as illustrated in the top of the figure. The load reduction factor is defined according to the principles of the
Danish code DS 409 [2.2].

By use of (10.3.27) and (10.3.34) in (10.3.31) we get the equation

F̄n

{
γ θ

ψ∞

[
1 + (n − 1)

ψn

γ

]
; µ

σ

}
= �

(
µ

σ
− γ θ

ψ∞

)
(10.3.39)

for the determination of ψ∞/γ as function of n for given values µ/σ and ε/N , Fig. 10.6.

As expected, it is seen that the influence from N is modest. Moreover it is seen that the
convergence of ψn to ψ∞ as n → ∞ is very slow and that it can be strongly to the unsafe side to
apply ψ∞ in stead of ψn as load reduction factor in practical reliability evaluations. How much it
will be to the unsafe side to use ψ∞ in stead of ψn naturally depends on the contributions to the
total load from the other load types that act on the structure. �
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Chapter 11

STATISTICAL UNCERTAINTY AND
MODEL UNCERTAINTY

11.1 Introduction

Experimental investigations are in many respects essential in connection with layout and design
of structures. On the one hand it is a basic scientific principle that mathematical models of the
deformability and strength properties (or other relevant physical properties) of structural elements
including the materials become subject to experimental investigations with the purpose of verify-
ing and supporting the empirical information value of the models. On the other hand, experimental
methods are often used directly as the basis for design rules for different types of structural connec-
tions (reinforcement overlapping joints and anchoring lengths in reinforced concrete, nail connec-
tions in wooden structures etc). Such design rules have often been formulated by use of dimension
analysis combined with use of simple mechanical models. These are assumed to point out the most
important dimensionless quantities for the desired property and the relation between these. The
experimental method is thereafter used to determine suitable correction factors or terms that make
the considered formula fit the experimental results. Occasionally the entire relation between the
chosen dimensionless quantities must be determined experimentally.

Due to the most often quite limited number of replicate experiments that economy and time al-
low for verification or correction of a given model, the statistical uncertainty gets importance when
the model becomes a part of a reliability analysis. This statistical uncertainty is an essential contri-
bution to the model uncertainty. Reported quantitative information about the statistical uncertainty
attached to experimental model determinations makes it easier to exercise professional evaluation
of model uncertainty. This topic is therefore of considerable relevance for the reliability analysis.
Even though the problem is a central topic in the general statistical theory (regression analysis)
and therefore is treated in most statistical textbooks, it is useful here to treat the most fundamental
concepts from the point of view of application that is peculiar for the reliability analysis. In this
chapter we therefore return to concepts that were mentioned in Chapter 3.

195
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11.2 Likelihood function. Sufficient statistics

Here we will make the presentation slightly more general by replacing the parameter µ in (3.2.7)
and the following formulas by a vector µ of parameters. We will write the likelihood function
(3.2.10) as

L(µ; x1, . . . , xn) =
n∏

i=1

fX (xi | µ) (11.2.1)

It is seen that it has the property

L(µ; x1, . . . , xr , xr+1, . . . , xr+s) = L(µ; x1, . . . , xr )L(µ; xr+1, . . . , xr+s) (11.2.2)

such that the posterior density (3.2.9) can be written as

fM(µ | x1, . . . , xr , xr+1, . . . , xr+s) ∝ L(µ; xr+1, . . . , xr+s) fM(µ | x1, . . . , xr ) (11.2.3)

where

fM(µ | x1, . . . , xr ) ∝ L(µ; x1, . . . , xr ) fM(µ) (11.2.4)

The formula (11.2.3) has exactly the same structure as (11.2.4). The probabilistic information
given by the posterior density fM(µ | x1, . . . , xr ) is therefore updated by use of the information
given by the extra sample xr+1, . . . , xr+s by taking fM(µ | x1, . . . , xr ) as prior density for M.
Together with a given (not sample based) prior density fM(µ) in 11.2.4 the set of all possible pos-
terior densities form a multi-parameter family of densities in which the sample variables x1, . . . , xn

(with n arbitrary) are the parameters. This family is closed with respect to multiplication with the
likelihood function given by an arbitrary sample. If it is possible to express some prior information
about the parameter vector µ by choosing a density from this family as prior density, the posterior
density that summarizes the total information from this prior and the sample x1, . . . , xn is ob-
tained as a (n +k)-parameter density from the family. Such a choice of a prior density is obviously
equivalent with expressing the prior information in the form of a fictive sample of X of size k.

This property gets a particular convenient form in cases where the likelihood function (remem-
bering that it is interpreted as a function of µ) for any sample size n except for a proportionally
factor is uniquely defined by a fixed number q of functions t1(x1, . . . , xn), . . . , tq(x1, . . . , xn) of
the sample variables x1, . . . , xn (except for a proportionality factor). All samples that give the
same q values of those functions thus contain exactly the same information about µ. These q
functions are said to be jointly sufficient statistics for µ. Thus prior information can in such cases
be expressed solely by the values of q jointly sufficient statistics. However, sufficient statistics do
not exist for all types of distributions. In fact, it can be shown that joint sufficient statistics exist if
and only if the distribution belongs to the so-called exponential family, that is, the density function
of X must be of the form

fX (x | µ) ∝ g(x)h(µ) exp

[
q∑

j=1

u j (x)ψ j (µ)

]
(11.2.5)
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where g, u1, . . . , uq are functions solely of x , while h, ψ1, . . . , ψq are functions solely of µ. It
follows directly from (11.2.1) and (11.2.5) that the functions

t j (x1, . . . , xn) =
n∑

i=1

u j (xi ) (11.2.6)

make up a vector of joint sufficient sample functions for µ. It is more difficult to show that densities
of the form (11.2.5) are the only ones for which there is a fixed number q (that is, independent of
n) of jointly sufficient sample functions for the parameter vector µ.

It should be noted that the expression (11.2.5) also is interpretable as the frequency function
for a discrete random variable X in the sense that fX (x | µ) = P(X = x | µ).

In summary, if the considered distribution family with parameter vector µ has q jointly suffi-
cient sample functions for µ, then the family of all possible posterior densities corresponding to
the prior density fM(µ) is reduced to a q-parameter family of densities. These densities are called
natural conjugate prior densities corresponding to the density type fX (x | µ) and the prior density
fM(µ).

11.3 Natural conjugate densities of the normal distribution

Posterior distribution

The normal density

fX (x | µ, σ) = 1

σ
ϕ

(
x − µ

σ

)
∝ 1

σ
exp

[
−1

2

(
x − µ

σ

)2
]

(11.3.1)

with parameters (µ, σ ) ∈ R × R+ obviously belongs to the exponential family. By direct calcula-
tion of the likelihood function we get

L(µ, σ ; x1, . . . , xn) ∝
(

1

σ

)n

exp

[
−n

2

( s

σ

)2
]

ϕ

(
µ − x̄

σ/
√

n

)
(11.3.2)

where

x̄ = 1

n

n∑
i=1

xi (11.3.3)

s2 = 1

n

n∑
i=1

(xi − x̄)2 = x̄2 − x̄2 (11.3.4)

and n together are sufficient statistics for (µ, σ ).

Let (M, log �) as in Chapter 3 be that pair of Bayesian random variables that represents the
uncertain knowledge of (µ, log σ). Missing prior information about the parameters can be mod-
eled formally, e.g. by choosing the prior density of (M, log �) equal to a positive constant over
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a domain � of the (µ, log σ)-plane with finite area and equal to zero outside this domain. Since
d(log σ)/ dσ = 1/σ , this choice implies that

fM,�(µ, σ ) ∝ 1

σ
(11.3.5)

for (µ, log σ) ∈ �. By letting � expand to the entire R
2, (11.2.4), (11.3.2) and (11.3.5) give the

posterior density

fM,�(µ, σ | x1, . . . , xn) ∝
(

1

σ

)n+1

exp

[
−n

2

( s

σ

)2
]

ϕ

(
µ − x̄

σ/
√

n

)
(11.3.6)

for (µ, σ ) ∈ R × R+. This expansion of � to R
2 is said to define a diffuse density of (M, log �)

over R
2. The posterior density (11.3.6) shows that the natural conjugate prior densities are of the

form

fM,�(µ, σ ) ∝
(

1

σ

)ν+1

exp

[
−ν

2

(
β

σ

)2
]

ϕ

(
µ − α

σ/
√

ν

)
(µ, σ ) ∈ R × R+ (11.3.7)

with parameters (α, β, ν) ∈ R × R
2+. By use of (11.3.7) as prior density the posterior density

becomes (11.3.6) in which the jointly sufficient statistics n, x̄ and s2 are replaced by

n + ν (11.3.8)
nx̄ + να

n + ν
(11.3.9)

n(s2 + x̄2) + ν(β2 + α2)

n + ν
−

(
nx̄ + να

n + ν

)2

= ns2 + νβ2

n + ν
+ nν

(
x̄ − α

n + ν

)2

(11.3.10)

respectively. It is noted that ν needs not be an integer. In a sequential updating using further
obtained sample values the prior density (11.3.7) is then used directly with ν, α and β2 replaced
by (11.3.8), (11.3.9) and (11.3.10), respectively.

It is seen from (11.3.7) that the random variables

U = M − α

�/
√

ν
(11.3.11)

and � are mutually independent and that U is standard normal, while � has the density

f�(σ) ∝
(

1

σ

)ν

exp

[
−ν

2

(
β

σ

)2
]

, σ ∈ R+ (11.3.12)

This follows from the product form of (11.3.7) noting that the Jacobi determinant is
√

ν/σ .

Exercise 11.1 Show by simple transformation of density that νβ2/�2 has the density

fνβ2/�2(t; ν) ∝ t (ν−1)/2−1e−t/2, t ∈ R+ (11.3.13)
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This is a so-called gamma density with parameters (ν − 1)/2 and 1/2. In particular, if ν is an
integer, the density is called a χ2-density with ν − 1 degrees of freedom.

Compute the normalizing constant to be used in (11.3.13) expressed by the gamma function
(11.3.18). Thereby prove the formula (11.3.17). �

A convenient way to model prior information about µ and σ is to adopt (11.3.12) as the prior
density of � and assume that M for � = σ given has a normal density. In fact, the natural
conjugate prior (11.3.7) is of this form with E[M | � = σ ] = α and D[M | � = σ ] = σ/

√
ν.

However, a larger flexibility than offered by (11.3.12) for the modeling of the prior information is
obtained by replacing the parameter ν in (11.3.12) by ν + ξ > 0, where ξ is a parameter that may
be chosen independently of the value of ν except that ξ > −ν. Thus (11.3.7) is replaced by the
following prior joint density of (M, �):

fM,�(µ, σ ) ∝
(

1

σ

)ν+ξ+1

exp

[
−ν + ξ

2

(
β

σ

)2
]

ϕ

(
µ − α

σ/
√

ν

)
, (µ, σ ) ∈ R × R+ (11.3.14)

with parameters α, β > 0, ν > 0, ξ > −ν. It is seen that

fM,�(µ, σ ) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ
as ν → 0, ξ → 0

1

σ
ϕ

(
µ − α

σ/
√

ν

)
as ν + ξ → 0, ν fixed(

1

σ

)ξ+1

exp

[
−ξ

2

(
β

σ

)2
]

as ν → 0, ξ fixed

δ(σ − β)
1

σ
ϕ

(
µ − α

σ/
√

ν

)
as ξ → ∞, ν fixed

δ(µ − α)

(
1

σ

)ν+ξ

exp

[
−ν + ξ

2

(
β

σ

)2
]

as ν → ∞, ν + ξ fixed

δ(µ − α)δ(σ − β) as ν → ∞, ν + ξ → ∞

(11.3.15)

where δ(·) is Dirac’s delta function. Thus the prior density (11.3.14), in contrast to (11.3.7),
includes all the limiting cases of (a) completely unknown µ, σ , (b) partly known µ, completely
unknown σ , (c) completely unknown µ, partly known σ , (d) partly known µ, known σ , (e) known
µ, partly known σ , and (f) known µ, σ .

The posterior density corresponding to (11.3.14) is obtained from (11.3.14) by replacing ν and
α by (11.3.8) and (11.3.9), respectively, while β2 is replaced by

ns2 + (ν + ξ)β2

n + ν + ξ
+ nν

(x̄ − α)2

(n + ν)(n + ν + ξ)
(11.3.16)

which for ξ = 0 reduces to (11.3.10). It is seen from (11.3.14) that the statements about U as
defined by (11.3.11) and � are still valid except that ν in (11.3.12) and (11.3.13) is replaced by
ν + ξ .

By use of the standard formula

(a > 0, b > 0)

∫ ∞

0
x−(2a+1)e−b/x2

dx = 1

2
�(a)b−a (11.3.17)
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where �(·) is the gamma function

�(x) =
∫ ∞

0
ux−1e−u du (11.3.18)

integration of (11.3.14) with respect to σ from 0 to ∞ gives that the marginal density of M :

fM(µ) ∝
[

1 + 1

ν + ξ

(
µ − α

β/
√

ν

)2
]−(ν+ξ)/2

, µ ∈ R (11.3.19)

This shows that the random variable

T = M − α

β/
√

ν

√
ν + ξ − 1

ν + ξ
(11.3.20)

has the density

fT (t) ∝
[

1 + t2

ν + ξ − 1

]−[(ν+ξ−1)+1]/2

, t ∈ R (11.3.21)

which if ν + ξ is an integer is a so-called t-density (Student’s density) with ν + ξ − 1 degrees of
freedom. For ν + ξ = 2 it is Cauchy’s density. The random variable T becomes standard normal
as ξ → ∞ as also seen from (11.3.11) and known from (3.2.13).

Predictive distribution

Given that (M, �) has the density (11.3.14), the unconditional density of X can be obtained. The
conditional density of X given (M, �) = (µ, σ ) is defined by (11.3.1) and therefore, according
to the addition theorem for probabilities, we get that

fX (x; α, β, ν, ξ) =
∫ ∞

0

∫ ∞

−∞
fX (x | µ, σ) fM,�(µ, σ ) dµ dσ

∝
∫ ∞

0

(
1

σ

)ν+ξ+1

exp

[
−ν + ξ

2

(
β

σ

)2
]

dσ

∫ ∞

−∞
ϕ

(
x − µ

σ

)
ϕ

(
µ − α

σ/
√

ν

)
dµ

∝
∫ ∞

0

(
1

σ

)ν+ξ+1

exp

[
−ν + ξ

2

(
β

σ

)2 {
1 + [(x − α)/β]2

(ν + ξ)(ν + 1)/ν

}]
dσ (11.3.22)

where we have used (3.2.16). This unconditional density is called the predictive density of X . By
comparison of the last integral with (11.3.17) it is seen that

2a + 1 = ν + ξ + 1 (11.3.23)

b = (ν + ξ)β2

2

[
1 + ν

(ν + 1)(ν + ξ)

(
x − α

β

)2
]

(11.3.24)
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from which it follows that the predictive density of X is

fX (x; α, β, ν, ξ) ∝
[

1 + 1

ν + ξ

(
x − α

β
√

1 + 1/ν

)2
]−[(ν+ξ−1)+1]/2

, x ∈ R (11.3.25)

and thus that the random variable

X − α

β
√

1 + 1/ν

√
ν + ξ − 1

ν + ξ
(11.3.26)

has a predictive density which is the t-density (11.3.21) with ν+ξ−1 degrees of freedom given that
ν + ξ is an integer and that the prior density (11.3.15) is used. If sample information is available,
the parameters ν, α and β2 are replaced by (11.3.8), (11.3.9) and (11.3.16), respectively. Missing
prior information on µ is represented by putting ν = 0 in (11.3.8), (11.3.9) and (11.3.16) and on
σ by putting ξ = 0. Complete information on σ corresponds to ξ → ∞, that is, to (3.2.16).

Example 11.1 A structure is loaded with a sequence of random loads X1, . . . , Xm, . . . , such that
Xi is removed before Xi+1 is applied. The structure survives the m first loads if and only if

max{X1, . . . , Xm} ≤ L (11.3.27)

where L is a given load level. It is assumed that the loads are mutually independent and nor-
mally distributed with common but unknown mean value µ and standard deviation σ . Indirect
information is given about µ and σ through a previously obtained sample x1, . . . , xn of n loads.

The probability of the survival event (11.3.27) is then for a given prior density equal to∫ ∞

−∞
dµ

∫ ∞

0
�

(
L − µ

σ

)m

fM,�(µ, σ | x1, . . . , xn) dσ (11.3.28)

where fM,�(µ, σ | x1, . . . , xn) is the posterior density corresponding to the given prior density.
Let us keep to the natural conjugate prior densities (11.3.7) and substitute such a density for
fM,�(µ, σ | x1, . . . , xn) in (11.3.28). When m > 1 the integral cannot be calculated analytically
in terms of known functions. However, we may interpret the event (11.3.27) as the intersection

{X1 ≤ L} ∩ . . . ∩ {Xm ≤ L} (11.3.29)

described by the m safety margins

Mi = L − Xi , i = 1, . . . , m (11.3.30)

and use the inequalities (6.3.12) for evaluation of the failure probability. According to (11.3.26)
(with ξ = 0) the marginal failure events

Fi = {Xi > L}, i = 1, . . . , m (11.3.31)

all have the same probability

p1 = P(Fi ) = FS

(
−λ

√
ν − 1

ν + 1
; ν − 1

)
, λ = L − α

β
(11.3.32)
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Figure 11.1: Orthogonal and polar representation of the intersection event Fi ∩ F j considered in
Example 11.1.

where Fs(·; ν − 1) is the t-distribution function with ν − 1 degrees of freedom.

For the intersection events Fi ∩ F j the calculation is more complicated. For (M, �) = (µ, σ )

given, Fi ∩ F j can be mapped as in Fig. 11.1.

By the polar representation shown in Fig. 11.1 we get that

P(R > r | M = µ, � = σ, � = θ) =
{

e−r2/2 for µ ≤ L

1 ≥ e−r2/2 for µ > L
(11.3.33)

for 0 ≤ θ < π/4 (see Exercise 11.2) where

R2 =
(

Xi − µ

σ

)2

+
(

X j − µ

σ

)2

(11.3.34)

and

r = ψ(θ)
L − µ

σ
(11.3.35)

ψ(θ) =
√

2

cos θ − sin θ
(11.3.36)

while � is uniformly distributed on the interval [−π, π].

Exercise 11.2 Show that R defined by (11.3.34) has the Rayleigh density

fR(r) = re−r2/2, r ∈ R+ (11.3.37)

and use this to show (11.3.33). �

By use of (11.3.7) for unconditioning of (11.3.33) we get the inequality

P(R > r, M ≤ L | � = θ)

< K
√

2π

∫ ∞

0

(
1

σ

)ν+1

exp

[
−ν

2

(
β

σ

)2
]

dσ

∫ ∞

−∞
ϕ

(
L − µ

σ/ψ

)
ϕ

(
µ − α

σ/
√

ν

)
dµ

< P(R > r | � = θ) (11.3.38)
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valid for 0 ≤ θ < π/4, and in which ψ = ψ(θ), while K is the normalizing constant belonging to
(11.3.7):

K = 2
√

2 βν−1(ν/2)ν/2

�[(ν − 1)/2]
(11.3.39)

Exercise 11.3 Show (11.3.39) by use of (11.3.17). �

The inner integral in (11.3.38) can be calculated by use of (3.2.21). It becomes

σ

ψ
√

ν
√

1/ψ2 + 1/ν
ϕ

(
L − α

σ
√

1/ψ2 + 1/ν

)
(11.3.40)

such that the inequality (11.3.38) by use of the integral formula (11.3.17) becomes

P(R > r, M ≤ L | � = θ)

<
K√

ψ2 + ν

∫ ∞

0

(
1

σ

)ν

exp

[
−ν

2

(
β

σ

)2 {
1 + ψ2λ2

ψ2 + ν

}]
dσ

=
√

ν

ψ2 + ν

[
1 + ψ2λ2

ψ2 + ν

]−(ν−1)/2

< P(R > r | � = θ) (11.3.41)

valid for 0 ≤ θ < π/4. From this it follows that

P(R > r, M ≤ L , � ∈ [−π/4, π/4])

< F(λ, ν) < P(R > r, � ∈ [−π/4, π/4]) (11.3.42)

where

F(x, ν) = 1

π

∫ π/4

0

√
ν

ψ(θ)2 + ν

[
1 + ψ(θ)2

ψ(θ)2 + ν
x2

]−(ν−1)/2

dθ (11.3.43)

is mapped as a function of ν for different values of x in Fig. 11.2. It appears from Fig. 11.1 that the
right hand side of (11.3.42) is a lower bound to P(Fi ∩F j ) while the left hand side of (11.3.42) is
equal to P(Fi ∩ F j ∩ {M ≤ L}). Noting that

p2 = P(Fi ∩ F j ) = P(Fi ∩ F j ∩ {M ≤ L}) + P(Fi ∩ F j ∩ {M > L}) (11.3.44)

it thus follows from (11.3.42) that

F(λ, ν) < p2 < F(λ, ν) + P(M > L) (11.3.45)

where

P(M > L) = FS(−λ
√

ν − 1; ν − 1) (11.3.46)
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Figure 11.2: Graphs for the function F(x, ν) defined by (11.3.43). F(x, ν) → �(−x)2 for ν → ∞.

according to (11.3.20) and (11.3.21). With p1 = P(Fi ) and p2 = P(Fi ∩ F j ) the inequalities
(6.3.12) get the form

P(F)

⎧⎪⎪⎨
⎪⎪⎩

≥ p1 max j∈{1,... ,m}
{

j

[
1 − ( j − 1)

p2

2p1

]}
(a)

≤ p1

[
m − (m − 1)

p2

p1

]
(b)

(11.3.47)

since the intermediate calculations are the same as the calculations in Example 6.3. The maximal
value in (11.3.47)(a) is obtained for j equal to the integer q which is closest to the number 1/2 +
p1/p2. If m < q we put j = m in (11.3.47)(a). Since p2 is determined only by an accuracy given
by the bounds in (11.3.45), p2 in (11.3.47)(a) must be put to the right side of (11.3.45) while p2 in
(11.3.47)(b) must be put to the left side of (11.3.45). For P(F) having a value in the usual domain
of values and ν being suitably large the difference between the two sides is negligible. For m < q
we thus get

P(F) ≥ mp1

[
1 − (m − 1)

F(λ, ν) + P(M > L)

2p1

]
(11.3.48)

while for all m:

P(F) ≤ mp1

[
1 −

(
1 − 1

m

)
F(λ, ν)

p1

]
(11.3.49)

The non-informative prior density (11.3.5) is obtained from (11.3.7) by setting ν = 0. Having
a sample of X of size n available and using the non-informative prior density (11.3.5) we shall
according to (11.3.8),(11.3.9) and (11.3.10) put

α = x̄, β =
√

s2, ν = n (11.3.50)

in (11.3.48) and (11.3.49). As an example assume that λ = 5 and ν = 20. From Fig. 11.2
we read F(5, 20) ≈ 2.5 · 10−7, while p1 = F(−4.76; 19) ≈ 0.687 · 10−4 and P(M > L) =
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FS(−21.79; 19) ≈ 0. From (11.3.45) it then follows that p2 ≈ 2.5 ·10−7, such that q = 275. Thus
(11.3.48) and (11.3.49) give

P(F)

0.687 · 10−4 m

⎧⎨
⎩

≥ 1 − (m − 1) 3.64 · 10−3/2 (a)

≤ 1 −
(

1 − 1

m

)
3.64 · 10−3 (b)

(11.3.51)

For m > 275 the right side of (11.3.51)(a) is put to 0.50 which is the value that corresponds

m = 1 10 100 275 500
104 P(F) ≥ 0.687 6.76 56.3 94.7 171.8
104 P(F) ≤ 0.687 6.85 68.5 188.2 342.3
βG ≤ 3.81 3.20 2.53 2.35 2.12
βG ≥ 3.81 3.20 2.47 2.08 1.82
βG for ν = ∞ : 5.00 4.54 4.02 3.78 3.63

Table 11.1: Bounds on the generalized reliability index for a structure which is subject to m independent
load renewals with identically and normally distributed loads. The parameters of the normal distribution
are unknown except for the information given through 20 load observations. The last row of the table
corresponds to known values of the parameters.

to m = 275. The results are shown in Table 11.1. The last row in the table corresponds to
known values of the parameters and (L − µ)/σ = 5. The statistical uncertainty is seen to have a
considerable influence on the generalized reliability index. �

Example 11.2 A structural element has the carrying capacity R with respect to the load effect
S. Failure occurs if and only if R < S. It is assumed that R and S are mutually independent
lognormally distributed random variables. The distribution parameters are unknown. However,
the sample x11, . . . , x1n1 of X1 = log R and the sample x21, . . . , x2n2 of X2 = log S are given.
The parameter vector (µ1, µ2, σ1, σ2) in the two-dimensional normal distribution for (X1, X2)

is assumed to be an outcome of the random vector (M1, M2, �1, �2). A non-informative prior
density of (M1, M2, �1, �2) is defined by adopting a diffuse density of (M1, M2, log �1, log �2)

over all of R
4.

It follows then from (11.3.26) that the random variables

T1 = X1 − x̄1

s1

√
n1 − 1

n1 + 1
, T2 = X2 − x̄2

s2

√
n2 − 1

n2 + 1
(11.3.52)

have predictive densities that are t-densities with n1−1 and n2−1 degrees of freedom, respectively.
Moreover the variables T1 and T2 are mutually independent. The failure event {X1 < X2} can be
written as

{X1 < X2} =

⎧⎪⎪⎨
⎪⎪⎩T1 cos ω − T2 sin ω <

x̄2 − x̄1√
s2

1
n1 + 1

n1 − 1
+ s2

2
n2 + 1

n2 − 1

⎫⎪⎪⎬
⎪⎪⎭ (11.3.53)
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where 0 ≤ ω ≤ π/2 and

tan ω =
s2

√
n2 + 1

n2 − 1

s1

√
n1 + 1

n1 − 1

(11.3.54)

The predictive distribution of the random variable T1 cos ω − T2 sin ω is called Behren’s distribu-
tion with parameter ω and degrees of freedom (ν1, ν2) = (n1 − 1, n2 − 1). Values of the corre-
sponding distribution function Beh(·; ω, ν1, ν2) are computed most easily by numerical integration
of the convolution integral

Beh(t; ω, ν1, ν2) =
∫ ∞

−∞
fS(x; ν1)Fs

(
t − x cos ω

sin ω
; ν2

)
dx (11.3.55)

Behren’s density is symmetric with respect to t = 0. The generalized reliability index becomes

β = �−1

⎡
⎣Beh

⎧⎨
⎩ x̄2 − x̄1√

s2
1(n1 + 1)/(n1 − 1) + s2

2(n2 + 1)(n2 − 1)

; ω, n1 − 1, n2 − 1

⎫⎬
⎭

⎤
⎦ (11.3.56)

in which ω is given by (11.3.54).

We will illustrate the effect of the statistical uncertainty by applying (11.3.56) on increasing
samples drawn independently from two normal distributions with mean values (µ1, µ2) and stan-
dard deviations (σ1, σ2). The values µ1 = 4

√
2, µ2 = 0, σ1 = σ2 = 1 are applied. This implies

that β → 4 for n1 → ∞ and n2 → ∞.

Fig. 11.3 shows 8 independent simulations of the generalized reliability index β given by
(11.3.56) for n1 = n2 (full curves). It is seen that an overestimation of the reliability relative
to the complete state of information corresponding to given values of (µ1, µ2, σ1, σ2) can very
well occur. However, generally the reliability is underestimated, in particular for small sample
sizes. This is a consequence of the applied non-informative prior distribution which is excessively
deviating from the prior distribution used for the 8 simulations. In fact, this distribution is a sim-
ple concentrated probability mass at the point (µ1, µ2, σ1, σ2) = (4

√
2, 0, 1, 1). The size of the

underestimation depends on the limit of the failure probability for n1, n2 → ∞. The smaller the
probability is the more pronounced the underevaluation is.

If the principle of long-run revision is followed, the non-informative prior distribution should
be updated on the basis of gained experiences. Computationally it is most convenient to choose a
prior density from the family of natural conjugate densities (11.3.7) and fit it to the experiences by
a suitable choice of the parameters α, β, ν.

The increasing course in broad outline of the curves shows that an increase of the sample size
gives a gain in the form of increased reliability. With given design criteria that fix the level of
reliability it is therefore possible to obtain increased material savings by increased collection of
information.

Fig. 11.3 also shows the curves for those reliability indices that are obtained when σ1 and σ2

are assumed to be known (dashed curves). According to (3.2.16) X1 and X2 then have predictive
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normal distributions with mean values x̄1 and x̄2 and variances σ 2
1 (1 + 1/n1) and σ 2

2 (1 + 1/n2),
respectively. The reliability index therefore becomes

β = x̄2 − x̄1√
σ 2

1

(
1 + 1

n1

)
+ σ 2

2

(
1 + 1

n2

) (11.3.57)

The increased information of knowing σ1 and σ2 is seen to have an effect in the simulations. It is
noted that it can occur that β determined by (11.3.57) becomes less than β determined by (11.3.56).
�

The choice of the parameters α, β, ν in the prior density (11.3.7) can be supported by the
formulas

E[M] = α (11.3.58)

D[M] = β

√
ν + ξ

ν(ν + ξ − 3)
(11.3.59)

that follows from (11.3.20), because the standard t-density with ν degrees of freedom has the
variance ν(ν − 2). Moreover we have the formula

E[�] = �[(ν + ξ − 2)/2]

�[(ν + ξ − 1)/2]

√
ν + ξ

2
β (11.3.60)

which follows from (11.3.12) by use of the standard formula (11.3.17).

If an engineering judgment can give prudently assessed values for the coefficients of variation
VM and VX , the approximation

VX

VM
≈ E[�]/E[M]

D[M]/E[M]
=

√
(ν + ξ)(ν + ξ − 3)

2

�[(ν + ξ − 2)/2]

�[(ν + ξ − 1)/2]
(11.3.61)

can be used to determine ν + ξ since the right side of (11.3.61) is an increasing function of ν + ξ .
The graph of this function is shown in Fig: 11.4. The mean value E[M] is assessed directly so that
α is determined by (11.3.58). Finally β is obtained from the formula

β = α
√

ν + ξ − 3 VM (11.3.62)

which follows directly from (11.3.58) and (11.3.59).

11.4 Experimental calibration of mathematical models*

Problem formulation

Let us assume that a deterministic model is formulated for the relation between some given vari-
ables y, x1, . . . , xm and that this model leads to the formula

ymodel = f (x1, . . . , xm) (11.4.1)
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Figure 11.3: Eight realizations of independently generalized reliability indices (11.3.56) and (11.3.57) as
functions of the sample size.

Figure 11.4: Graph for the function F(ν) defined by the right side of (11.3.61) (replacing ν + ξ by ν).
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where f is a given function of x1, . . . , xm . For example, y can be the carrying capacity and
x1, . . . , xm be material variables or geometric variables. Such a formula is often taken as starting
point for the formulation of a probabilistic model. A common way is to replace the input variables
x1, . . . , xm by the random variables X1, . . . , Xm in order to define the random variable

Ymodel = f (X1, . . . , Xm) (11.4.2)

The purpose is to achieve that this random variable becomes correlated (and hopefully strongly
correlated) with the corresponding directly observable random variable Ymeasured.

Let us assume that a sample of Ymeasured, X1, . . . , Xm is observable. Thus a sample of (Ymeasured,

Ymodel) can be obtained. The ratio

K = Ymeasured

Ymodel
(11.4.3)

will only be constant with value 1 if the model is perfect. In general K will vary more or less
randomly.

It is reasonable to claim that the model is able to capture the essential dependency between
Ymeasured and (X1, . . . , Xm) only if either the random variable K has a suitably small coefficient
of variation (how small is a question about the practical importance of the accuracy of the model) or
if K is uncorrelated with (X1, . . . , Xm) , or better, is stochastically independent of (X1, . . . , Xm).

Assume that X1, . . . , Xm can be controlled to have given values x1, . . . , xm in the experimen-
tal situation while Ymeasured is obtained as a measuring result corresponding to these values. We
should then compare Ymeasured with ymodel = f (x1, . . . , xm), which leads to the correction factor

K (x1, . . . , xm) = Ymeasured

ymodel
(11.4.4)

The sample of these correction factors can be subject to regression analysis with the purpose of
revealing the dependency of K upon x1, . . . , xm . The two most commonly considered regression
models are the linear model

K (x1, . . . , xm) = α + β1x1 + . . . + βm xm + R (11.4.5)

and the power product model

K (x1, . . . , xm) = xβ1
1 · . . . · xβm

m exp(α + R) (11.4.6)

where R is the random residue with mean value zero. The last model is equivalent to the linear
model

log K (x1, . . . , xm) = α + β1 log x1 + . . . + βm log xm + R (11.4.7)

Therefore let us concentrate on (11.4.7) in the following.
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Bayesian linear regression

Assume that the residual term R in (11.4.7) is normally distributed with zero mean and unknown
standard deviation σ . From this it follows that K (x) is normally distributed with mean α +β1x1 +
. . .+βm xm where (x1, . . . , xm) is a free input vector while α, β1, . . . , βm are unknown parameters.
By the experimental investigation a sample

(x1, y1), (x2, y2), . . . , (xn, yn) (11.4.8)

is produced where yi is the measured value of Yi = K (xi ). It is assumed that the random variables
Y1, . . . , Yn are mutually independent. For given values of α, β1, . . . , βm, σ the random variables
Yi is normally distributed with standard deviation σ and mean value

E[Yi | x1, . . . , xn] = α + βTxi (11.4.9)

where βT = [β1 . . . βm]. The likelihood function is

L[α, β, σ ; (x1, y1), (x2, y2), . . . , (xn, yn)] =
(

1

σ

)n n∏
i=1

ϕ

(
yi − (α + βTxi )

σ

)
(11.4.10)

Let the parameter vector (α, β, σ ) correspond to a Bayesian random vector (A, B, �) with the
prior density

f A,B,�(α, β, σ ) ∝
(

1

σ

)ξ+1

exp

[
−ξ

2

(
δ

σ

)2
]

, (α,β, σ ) ∈ R
m+1 × R+ (11.4.11)

generalized from (11.3.15) setting ν = 0 and renaming β to δ. After some lengthy algebra the
posterior density of (A, B, �) can then be written as

f A,B,�[α, β, σ | (x1, y1), (x2, y2), . . . , (xn, yn)] ∝ 1

σ
ϕ

(
α − (ȳ − βTx̄)

σ/
√

n

)

·
(

1

σ

)n−m+ξ

exp

(
− 1

2σ 2

[
n(c[y, y] − c[x, y]Tc[x, xT]−1c[x, y]) + ξδ2

])

·
(

1

σ

)m

exp

(
− 1

2σ 2/n

(
β − c[x, xT]−1c[x, y]

)T
c[x, xT]

(
β − c[x, xT]−1c[x, y]

))
(11.4.12)
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in which

c[y, y] = 1

n

n∑
i=1

(yi − ȳ)2 (11.4.13)

c[x, y] = 1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (11.4.14)

c[x, xT] = 1

n

n∑
i=1

(xi − x̄)(xi − x̄)T (11.4.15)

ȳ = 1

n

n∑
i=1

yi (11.4.16)

x̄ = 1

n

n∑
i=1

xi (11.4.17)

The form of the posterior density shows that the random variable

U = A − (ȳ − BTx̄)

�/
√

n
(11.4.18)

hereby becomes standard normally distributed and independent of the vector

Z = B − c[x, xT]−1c[x, y]

�/
√

n
(11.4.19)

The vector Z is seen to be normally distributed with the zero vector as mean value and the covari-
ance matrix c[x, xT]−1 (Exercise 4.2). Moreover it is seen that � has the posterior density

f� [σ | (x1, y1), (x2, y2), . . . , (xn, yn)] ∝
(

1

σ

)n−m+ξ

exp

(
−ns2 + ξδ2

2σ 2

)
, σ ∈ R+

(11.4.20)

where

s2 = c[y, y] − c[x, y]Tc[x, xT]−1c[x, y] (11.4.21)

As in Exercise 11.1 it is seen that the random variable

ns2 + ξδ2

�2
(11.4.22)

for ξ an integer, has χ2-density with n − m − 1 + ξ degrees of freedom.

Exercise 11.4 Student’s t-distribution with ν degrees of freedom can be defined as the distribution
of the ratio X/

√
Y/ν where X and Y are mutually independent random variables, X is standard

normally distributed, and Y is χ2-distributed with ν degrees of freedom.
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Show by use of this result that

A − (ȳ − BTx̄)√
s2/ξ + δ2/n

√
(n − m − 1)/ξ + 1 (11.4.23)

and each of the elements in the random vector

B − c[x, xT]−1c[x, y]√
s2/ξ + δ2/n

√
(n − m − 1)/ξ + 1 (11.4.24)

after multiplication by suitable constants, for ξ an integer, are all t-distributed with n − m − 1 + ξ

degrees of freedom. �

Predictive distribution

For the reliability analysis the predictive distribution of Y = K (x) in (11.4.7) has particular inter-
est. We have

fY (y | α, β, σ, x̃) ∝ 1

σ
ϕ

(
y − (α + βTx̃)

σ

)
(11.4.25)

and thus

fY [y | (x1, y1), (x2, y2), . . . , (xn, yn), x̃] ∝ E

[
1

�
ϕ

(
y − (A + BTx̃)

�

)]

= E

[
1

�
ϕ

(
y − ê[y | x]

�
− 1√

n
U − 1√

n
ZT(x̃ − x̄)

)]
(11.4.26)

where we have substituted U and Z defined by (11.4.18) and (11.4.19), and where

ê[y | x] = ȳ + c[x, y]Tc[x, xT]−1(x̃ − x̄) (11.4.27)

It is noted that the Bayesian random variables �, U and

W = ZT(x̃ − x̄) (11.4.28)

are mutually independent and that W is normally distributed with mean value zero and variance

σ 2
W = (x̃ − x̄)Tc[x, xT]−1(x̃ − x̄) (11.4.29)

With (11.4.26) written as the expectation E[h(U, W, �)], we have

E[h(U, W, �)] = E
[
E[h(U, W, �) | � ]

] = E
[

E
[
E[h(U, W, �) | W, �]

∣∣ � ]]
(11.4.30)



11.4 Experimental calibration of mathematical models* 213

see (4.3.20). This scheme for calculation of a mean value by successive determination of condi-
tional mean values (starting “from the inside”) is applied to (11.4.26). By use of (3.2.18) we thus
find

E

[
1

�
ϕ

(
y − ê[y | x̃]

�
− 1√

n
U − 1√

n
W

)]
= E

[
1

�

∫ ∞

−∞
ϕ

(
. . . − u√

n

)
ϕ(u) du

]

∝ E

[
1

�
ϕ

(
(y − ê[y | x̃])

√
n/� − W√

n + 1

)]
∝ E

[
1

�

∫ ∞

−∞
ϕ

(
. . . − w√

n + 1

)
ϕ

(
w

σW

)
dw

]

∝ E

⎡
⎣ 1

�
ϕ

⎛
⎝(y − ê[y | x̃])

√
n

�

√
n + 1 + σ 2

W

⎞
⎠

⎤
⎦

∝
∫ ∞

−∞

(
1

σ

)n−m+1+ξ

exp

[
ns2 + ξδ2

σ 2

{
1 + (y − ê[y | x̃])2n

(ns2 + ξδ2)(n + 1 + σ 2
W )

}]
dσ (11.4.31)

where the posterior density (11.4.20) of � is used in the last step. The integral formula (11.3.17)
can finally be used in (11.4.31). Thus we get the predictive density

fY [y | (x1, y1), (x2, y2), . . . , (xn, yn), x̃] ∝
[

1 + (y − ê[y | x̃])2n

(ns2 + ξδ2)(n + 1 + σ 2
W )

]−[(n−m−1+ξ)+1]/2

(11.4.32)

which shows that Y with respect to predictive distribution can be written as

Y = ê[y | x̃] + T

√
(ns2 + ξδ2)(n + 1 + σ 2

W )

n(n − m − 1 + ξ)
(11.4.33)

→ ê[y | x̃] + T

⎧⎪⎪⎨
⎪⎪⎩

s
√

(n + 1 + σ 2
W )/(n − m − 1) for ξ → 0

δ

√
1 + (1 + σ 2

W )/n for ξ → ∞
s for n → ∞

(11.4.34)

where T , for ξ an integer, is a t-distributed random variable with n − m − 1 + ξ degrees of
freedom, see (11.3.25) and (11.3.26) for comparison. It is seen that Y = K (x) depends linearly
on x through the linear regression part ê[y | x̃] defined by (11.4.27), which according to the theory
of linear regression given in Chapter 4 is the linear function that corresponds to the least sum of
squared deviations. On top of this there is a non-linear contribution from x through σ 2

W . It is given
by the quadratic form (11.4.29).

Limit-state formulation

In structural reliability applications, K (x) will typically be a correction to a carrying-capacity
formula that should be compared with a load or a load effect S. Let us assume that K (x) is an
additive correction so that K (x) is defined by

K (x, T ) = Ymeasured − ymodel (11.4.35)
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showing explicitly the dependence on the random variable T . Then the equation Ymeasured −
S(x, x1) = 0, that is, the equation

R(x) + K (x, t) − S(x, x1) = 0 (11.4.36)

defines the limit state. In this equation R(x) = ymodel is the carrying-capacity model while S(x, x1)

is the relevant load or load effect that may depend on x and some more input variables collected
in x1. The limit state is thus described in the space of (x, x1, t), where t is the extra variable
that corresponds to the random part of the model uncertainty concerning R(x). The distribution
corresponding to this input variable is then the t-distribution with n − m − 1 + ξ degrees of
freedom. In this way the model uncertainty embraces both statistical uncertainty and proper model
uncertainty. For n → ∞ the statistical uncertainty vanishes and a normally distributed model
uncertainty remains.

We see that σ 2
W = 0 for x = x̄. If the formula is applied solely within the experimentally

covered domain of the x-space, the value of σ 2
W will hardly be much larger than 3m.

Remark 11.1 The upper bound 3m for σ 2
W is obtained by a simple exercise if it is assumed that

x1, . . . , xn are uniformly distributed over a cube centered at the average point x̄, and x is chosen
corresponding to a vertex of this cube. If x is assumed to be an outcome of a random vector with
uniform distribution over the cube, then σ 2

W has the value m in the mean. �
In many practical situations the number n is not necessarily large as compared to m. Therefore

it is not possible in advance to simplify (11.4.33) by putting σW to a suitable constant. It can be
stated that the model uncertainty is underestimated if σW is put to zero. On the average the value
σ 2

W = m will be a usable approximation given that n is reasonably large as compared to m.

It should be emphasized that the considered probabilistic model, besides assuming a normal
distribution of the residue, assumes that there is variance homogeneity over the actual domain of
variation for x (in the theory of mathematical statistics this is denoted as the homoscedastic case).
Standard textbooks on mathematical statistical theory describe methods for testing the validity of
this assumption and also methods for pointing out those variables among the elements in x that
contribute significantly to the variation of K (x). Among these methods the Bayesian methods are
simply based on a check of the position of the set of those parameter vectors (β1, . . . , βm) for
which a specified subvector is the zero vector. The position is compared to the posterior distri-
bution of the total parameter vector. If the position is not improbable as judged by the posterior
distribution in a specific way, the parameters in question can without obvious inconsistency with
the given data be put to zero, that is, the corresponding variables in x can be removed from the
regression model (the principle of simplicity).

The choice of regression model must partly be based on suitable graphical representations of
the data and graphical studies of the empirical distribution of the corresponding residuals. Then, for
example, it might be possible to see tendencies of deviation from variance homogeneity. Possibly
a tendency is seen for the coefficient of variation to be independent of x so that a logarithmic
transformation of the data will lead to the homoscedastic case, see (7.1.5). A non-linear tendency
of the mean value variation with respect to x is not preventing the use of linear regression, of
course, since what matters for the application of the given theory is linearity with respect to the
parameters α, β1, . . . , βm (and not with respect to x), and that there is variance homogeneity.
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If the sample size n is suitably large, deviations of the distribution of the residual from the
normal distribution is less critical when the problem is to obtain usable posterior distributions of
the parameters. This can be explained by the central limit theorem. In one of its simplest versions
it states that the sum of n mutually independent and identically distributed random vectors with
finite covariance matrix asymptotically is normally distributed as n → ∞. This theorem confirms
the experience that statistical methods based on the normal distribution possess a considerable
robustness with respect to deviations from the assumed distributions. Guidelines about sample
sizes are given in the practical statistical literature but the goodness of approximations may always
be tested by Monte Carlo simulation.

Remark 11.2 The mentioned Bayesian test of the hypothesis that some of the elements in x can
be neglected in K (x) gets simple asymptotically as n +ξ → ∞. Consider the ratio of the maximal
value of the m-dimensional t-density function of the Bayesian random vector (11.4.24) to the
maximal value of the same t-density function restricted to the subspace of the hypothesis in the
space of β = (β1, . . . , βm). This density ratio is asymptotically as n + ξ → ∞ an indicator
of the position of the subspace of the hypothesis relative to the m-dimensional posterior density
of B. In fact, as n + ξ → ∞ the posterior density of (11.4.24) approaches an m-dimensional
Gaussian distribution with mean vector zero. Obviously the density ratio is invariant to any linear
transformation of the space of β. In particular we may apply a linear transformation by which the
asymptotic Gaussian distribution becomes standardized. Then it is directly seen that the reciprocal
of the density ratio asymptotically becomes exp[−r2/2] as n + ξ → ∞, where r is the distance
from the origin to the image of the hypothesis subspace by the transformation.

Let the hypothesis subspace be of dimension k. Then the hypothesis subspace is represented
by a single point in the (m − k)-dimensional subspace orthogonal to the hypothesis subspace. It is
then obvious that solely the posterior density orthogonally projected onto this (m −k)-dimensional
subspace is relevant for the judgment of whether the hypothesis is acceptable or not. A reasonable
measure of compliance with the hypothesis is then the posterior probability content in the (m − k)-
dimensional subspace outside that surface of constant posterior density that passes through the
hypothesis point. By the linear mapping that brings the asymptotic Gaussian distribution to the
standardized form as n +ξ → ∞ the surface of constant posterior density asymptotically becomes
the (m − k)-dimensional sphere of squared radius r2 = −2 log (posterior density ratio). The
probability mass inside this sphere is given by the distribution function of the χ2-density with
m − k degrees of freedom calculated at r2. If this probability is larger than 1 − ε for some suitably
small ε we may decide to reject the hypothesis. In non-Bayesian statistical theory an analogous
test is defined as a likelihood ratio test. Asymptotically as n → ∞ the conclusions from applying
any of the two tests are the same. �

While the remarks about asymptotic normality and robustness are valid for the determination
of the posterior distribution of the parameters α, β1, . . . , βm , more care must be exercised by the
determination of the predictive distribution of K (x) in case the residue is not normally distributed.
The actual conditional distribution of K (x) (given the parameter values) should be used while the
posterior distribution based on the assumption of normal distribution can be used for uncondition-
ing in case the exact posterior distribution is difficult to obtain. That K (x) in an application cannot
be assumed to be normally distributed has particular importance in structural reliability where the
tail sensitivity problem (see Example 7.2) even can necessitate standardization in a code of practice
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of distributional types for some input variables. Typically distribution types for model uncertainty
variables (see Chapter 3) that are related to K (x) may be code specified. This may imply that the
distributional type for K (x) for n → ∞ follows from the given standardization implying that the
residue gets assigned a conditional distribution (given the parameter values) of code standardized
type.

Formulation-invariant representation

The way in which the model uncertainty was represented in Chapter 3 solely by use of random
factors or addends to the input variables is not in accordance with the way in which the correction
K (x) is introduced in this section. However, there is a very essential reason to keep to the rep-
resentation of Chapter 3 of the model uncertainties. This is the superior pragmatic consideration
which is dictated by the technical mechanical theory itself on which any rational structural reli-
ability analysis necessarily must be based. It is highly expedient that consistent calculations can
be made within a well balanced mechanical-physical theory that does not require a book keeping
of corrections to very specific formulas obtained in more or less arbitrary experimental situations.
This freedom is obtained by using the formulation invariant model uncertainty representation that
consists in letting the model uncertainty variables be attached to the input variables in all calcu-
lations just in the same way as the partial safety factors are attached to the input variables in the
deterministic safety ensuring method. The applications are then based on the hypothesis that the
mechanical model possesses sufficient empirical predictive power to allow it to be applied together
with the introduced model uncertainty elements to study structural variations that deviate within
reasonable limits from the structural designs that have been tested experimentally. If this hypothe-
sis cannot be accepted the consequence is that the applicability of the mechanical theory to a large
extend becomes limited and that a long series of structural details must be locked to the designs
that have been tested experimentally. Such a restriction seems not to be particularly rational when
remembering that the relation between the experimental situation (often a very “ideal” laboratory
situation) and the real situation in the actual structure can be very uncertain. Inappropriate limi-
tations of this kind can be seen in the codes of several countries with the result that these codes
have developed to be very voluminous containing standardization of a large variety of details. The
recent Euro-codes seem not to be of this category.

Besides that pragmatic considerations make us prefer to have the model uncertainties attached
to the input variables, the consideration of applicability of the mechanical-physical theory requires
that the model uncertainty variables introduced into an applied carrying capacity theory do not
become explicitly dependent on geometric quantities that specify the points of attack of the loads
on the structure. If this cannot be achieved with sufficient accuracy the carrying capacity theory
has doubtful usefulness for the considered field of application.

With this discussion in mind the consequence is that the information obtained by the experi-
ments about K (x) should be transformed to the invariant form. Assume for example that K (x) is
defined by

log Ymeasured = log f (x) + K (x) (11.4.37)

and that x1 is a material strength variable to which we can attach the model uncertainty on factor
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form. Then

log f (x) + K (x) = log f [I1(x)x1, x2, . . . , xm] (11.4.38)

from which it follows that

I1(x) = 1

x1
h[log f (x) + K (x), x2, . . . , xm] (11.4.39)

where h is the function obtained by solving (11.4.38) with respect to I1(x)x1. From this expression
and the given predictive distribution of K (x) the predictive distribution of the model uncertainty
factor I1(x) can be obtained. If a code standardized distribution type is assigned to I1(x) under
the assumption of no statistical uncertainty, it is possible by use of (11.4.38) to determine the
distribution type that should be assigned to K (x) and consequently to the residue in the regression
model.

11.5 Historical and bibliographical notes

It is outside the frame of this book to deal with the historical development of the Bayesian statis-
tical theory. For this the topic is far too large and the literature overwhelming. It should just be
mentioned that D.V. Lindley’s elementary text book from 1965 [11.4] has been a special inspira-
tion for the authors of this book. The same is true with respect to the book of J.R. Benjamin and
C.A. Cornell from 1970 [11.1] due to its engineering relevance.

Consideration of statistical uncertainty by the definition of the reliability index was first dis-
cussed by D. Veneziano [11.6] in 1975, who suggested to base the definition on predictive distri-
butions. Since then this principle has been widely accepted among most of the supporters of the
Bayesian interpretation of the concept of probability. Among the contributors to applications of
the Bayesian methods on problems related to structural reliability should R.Rackwitz be mentioned
for several specific applications [11.5].

There are also several engineering philosophers who are critical to the reliability index defini-
tion as given in this chapter as the generalized reliability index calculated by use of the predictive
distributions. The critical attitude is related to some specific properties of the von Neumann-
Morgenstern decision theory introduced in the next chapter. Objections by A. Der Kiureghian
[11.3] are among other things based on studies of the problem in Example 11.2. Other philosoph-
ical problems are related to the problem of choosing reasonable models of non-informativeness in
terms of prior distributions, S. Engelund and R. Rackwitz [11.2].
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Chapter 12

DECISION PHILOSOPHY

12.1 The decision problem

The theory of structural reliability described in the previous chapters does not in itself give rules
for the choice of the reliability level. The open problem is what level should be required in order
that the structure in the light of the available information about the structure and the actions on it
can be declared to be sufficiently safe. Without the existence of a universal consensus it is a wide
spread attitude shared by the authors that the safety level that through previous design practice has
become acceptable to the society should not be changed drastically when an authority introduces
a new code of practice or revises an old code. Changes should be made in a prudent evolutionary
way taking start from a calibration to existing design practice.

On the other hand, it is obvious that it is necessary to formulate some superior principles for
rational control of this evolution of the reliability level. For example, it seems to be a rational
attitude to let the acceptable reliability level with respect to some adverse event be dependent on
the consequences that follows from the adverse events, that is, of the degree of damage caused by
the event. In order to appreciate the nature of these problems we will in the following consider
the basic features of that theory of decision making that was formulated in USA during the second
world war by von Neumann and Morgenstern, [12.2].

First we must make clear that a decision leads to an action that implies some consequences.
The realization of a project for a structure has several consequences of which one is a consump-
tion of capital that in size varies with the structural design. Other consequences are failures and
non-failures of different types, durability consequences, etc. It is only for very simple decision
situations that the actions lead to unique consequences. Generally the effect of the action is that
a lottery (a game) is run between the consequences in the sense that the action picks out a spe-
cific probability distribution from a given set of probability distributions over the set of possible
consequences. For example, a choice between different bar types and bar dimensions in a truss
structure corresponds to a choice from a set of strength distributions and corresponding prices.
Each choice is indirectly a choice between probability distributions over the set of consequences
which is relevant for the truss structure. The elements in the set of probability distributions over the
consequences are in the decision theory formally denoted as lotteries between the consequences.
Thus a lottery is a weighted set of consequences.

219
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The basic idea in the decision theory by von Neumann and Morgenstern is that the decision
maker formulates his or her “personal” preferences by defining a utility function on the set of
consequences. A considered consequence of given utility is preferred to any other consequence
of lower utility. Through some few “self-evident” axioms this utility function is extended to the
set of all lotteries between the consequences. In this line of thinking the set of consequences
are naturally identified with the set of those trivial lotteries that each has an atomic (zero-one)
probability distribution. By this a preference ordering is introduced in the set of lotteries between
the consequences. This ordering obviously induces a preference ordering in the set of relevant
decisions. If it exists, the best decision is the one for which the corresponding lottery has the
largest utility.

By the application of such a decision theory as the basis for the choice of the acceptable re-
liability level of a structure the personal preference of the design engineer should be regulated
normatively. The normative fixing of the acceptable reliability level is thus replaced by normative
value specifications of certain elements that define the relevant utility functions. Structural codes
with specifications of this kind do not exist presently, but it would be quite useful to have such
codes in particular to guide decisions that concern restorations or changes of existing structures.
This topic is considered in Chapter 13.

If taken for given that rationality and optimal action behavior should characterize engineering
activity and a code is not prescribed for this activity, then there is hardly any way by which utility
value considerations can be avoided. By a particular interpretation, the consequence calculation
principle gives a possibility of obtaining support from the existing codes of practice. The necessary
condition for this is that it is accepted that the existing codes reflect presently optimal engineering
decision making. However, analyses of a representative population of different structures with
judgementally the same failure consequences and all designed according to present codes of prac-
tice show that the optimality postulate is not consistent with utility uniformity of the structures.

Let us make the supposition that there in a given country (or union of cooperating countries) is
a decision maker (a committee, say) that possesses superior authority with respect to deciding what
is optimal structural design. This decision maker is imagined to be asked to point out a specific
structure type (structural element type, say) that will get optimal dimensions if it is designed to the
limit according to a given partial safety factor code and a specific ultimate limit state model both
specified by the authority itself. This means that the superior authority by answering this ques-
tion implicitly evaluates the intangible socio-economic cost of adverse behavior of the considered
structure type such that any stronger or weaker design will have a larger total cost than that of the
optimal design. In fact, if the decision theory of von Neumann and Morgenstern is accepted as a
valid principle of decision making the evaluation of the socio-economic costs of the different pos-
sible consequences of the decision is precisely the task of the decision maker. The minimization
of the total expected cost then leads to the optimal decision. With the optimal decision given the
intangible cost of adverse behavior can therefore be backcalculated under the adoption of a specific
probabilistic code. In this way having calibrated the intangible cost of the design decision prob-
lem to the authoritative declaration of optimality, the future design decisions for the considered
structure type can be based on rational decision theory implemented within the given probabilistic
code.

Even though the superior authority might admit that its partial safety factor code may be too
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simplified to have the potential of giving optimal designs for all the structure types for which the
code is used, there should be at least one structure type within the domain of the code that by the
authority is considered to be optimally designed. Otherwise the authority is not self-consistent
and as the proper authority it should therefore change the value settings of the code. Therefore
the outlined strategy for setting up a probabilistic code that can be approved by the superior au-
thority seems reasonable. However, more detailed analysis reveals several problems that require
authoritative decisions.

The first problem to be illustrated in Example 12.1 is that the authority is not asked which
specific structure of the considered type is the optimal structure. Of course, such a question can be
asked, but as it will become evident in the following it is not necessary and hardly wise to require
such a specific and difficult question to be directly answered by the authority. By only declaring
optimality for the specified structure type class as such it turns out that for a given probabilistic
code there is a considerable uncertainty about the value of the optimal reliability index. It will be
shown in Example 12.4 that this problem can be solved in a rational way by a decision theoretical
argument.

Example 12.1 For a standard type plane tubular joint in an offshore structure the limit state with
respect to failure of the joint is often modeled by an empirically based equation of the form

1 − P

Pu
−

(
M

Mu

)α1

−
(

N

Nu

)α2

= 0 (12.1.1)

in which P is an internal normal force, M is an internal moment in the plane of the joint, and
N is an internal moment orthogonal to the plane. The corresponding strength variables are the
random variables Pu, Mu, and Nu, respectively. Further details about the geometry and mechanical
behavior of the joint are not needed in this example. The internal forces are assumed to be given
as a linear function

⎡
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M
N

⎤
⎦ =

⎡
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⎡
⎢⎢⎢⎢⎣

G
Q
S
V
W

⎤
⎥⎥⎥⎥⎦ (12.1.2)

of the five random load variables G (self weight), Q (operational load), S (snow and ice load), V
(wind load), and W (wave and current load).

All eight random variables are assumed to be mutually independent even though this assump-
tion may not be fully realistic. In particular the three strength variables could be mutually depen-
dent as also the nature loads S, V , and W could be dependent. However, for the purpose of this
illustration these possible dependencies are not essential.

Moreover the problem is simplified by assuming that the powers α1 and α2 are deterministic:
α1 = 2.1, α2 = 1.2. The eight random variables have distributions and parameters as given in the
Table 12.1

In Table 12.1, N denotes normal distribution and LN denotes lognormal distribution. The com-
mon expectation θ of the strength variables is taken as the design variable ideally to be determined
such that the joint gets a prespecified reliability with respect to the limit state (12.1.1).



222 Chapter 12. DECISION PHILOSOPHY

Table 12.1: Data for Example 12.1
Variable Pu Mu Nu G Q S V W
Distribution LN LN LN N N N N N
Expectation∗ θ θ θ 1 1 1 1 1
Coeff. of var. 0.20 0.25 0.25 0.05 0.15 0.20 0.25 0.30
∗ with a suitable physical unit.

We now make the supposition that the joint is chosen at random among all the joints in a
large offshore structure. This means that the influence matrix C in (12.1.2) is an outcome of
a random matrix. It is assumed that the value of the design variable θ for the chosen joint is
obtained according to the Danish offshore code (DS 449) (the format of which is similar to the
general format of the Euro-codes). Thus θ is determined as the largest of the five values obtained
according to the five design load combinations:

⎡
⎣ pd1 · · · pd5

md1 · · · md5

nd1 · · · nd5

⎤
⎦ = C

� gc

qc

sc

vc

wc �

⎡
⎢⎢⎢⎢⎣

γg γg γg γg 1.15
γf ψq ψq ψq 0
ψs γf ψs ψs 0
ψv ψv γf ψv 0
ψw ψw ψw γf 0

⎤
⎥⎥⎥⎥⎦ (12.1.3)

substituted together with the design values pud = puc/γm, mud = muc/γm, nud = nuc/γm of the
resistance variables into the limit-state equation (12.1.1). The characteristic values puc, muc , nuc

are defined as the 5%-fractiles of the distributions of Pu, Mu, Nu, respectively. For the data given
in the table these characteristic values are [puc muc nuc] = θ [0.708 0.647 0.647]. The material
strength partial safety factor is put to γm = 1.2.

The second matrix on the right side of (12.1.3) is a diagonal matrix with the characteristic
values gc, qc, sc, vc, wc of the loads G, Q, S, V , W in the diagonal. Except for the self-weight G
these characteristic values are defined as the 98%-fractile in the distribution of the yearly extreme,
while gk is defined as the 50% fractile. Thus [gc qc sc vc wc] = [1.000 1.308 1.411 1.514 1.616].
The last matrix in (12.1.3) contains the partial coefficients γg and γf on self-weight and variable
load, respectively, and the load combination factors ψq, ψs, ψv, ψw, see Chapter 2. These factors
are put to γg = 1.0, γf = 1.3, ψq = 1.0, ψs = ψv = ψw = 0.5.

To investigate how much it can be expected that the reliability varies among the joints of the
considered offshore structure given that they are all designed according to the partial safety factor
code defined here, it is assumed as an example that the 15 influence numbers in C are mutually in-
dependent and uniformly distributed between 0 and 1. Bjerager [12.1] considered this example and
simulated 1000 outcomes of C, and for each of these the design parameter value θ and thereafter
the geometric reliability index β were calculated. The obtained sample of 1000 β-values turned
out to be reasonably well described by a normal distribution of mean µ � 4.40 and a standard
deviation of σ � 0.30. Thus there is a considerable variability of the reliability index resulting
from constant partial safety factor design. The size of this variability is comparable in size with the
difference between two neighboring safety classes as they are defined by NKB [2.4]. The differ-
ence between high safety class and normal safety class is expressed by a difference in the β-level
of 0.5 (see Table 1 of Appendix 3).



12.2 The von Neumann and Morgenstern axioms
for preference ordering 223

On the basis of this result it is seen that the probability of occurrence of failure within one year
of a randomly chosen joint is

pf = 1

σ

∫ ∞

−∞
�(−β) ϕ

(
β − µ

σ

)
dβ � 1.25 × 10−5 (12.1.4)

with the corresponding reliability index

βclass = �−1(pf) = 4.21 < E[β] = 4.40 (12.1.5)

The problem is now whether the optimal target reliability index βt should be chosen as βclass or
whether it should be some other value of β. One argument could be that since the society (the
legislation authority) has accepted that the fraction x of the joints according to the present code has
a reliability index smaller than β(x) = µ + σ�−1(x), then β(x) should in principle be acceptable
as target reliability index if x is not too small (x = 25%, for example). However, the problem is
not solved before some rational principle of choosing x is established. We return to the problem in
Example 12.4. �

12.2 The von Neumann and Morgenstern axioms
for preference ordering

Let C be the set of consequences in a given decision problem and let L be the set of lotteries
between the consequences in C. If C is a finite set, it is convenient to use the following formal
notation

L = α1C1 + · · · + αnCn (12.2.1)

for a lottery between the consequences C1, . . . , Cn ∈ C where

αi = E[1Ci ], i = 1, . . . , n (12.2.2)

is the probability to get the consequence Ci and α1 + · · · + αn = 1. Note that the consequences
are defined such that two different consequences Ci and C j cannot occur together as a result of a
single run of the lottery L . Since Ci = 0 · C1 + . . .+ 0 · Ci−1 + 1 · Ci + 0 · Ci+1 + . . .+ 0 · Cn ∈ L
the consequences are also called the trivial lotteries.

In the more common case where the set of consequences C is infinite the consequences may be
indexed by t ∈ [0, 1] and written as C(t). Then the notation (12.2.1) is directly generalized to

∫ 1

0
C(t) dF(t) (12.2.3)

for a lottery between the consequences (or, equivalently, between the trivial lotteries called so
because C(t) = ∫ 1

0 C(τ )δ(τ − t) dτ where δ(·) is Dirac’s delta function, that is, the probability is
1 of getting the consequence C(t)). In this notation dF(t) is the probability that the trivial lottery
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C(t) is the outcome of the lottery between the trivial lotteries. If there exists no trivial lottery
corresponding to t , then the corresponding probability increment dF(t) is set to zero.

In a similar way a lottery between m lotteries L1, . . . , Lm is written as

L = γ1L1 + · · · + γm Lm (12.2.4)

where

γ j = E[1L j ], j = 1, . . . , m (12.2.5)

is the probability that the lottery L j is drawn and where γ1+· · ·+γm = 1. A lottery between lotter-
ies from L is called a composite lottery. The symbolism (12.2.4) is convenient because according
to the probability calculus the composite lottery can be written as

L =
(

m∑
j=1

γ jα1 j

)
C1 + · · · +

(
m∑

j=1

γ jαnj

)
Cn (12.2.6)

which also is obtained by formal symbol manipulation with the right hand side of

L =
m∑

j=1

γ j

(
n∑

i=1

αi j Ci

)
(12.2.7)

In case C is infinite, the formal notation∫ 1

0
C(t) dF(t | s) (12.2.8)

symbolizes a possibly infinite set of non-trivial lotteries indexed by s ∈ [0, 1]. A composite lottery
between the lotteries in this set is defined by a probability distribution function G(s) and is by
direct generalization of (12.2.4) written as

∫ 1

s=0

[∫ 1

t=0
C(t) dF(t | s)

]
dG(s) =

∫ 1

t=0
C(t)

∫ 1

s=0
dF(t | s) dG(s) (12.2.9)

The right side is obtained by interchanging the order of the integral signs just as if the double
integral was an ordinary integral. As in (12.2.6) this operation is consistent with the total probabil-
ity theorem by which the probability of getting the consequence C(t) is the integral with respect
to s of the product of the conditional probability increment dF(t | s) given that S = s and the
probability dG(s) of the event s ≤ S < s + ds. Thus the integral notation consistently indi-
cates that the composite lottery is a lottery between the trivial lotteries with the lottery probability∫ 1

s=0 dF(t | s) dG(s) assigned to the trivial lottery C(t).

The first step the decision maker has to take is that he or she must define a preference ordering
“≺” in C such that the following properties are accepted by the decision maker. Let A, B, C ∈ C.
If B is preferred to A and C is preferred to B, then C is preferred to A (the ordering is transitive
A ≺ B ∧ B ≺ C ⇒ A ≺ C). If B is preferred to A and A is preferred to B, then there is
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indifference with respect to A and B, and it is said that A and B are equivalent. This is written
A ∼ B (the ordering is antisymmetric: A ≺ B ∧ B ≺ A ⇒ A ∼ B).

The assumption about transitivity can in certain decision situations be doubtful. Lack of tran-
sitivity can imply that an optimal decision cannot be made. Problems of this kind can occur in
particular when the decision maker is a group of persons with democratic rules of voting and
where the members of the group have conflicting preferences. Example: Let each of the prefer-
ence orderings A ≺ B ≺ C , B ≺ C ≺ A, C ≺ A ≺ B get one third of the votes assuming that all
members of the group accept the transitivity rule. Then all the preferences A ≺ B, B ≺ C , C ≺ A
have two thirds of the votes while the preferences A ≺ C , B ≺ A, C ≺ B have one third of the
votes. By a majority decision rule the preferences A ≺ B, B ≺ C , C ≺ A are all accepted. Thus
the transitivity is lost.

Having solely a preference ordering of C is naturally not particularly useful since the choice
in practice is between lotteries in L that usually do not belong to C. Thus the decision maker
looks for an extension of the preference ordering from C to L. At this point the difficulties become
serious for the decision maker because he or she cannot make a choice without being confronted
with both pro et contra. Von Neumann’s and Morgenstern’s idea is to get around the problem
by formulating some simple axioms for rational decision making in such a way that these axioms
by mathematical necessity lead to a unique extension of the preference ordering from C to L.
Accepting the statements of the axioms the decision maker is thus released from this difficult
weighing problem.

It turns out, though, that the decision maker cannot get around by just choosing the preference
ordering in C. He or she must also assign relative weights to the consequences in C. It is not
sufficient to state that A ≺ B. The decision maker must also make up his or her mind of how much
B is preferred to A. Thus it is necessary to put all the consequences on a value scale by the aid of
a suitable function u : C � R that does not just preserve the preference ordering by satisfying the
condition

A ≺ B ⇔ u(A) ≤ u(B) (12.2.10)

but where the values express the relative utilities to the decision maker of the different conse-
quences. The function u : C � R is therefore called the decision maker’s utility function. How-
ever, the origin and the unit of the utility value scale make no importance for the decision process.
The problem of the extension of the preference ordering from C to L can hereafter alternatively be
formulated as a problem about the extension of the utility function from C to L.

In the following it is assumed with sufficient generality that u(t) is an increasing function
of t ∈ [0, 1] corresponding to the decision maker’s preference ordering of the set of all trivial
lotteries. To the index value t then corresponds all lotteries with utility u(t). These trivial lotteries
are all equivalent and no trivial lotteries with utilities different from u(t) are equivalent to any of
the lotteries with utility u(t). The first axiom of Von Neumann and Morgenstern helps the decision
maker to choose the utilities of the trivial lotteries:

Axiom 1: For any trivial lotteries A ≺ B ≺ C where A and C are not equivalent, there is a
unique probability α ∈ [0, 1] such that

B ∼
∫ 1

0
[A(1 − α)δ(t − tA) + Cαδ(t − tC)] dt = (1 − α)A + αC (12.2.11)
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where δ(·) is Dirac’s delta function, and tA < tC are the index values of A, C , respectively. The
notation on the right side of (12.2.11) is directly interpretable as a lottery between A and C with
the probability 1 − α of getting A and α of getting C .

The decision maker may now choose to let the utility function u(t) be defined such that the
utility of B becomes equal to the expected utility of the equivalent lottery (1 − α)A + αC , that is,

u(tB) = (1 − α)u(tA) + αu(tC) (12.2.12)

Defined in this way u(tB) is a convex linear combination of u(tA) and u(tC), implying that the
ordering u(tA) ≤ u(tB) ≤ u(tC) is preserved. As stated by Axiom 1 the decision maker chooses
the probability α and then defines the utility u(tB) of the trivial lottery B such that u(tB) equals the
expected value of the random utility u(T ) of the equivalent lottery (1 −α)A +αC . If the decision
maker chooses the utilities u(tA) ≤ u(tB) ≤ u(tC) as expected utilities with u(tA) < u(tC) , then
he or she must accept the equivalence (12.2.11) with

α = u(tB) − u(tA)

u(tC) − u(tA)
(12.2.13)

It is now quite natural to define the utility U (L) of any lottery L = ∫ 1
0 C(t) dF(t) as the expected

utility E[U (T )]:

U
(∫ 1

0
C(t) dF(t)

)
=

∫ 1

0
u(t) dF(t) (12.2.14)

This is an extension that preserves the ordering of the trivial lotteries, of course. Moreover the
definition is consistent with the remaining 4 von Neumann - Morgenstern axioms:

Axiom 2: The preference ordering of the set of all lotteries is transitive, and is an extension of
the preference ordering of the set of trivial lotteries.

Axiom 3: For any non-equivalent lotteries A, B and for any α, β ∈ [0, 1]:

(1 − α)A + αB ∼ (1 − β)A + β B ⇒ α = β (12.2.15)

Axiom 4: For any lotteries A, B, C and for any α ∈ [0, 1]:

A ∼ B ⇒ (1 − α)A + αC ∼ (1 − α)B + αC (12.2.16)

Axiom 5: For any lotteries A ≺ B and for any α ∈ [0, 1]:

A ≺ (1 − α)A + αB ≺ B (12.2.17)

Axioms 3, 4 and 5 can hardly cause severe objections if Axiom 2 is accepted. It is trivial that
these axioms are all satisfied for the ordering relation ≺ induced in the set of lotteries between the
trivial lotteries by the utility definition (12.2.14). We will show that any other imposed extension
of the ordering of the trivial lotteries will be in conflict with the axioms if the utility function u(t)
is bounded, that is, if u(0) = min u(t) and u(1) = max u(t) corresponding to the least preferred
trivial lottery C(0) and the most preferred trivial lottery C(1), respectively.
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By Axiom 1 we have that there is a probability p(t) such that C(t) ∼ C(0)[1−p(t)]+C(1)p(t)
and by use of Axiom 4 we then have for any lottery (12.2.3) that

∫ 1

0
C(t) dF(t) ∼

∫ 1

0
{C(0)[1 − p(t)] + C(1)p(t)} dF(t) =

(
1 −

∫ 1

0
p(t) dF(t)

)
C(0) +

(∫ 1

0
p(t) dF(t)

)
C(1) (12.2.18)

Thus there are probabilities α and β such that

∫ 1

0
C(t) dF(t) ∼ (1 − α)C(0) + αC(1) (12.2.19)∫ 1

0
C(t) dG(t) ∼ (1 − β)C(0) + βC(1) (12.2.20)

Assume that α ≤ β. Then we have by Axiom 4 that

∫ 1

0
C(t) dF(t) ∼

(
1 − α

β

)
C(0) + α

β

(
(1 − β)C(0) + βC(1)

)
∼

(
1 − α

β

)
C(0) + α

β

∫ 1

0
C(t) dG(t) (12.2.21)

which by Axiom 5 shows that the relation

∫ 1

0
C(t) dF(t) ≺

∫ 1

0
C(t) dG(t) (12.2.22)

is valid between the two lotteries defined by (12.2.18) and (12.2.20). Axiom 3 ensures that if the
two lotteries are equivalent then the value of the integrals on both sides of (12.2.22) are equal after
replacing C(t) by u(t). Obviously the ordering (12.2.22) is that obtained from the utility function
(12.2.14). Thus any other ordering is in conflict with the axioms.

The axioms are originally formulated for a finite set of trivial lotteries implying that u(t) is
bounded. However, for the applications it is inconvenient to work only with a finite set of trivial
lotteries. When the set of trivial lotteries is infinite it is not sufficient to restrict the utility function
u(t) for the trivial lotteries to be bounded, that is, we need to include the possibility that u(t) →
−∞ as t ↓ 0 and/or u(t) → ∞ as t ↑ 1. The extension is simply made by adopting a sixth axiom
that states that the ordering in the set of lotteries for which the expected utility exists for each
lottery L is induced by the utility function U (L) defined by (12.2.14). Thus the extended axioms
of von Neumann and Morgenstern lead to the decision rule that the optimal decision is the one that
selects the realizable lottery that has the largest utility provided the maximum exists within the set
of realizable lotteries.

The realizable lotteries are those lotteries that in the given practical situation can be run by an
action. The set L of lotteries between finitely many consequences from C can naturally contain
lotteries that do not correspond to a possible action. For example, this is the case when among the
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possible actions there is no action that for sure can be foreseen to lead to a given consequence. The
lotteries in C ⊂ L are then not realizable by any possible action.

It is emphasized that it is an implication of the definition of the utility function concept that
it is the expected value of the utility that is the scalar indicator of the preference ordering. Thus
it does not make logical sense to consider other parameters as ordering scalars such as fractile
values in the lower tail of the probability distribution of the utility value. The utility values follow
automatically from the Axioms 2 to 5 on the basis of the decision maker’s ordering of C by the use
of equivalent lotteries as stated in Axiom 1. In practice it is usually the utility values correspond-
ing to the consequences that are specified by the decision maker. He or she must thereafter per
definition accept the probabilities obtained from (12.2.13) in all the equivalent lotteries between
any two consequences. A following correction of these probabilities may then conversely lead to
a correction of the utility values as specified by (12.2.12).

The most frequent decision situation in practice is that where the consequences are claimed
to be measurable on a monetary scale as gains or losses. Let us assume that each consequence
C ∈ C has a monetary gain g(C) (negative for loss) as the only effect of the consequence C .
Then, of course, the decision maker will order C by the use of the gain function g. However, it
is not necessarily given that the decision maker will identify the utility function u(C) with g(C).
If we define u(C) ≡ g(C), the expected utility equals the expected gain and the decision rule
therefore maximizes the expected gain. If the chosen lottery is run several times with mutually
independent repetitions of the lottery, the average gain per lottery will approach the expected gain
with probability 1. In such a situation the adopted decision rule is clearly rational. Any other rule
will in the long run lead to a smaller gain.

On the other hand, once or some few times in a lifetime the decision maker can be in a situation
where he or she is about to do an action that realizes a lottery of great importance for him or her.
The decision maker may then have a tendency to prefer the safe for the unsafe (gamblers the
opposite, perhaps). This means that the lottery probability of the preferred consequence should be
larger than the value obtained when u(C) ≡ g(C) is used as utility function.

It is often claimed that several consequences of an engineering activity are of such a nature that
they are not measurable on a numerical scale. It may be consequences that are about esthetical
qualities or consequences that imply ethical problems as for example about setting the value of
human life or evaluation of qualities of Nature and the importance of ecological mechanisms.

However, if decisions should not be made just at random but be well considered, it is necessary
implicitly or explicitly to introduce a transitive preference ordering in the set of realizable lotteries
even though this ordering need not be complete such as implied by the axioms of von Neumann and
Morgenstern (a realizable lottery can have preference before all other realizable lotteries without
the need that these are ordered relative to each other). By the accept of von Neumann’s and
Morgenstern’s decision axiomatics also the existence of a scalar utility function is accepted with
values that can be mapped on a monetary scale. The units of such a scale are often denoted as
socio-economic units. By the lottery equivalences in Axiom 1 the socio-economic values can be
made commensurable with monetary values. Of course, these equivalence evaluations can very
well come out such that the resulting expected socio-economic value of a lottery does not increase
proportionally with the expected monetary value of the lottery. Typically this will be the case for
the previously mentioned prudent decision maker. In a lottery with small amounts of money he or
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she will possibly not hesitate with respect to the use of the monetary value evaluation. For larger
amounts of money at stake the consequence of loss relative to the sure consequence can be much
more serious for the future of the decision maker than the advantage he or she can get by a gain
relative to the safe consequence. As an implication of this the utility value of the safe consequence
is shifted to a larger value than the expected gain.

12.3 Optimal reliability

The discussion of the problem about the choice of the reliability level of a structure can conve-
niently be supported on the following often considered simplified decision theoretical model.

The anticipated capital investment in a structure under design is obviously a function c(p) of
the required failure probability p. This function can be assumed to be decreasing. Assume that the
loss of the structure by a failure will imply an investment equal to c(p) + d where d is the direct
damage cost of the failure event (compensations for losses, clearing, etc.) measured in monetary
units. For each value of p we thus have a lottery between two consequences, namely a consequence
with the utility −c(p) corresponding to the event of no failure, and a consequence with the utility
−2c(p) − d corresponding to the event of failure. These two consequences refer to a specific
period of time. In order not to complicate the discussion with considerations on capitalizations
(interest rate considerations) that require an extension of the model to keep account of the point in
time at which the failure possibly occurs, the reference period is taken to be short like 1 year, say.
The total cost (the utility with opposite sign) then is

c(p)1no failure + [c(p) + d]1failure (12.3.1)

and it has the expected value

c(p)(1 − p) + [c(p) + d]p = c(p) + dp (12.3.2)

Following von Neumann’s and Morgenstern’s decision rule we should among these infinitely many
lotteries between two consequences choose the lottery for which the expected total cost is smallest.
By differentiation of (12.3.2) we get the condition

c′(p) + d = 0 (12.3.3)

for the determination of the optimal failure probability, that is,

d = −c′(p) (12.3.4)

from which d is directly obtained as a function of p or from which p can be determined as a
function of d.

Example 12.2 The variation of the capital investment within the relevant interval of small failure
probabilities p can in most cases be approximated sufficiently accurately by a function of p which
is linear in the generalized reliability index β:

c(p) − c(p0) = a(β − β0) (12.3.5)
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where a is the increase of cost per unit increase of β, and β0 is a suitable representative reliability
index (e.g., β0 = 4.76 corresponding to the probability p0 = �(−β0) � 10−6). The equation
(12.3.4) then becomes

d

a
= dβ

dp
=

√
2π eβ2/2 =

⎧⎨
⎩

2.3 × 102 for β = 3
0.75 × 104 for β = 4
0.67 × 106 for β = 5

(12.3.6)

Therefore, to get optimal reliabilities of the size required in present codes the direct damage costs
must be several orders of magnitude larger than the investment c(p).

For given d and for values of β that are relevant in structural reliability we thus find from
(12.3.6) that the optimal generalized reliability index is approximately

βopt �
√

2 log

(
d

a
√

2π

)
(12.3.7)

For an optimal value of β equal to 4.5, a change of the ratio d/a by a factor of 10 will only imply
a change of the optimal value of β by about 10%. �

Let us assume that engineering practice for the choice of target reliability in structural design
develops in the direction of determination of the optimal reliability according to the decision-
theoretical principles. Then the engineering profession must formulate regulating codes for certain
utility value assessments that ensure a generally acceptable and authoritatively approved prefer-
ence ordering of the consequences of any building activity. Codes for utility value specifications
should in an initial phase be calibrated to such values that the code by and large leads to the target
reliability levels approved by the superior authority and pointed out by this authority on the basis
of the existing codes. As shown by the calculation in Example 12.2 this calibration will lead to
very large values of the direct failure costs d. Often d will be orders of magnitude larger than the
compensations ordinarily paid out by the insurance companies. This finding that the values of d
are so large can perhaps be seen as a consequence of the natural aversion of the engineering profes-
sion against experiencing failures. Such an aversion is partly due to a fear of loosing prestige and
goodwill in the society but it may also be seen as an ethical attitude that command the engineering
activity to be practiced such that it will cause no harm to human health and life.

If the optimality postulate stated by the superior authority is accepted, that is, if it is taken for
granted that the reliability levels defined implicitly for certain structure type classes by a current
authorized code is optimal, it turns out that the damage cost d do not vary proportionally to realistic
monetary compensation values. Thus the damage cost d is a socio-economic value.

Besides specifying critical utility values in suitable units that can be transformed into monetary
units, a decision theoretical code just like a probabilistic code with specified target reliability levels
should standardize a set of probability distribution types for the input variables. The necessity
of the code standardization principle also for a decision theory based code is illustrated by the
following example.

Example 12.3 Both engineers mentioned in Example 7.2 assume that the cost of the cable in-
cluding its installation is k R where k is a constant. Upon failure the same cost applies for the
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replacement. On top of this there is a direct cost d of the failure. In part this cost includes an
intangible cost of loss of human lives measured in socio-economic units. Thus the expected total
cost is

k R P(S ≤ R) + (k R + d)P(S > R) = k R + P(S > R)d (12.3.8)

which for the normal distribution model becomes

k E[S](1 + βNV ) + �(−βN)d (12.3.9)

By setting the derivative with respect to βN to zero it follows that between the direct cost d = dN

of failure and the optimal value of βN there is the relation

dN

a
= 1

ϕ(βN)
=

√
2π exp(β2

N/2) (12.3.10)

in which a = k E[S]V and β0 is defined as in (12.3.5). This relation is the same as (12.3.6) (for

Figure 12.1: The intangible cost dN as function of the optimal reliability index βN corresponding
to the normal model.

β = βN). Figure 12.1 shows dN/k E[S] as function of βN for β0 = 0 and various values of V . For
the lognormal model the expected total cost becomes

k E[S] exp[βLN

√
log(1 + V 2)]√

1 + V 2
+ �(−βLN)d (12.3.11)

for which the relation between the direct cost d = dLN and the optimal value of βLN is

dLN

k E[S]
= exp[βLN

√
log(1 + V 2)]√

1 + V 2

1

ϕ(βLN)

√
log(1 + V 2) = (1 + βN V )

√
log(1 + V 2)

ϕ(βLN)

(12.3.12)
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Figure 12.2: The ratio of the equivalent intangible costs dLN and dN for the lognormal and the
normal model, respectively, as function of the optimal reliability index βN.

using that RN = RLN, see (7.1.14). Thus we have the ratio

dLN

dN
= 1

V
(1 + βNV )

√
log(1 + V 2) exp[(β2

LN − β2
N)/2] (12.3.13)

in which (7.2.15) should be substituted for βLN. This ratio is shown in Fig. 12.2 as function of βN

for various values of V = VS .

It is seen from Figs. 7.1 and 12.2 that to obtain the same optimal resistance R in the two
models, the two engineers must apply quite different values (dN and dLN) of the direct failure cost
d as well as quite different values (βN and βLN) of the reliability index β. This is the so-called “tail
sensitivity problem” that obviously calls for a code standardization of the distribution type. On the
other hand, it follows from Fig. 12.1 that the optimal value of βN is not very sensitive to the choice
of dN. �

12.4 Uncertain gain and utility functions

Construction activities imply direct monetary costs that at the state of the design decision making
are not known with certainty. The costs are assessed by considering present price levels and per-
haps by setting up prognosis models for the future economical environments of the project. Such
considerations may lead to an assessment of a probability distribution of the actual monetary costs.
With respect to monetary costs the realization of the project is thus considered as a draw from this
distribution, that is, as a run of a lottery. This lottery is a component of a composite lottery in the
set of lotteries L of relevance for the actual decision problem. When taking the expected value
of the utility of the composite lottery the monetary cost component will contribute merely with
its expected value. Thus it follows that the future monetary costs need only be assessed up to the
expected value. Observed average costs over several similar projects together with relevant prog-
nosis considerations are therefore sufficient guides for the assessment of the monetary costs that
should be used as inputs to the decision model.
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The decision maker may be uncertain about his or hers preferences. This is reflected in un-
certainty about the choice of the utility function u(C). In the particular case where the utility is
identified with the gain, the problem has been clarified above. If the considered consequence C
is not directly measurable on a monetary scale implying that a socio-economic utility value must
be assigned to C , the problem may be dealt with in the same way. The uncertainty in the mind
of the decision maker is expressed by his or hers assessment of a probability distribution of utility
values rather than by a choice of a unique utility value. Thus the consequence C is with respect to
utility dissolved into a set of socio-economic values. A lottery between these values is included as
a component of the relevant composite lottery. The lottery probabilities are given by the assessed
probability distribution. As for the monetary gain it follows that it is sufficient to use the expected
value in the utility distribution as the input utility value of the consequence C in the decision model.

We can conclude from the considerations in this section that in presence of uncertain gain
or utility functions it is only the expected gain or utility function which is relevant for the final
decision problem.

Example 12.4 Consider the variability of the reliability index of the tubular joints obtained by
partial safety factor design as reported in Example 12.1. This variability can be transformed into
variability of the direct damage cost d by considering the ratio d/(a

√
2π) obtained from (12.3.6)

as a random variable D/(a
√

2π). Thus the partial safety factor code gives uncertain information
about the direct failure cost. If all the variability is taken as an expression of the societal uncertainty
of the assessment of the value of d (or better expressed, perhaps, the uncertainty left over to the
code committee that faces the problem of calibrating a probabilistic code to an existing partial
safety factor code), it follows from the decision theory that d should be put to its expectation
E[D]. Since

E[D]

a
√

2π
� 1

σ

∫ ∞

−∞
ex2/2ϕ

(
x − µ

σ

)
dx = 1√

1 − σ 2
exp

[
µ2

2(1 − σ 2)

]
(12.4.1)

in which µ = 4.40 and σ = 0.30, the optimal reliability index according to (12.3.7) becomes

βopt �
√

µ2

1 − σ 2
− log(1 − σ 2) � 4.62 (12.4.2)

This value of βopt is seen to be larger than the expectation E[β] = 4.40 while βclass = 4.21 is
smaller than the expectation, see (12.1.5). It is also seen that E[D] increases with σ and that
E[D] → ∞ (βopt → ∞) as σ → 1. Of course, these specific conclusions can only be claimed to
be valid for the example considered here, where the uncertainty distribution of β is normal.

More refined analyses may be made in specific realistic examples of practice. For example, the
coefficient a in (12.3.5) can be a random variable when considering the variation over structures.

The calibration procedure leading to (12.4.2) is based on the idea that the partial safety factor
format gives an optimal design for a representative joint. The uncertainty about which joint is
representative is simply interpreted as uncertainty of the damage cost D.

As for the partial safety factor format with a single value set of factors it is in this procedure
assumed that the failure consequence is the same for all joints (structures) designed according to
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the code. The uncertainty is assumed only to be about the evaluation of the socio-economic cost
of the failure. On a more detailed level of modeling it is reasonable to include the possibility of
having variation of the real failure consequence over the set of joints of the offshore structure. Let
us imagine that the set of joints by event analysis is divided into subsets within each of which the
consequence of failure is the same. This classification into subsets is completely independent of
the code format applied to design the joints. Therefore the probability distribution of the reliability
index is the same for all the subsets and the same as the distribution for the total set of all joints.
However, the relation between the reliability index and the damage cost can no longer be based on
the optimality postulate which would lead directly to an inconsistency because it implies that the
expected damage cost is the same for all subsets. A simple model for obtaining a variation of the
expected damage cost over the set of subsets is as follows.

Write the damage cost as D = C D′ where C and D′ are mutually independent random vari-
ables such that E[C] = 1. The factor C represents the variation over the set of subsets while D′
represents the uncertain socio-economic cost of the failure in the average over all subsets. Assume
that the consequence analysis leads to an assessment of the coefficient of variation VC of C . Then
it is possible to obtain the same total variation of D as induced by the partial safety factor code if
the equation

(1 + V 2
C)(1 + V 2

D′) = 1 + V 2
D (12.4.3)

for the coefficient of variation of D = C D′ can be satisfied for some value VD′ > 0. This is the
case only if VC ≤ VD. Referring to (12.4.1) we have

E[D2]

a22π
� 1

σ

∫ ∞

−∞
ex2

ϕ

(
x − µ

σ

)
dx = 1√

1 − 2σ 2
exp

[
µ2

1 − 2σ 2

]
(12.4.4)

so that

1 + V 2
D = E[D2]

E[D]2
= 1 − σ 2

√
1 − 2σ 2

exp

[
µ2σ 2

(1 − σ 2)(1 − 2σ 2)

]
→ exp[µ2σ 2(1 + 3σ 2)]

(12.4.5)

asymptotically as σ → 0. With σ ′ being the standard deviation of D′ we get 1+ V 2
D′ from (12.4.5)

by substituting σ = σ ′. We may now use the optimality postulate on C D′ for C given. Thus
(12.4.1) gives E[C D′ | C] = C E[D′] and (12.3.7) gives by substituting d = C E[D′] that

βopt|C �
√

µ2

1 − σ ′2 − log(1 − σ ′2) + 2 log C (12.4.6)

For µ = 4.40, σ = 0.3 we find 1 + V 2
D = 10.381 (VD � 3.06). If VC = 2, say, we get

1 + V 2
D′ = 2.076 (VD′ = 1.04). From (12.4.5) we next find σ ′ � 0.185 so that (12.4.6) gives

βopt|C � 4.48(1 + 0.05 log C) =
{

4.32 for C = 0.5
4.63 for C = 2

(12.4.7)
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This line of reasoning shows that it is possible to make a reasonable calibration of a proba-
bilistic code to a given partial safety factor code even under consideration of consequence differ-
entiation. The probabilistic code may specify some few safety classes that together cover what in
the partial safety factor code is considered to be only one safety class. Such a classification with
associated reliability levels determined according to (12.4.6) can be taken as a possible solution to
the problem of reliability level choice stated in the text at the end of the tubular joint illustrative
example, Example 12.1. The reliability levels of the classes are consistent with the dispersion in-
duced by the partial safety factor code and therefore these reliability levels should all be acceptable
by the superior authority. Moreover, the reason for giving accept is made stronger by improving
rationality through exercising an explicit professional consequence evaluation. �

12.5 Influence from uncertain determination of the lottery prob-
abilities

In engineering decision considerations the lottery probabilities α1, α2, . . . , αn of getting the con-
sequences C1, C2, . . . , Cn , respectively, are usually determined by evaluations supported on data
and calculations that are based on idealized models. These models combine geometric properties
and physical laws and assumptions in an anticipatory way (that is imaginative predicting). There
is a considerable uncertainty in this evaluation be it based on limited sets of data or on anticipatory
models.

The total uncertainty can formally be represented by a suitable joint probability distribution
for the set of relevant input parameters with unknown values. This distribution expresses a mea-
sure of the knowledge about the input parameters and it is determined on the basis of those sub-
studies that are parts of the relevant risk analysis. In principle the joint uncertainty distribution
of the parameters lead to an uncertainty distribution of the lottery probabilities α1, α2, . . . , αn .
Thus the values of α1, α2, . . . , αn are not known and therefore it cannot be said that the lottery
L(α1, α2, . . . , αn) is run corresponding to these probabilities when performing an action follow-
ing from a decision. The lottery L(α1, α2, . . . , αn) is simply not realizable (it cannot be run with
certainty). On the other hand, the lottery L(α1, α2, . . . , αn) gets the role as a consequence in
a realizable lottery between all lotteries between the consequences C1, C2, . . . , Cn . The lottery
probabilities in this composite lottery are determined by the joint uncertainty distribution of the
lottery probabilities α1, α2, . . . , αn . By the action, the values α1, α2, . . . , αn are drawn from the
uncertainty distribution upon which the drawn lottery is run. It follows from the rules of the prob-
ability theory that this two step lottery cannot be distinguished on its outcomes from the one step
lottery that as lottery probabilities has the mean values in the uncertainty distribution of the lottery
probabilities. This last lottery is therefore equivalent with the composite lottery and it is there-
fore the only realizable lottery between the considered consequences. From this it follows that
the uncertainty distribution on the lottery probabilities α1, α2, . . . , αn is without relevance for the
decision maker except for the mean values.

Usually the lottery probabilities are nonlinear functions of the input parameters. Therefore it
is a mistake to conclude that the degree of uncertainty of the input parameters has no influence
because the nonlinearities imply that the mean values of the lottery probabilities are not functions
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solely of the mean values of the input parameters but in principle of their entire joint probability
distribution.

If we revisit the lottery in Section 12.3 it looks as if the consequences in this lottery are func-
tions of the lottery probabilities. Such a dependence will naturally not lead to the aforementioned
simple composite lottery situation. However, the correct formulation of (12.3.2) is

c(E[P]) + [c(E[P]) + d]P (12.5.1)

where P is the Bayesian random variable that corresponds to the unknown parameter p. The
investment c, realized by an action, can only vary with respect to the realizable lotteries because
solely a realizable lottery is chosen by the action.

Example 12.5 Suppose that a building is supported on two columns that both can be subject to
a failure event. Assume that the two failure events for given distribution parameters are mutually
independent and have the same probability p. Let 1I and 1II be the indicator variables for failure of
first and second column, respectively. Then we have a lottery between the consequences of three
possible events with the probabilities

P(no failure) = E[(1 − 1I)(1 − 1II)] = (1 − p)2 (12.5.2)

P(failure of one column) = E[1I(1 − 1II) + (1 − 1I)1II] = 2p(1 − p) (12.5.3)

P(failure) = E[1I1II] = p2 (12.5.4)

The relevant lottery becomes

E[(1 − P)2]K1 + E[2P(1 − P)]K2 + E[P2]K3 (12.5.5)

where P is the Bayesian random variable that corresponds to p.

Let the direct loss by failure be d and assume that the loss is the same whether a single column
fails or both columns fail. The expected loss by failure then becomes

E[2P(1 − P) + P2]d = (2E[P] − E[P2])d (12.5.6)

which is seen for fixed E[P] to decrease with increasing variance Var[P] = E[P2] − E[P]2.
This does not imply that it cannot pay to gather more information with the purpose of decreasing
the uncertainty in the determination of the probability p. Consideration of new information will
change both E[P] and Var[P]. If p is small the change will usually be in the advantageous
direction. �

12.6 The engineering problem about the choice of utilities fac-
ing the phenomenon of risk aversion

It is important for the implementation of a rational decision strategy that it has been established
who is the decision maker. Moreover it is important that the interests of this decision maker can be
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formulated. Here it will be assumed that a company (which in particular can be the public society)
is the decision maker and that the interest of the company is to run an economically optimal activity.
It is assumed that this activity is run under due consideration of relevant sources of malfunctioning
that may generate losses. Moreover, it is assumed that the company has to act in a political climate
that influences the size of the losses.

The majority of the relevant utilities in structural engineering are of the monetary type. These
utilities can be chosen without fundamental difficulties. The difficulties appear when choosing
utilities that concern aversion against certain intangible phenomena. Such aversions seem to play
an essential role in public political decision processes where the debate is going on pro et contra
the construction of big technical plants.

An example of risk aversion is the attitude that the loss of a large number of human lives by
one single accident is evaluated as considerably worse than the loss of the same number of human
lives by as many separated accidents. It has been experienced that the public (the politicians) and
the news media react heavily on the big single accident and are almost indifferent to the many small
accidents. These accidents are just an everyday occurrence. The problem is to which extent the
company by its choice of utilities should consider this and similar phenomena. Here the company
should make clear to itself to which degree its interests are harmed by the reaction of the public.
There can be a real loss after a large accident if the politicians require that costly safety increasing
measures should be introduced before continued operation of the structure can be allowed. This
means that the loss by such a big accident must be increased not due to an increased value of several
simultaneous losses of human lives but due to the increased material costs of the re-establishing
of the structure and/or the increased operation costs. If the company chooses to take this aversion
phenomenon as a possibility of loss beyond proportionality, this extra loss should therefore not be
quantified solely in dependence of lost human lives by a single accident but rather by the monetary
losses appearing after the accident due to the possible political actions. Specific examples of such
risk aversion modeling are given in Section 12.11.

For accidents that threaten the natural environments the same aversion phenomena appears.
After an accident with environmental damages that at the time of the accident are declared to be
“irremediable” one should expect political interference.

The problem about risk aversion is difficult, of course. In spite of this it is a reflection of ratio-
nality and order in own line of thinking (self consistency with respect to preferences) to confront
oneself directly with this problem and to make a choice. Quite commonly criteria setting authori-
ties of the company (or the public) “sweep the problem under the carpet” by stipulating limit values
of the probabilities of the considered adverse events. These limit values are set with value varia-
tion that in some mysterious way is believed to be a rational mirroring of the phenomenon of risk
aversion. The limit probabilities are even thought of as limit values of “absolute probabilities”,
whatever that means. If such absolute probabilities are not just metaphysical quantities but are
believed to contain interpretable empirical evidence, they are in practical decision situations deter-
mined with considerable uncertainty. One could ask about the rationality in the decision making
when very uncertain guesses on absolute probability values are compared with arbitrarily chosen
limit values.

These critical remarks should not be taken as a claim that the result of a set of decision analy-
ses relevant to the company cannot be summarized by a set of operational rules that contain limit
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values of probabilities or other characteristic quantities. However, such limit values can be cho-
sen by use of the superior decision strategy and they can be considered as comparison quantities
for probabilities obtained in a well specified model with well specified input. By this interpreta-
tion “absolute” probabilities are replaced by “operational” probabilities in a normative modeling
system.

12.7 Codified constraints

For certain types of decisions involving ethical values and/or general protection of societal stan-
dards of quality of life and property including protection of Nature there exists in many commu-
nities a general public consensus of setting codified upper or lower limits directly or indirectly
to some types of more or less intangible socio-economic costs. With respect to structural design
decisions such constraints on the decisions are in many countries code specified in terms of values
of safety factors to be applied together with more or less standard structural analysis models and
standard models of strengths of materials.

Constraints can also be set from the public on the set of realizable lotteries by requiring that the
lottery probabilities corresponding to certain adverse events be kept below specified limits. Such
probability limits should be calibrated to fit with a superior standard of safety. They will depend
on the specific probabilistic model used in the analysis. Thus it is not sufficient to require that the
probability of failure, say, is less than a given number without specifying to which formal proba-
bilistic model this limit probability refers, that is, to which code of practice it belongs. Likewise
the calibrated values of the intangible costs of failure are sensitive with respect to the considered
probability distributions. On the other hand, for a given probabilistic model the optimal structural
dimensions of highly reliable structures are not very sensitive with respect to changes of the intan-
gible costs. An illustration of these sensitivity properties is given for the very simple structure in
Example 12.3.

12.8 Multi-criteria decision analysis

Even though the principles of the decision theory of von Neumann and Morgenstern are easy to
appreciate, they may not be easy to implement in practical decision situations where support in
codes of practice cannot be found. In particular the decision maker may face problems about
choosing the utility function u(C) when each consequence C ∈ C is made up of m > 1 component
consequences κ1, . . . , κn that are not directly commensurable on a monetary scale or which may
interact with respect to preference. Let the consequences in C be

C1 = (κ11, κ12, . . . , κ1m)
...

Cn = (κn1, κn2, . . . , κnm)

(12.8.1)

Then there may be obvious preference orderings in each of the components but the ordering will
usually differ from component to component. In other words, each component defines a decision
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criterion but two or more of these m criteria may be mutually inconsistent. Assume that utilities
u(κ1 j ), . . . , u(κnj ) are assigned by the decision maker to each of the component consequences
such that the utilities are commensurable between the consequences κ1 j , . . . , κnj for each j =
1, . . . , m. The index j on the utility function reflects that the utility value scale may differ with
respect to j . For each j the utilities are said to be commensurable if α1u(κ1 j ) + · · · + αnu(κnj )

can be accepted as the expected utility of the lottery between the consequences κ1 j , . . . , κnj for
any choice of the lottery probabilities α1, . . . , αn .

In some decision problems it makes sense to define the utility function u(C) solely on the basis
of the component utility functions u1, . . . , um . In fact, if the decision maker claims that he or
she is able to define the component utilities on the same socio-economic scale, that is, to choose
utility unit transformation factors w1, . . . , wm such that w1u1, . . . , wmum become utility functions
with common value scale, and that the component consequences do not interact with respect to
preference, then it can be shown that the utility of the composite consequence C = (κ1, . . . , κm)

for any C ∈ C should be defined as

u(C) = w1u1(κ1) + · · · + wmum(κm) (12.8.2)

except for an arbitrary additive constant. (Formally the definition of no interaction of the com-
ponent consequences with respect to preference is as follows: Let L ′ = α1C1 + · · · + αnCn and
L ′′ = β1C1 + · · · + βnCn be any two different lotteries defined such that the component lotteries
L ′

j = α1κ1 j + · · · + αnκnj and L ′′
j = β1κ1 j + · · · + βnκnj , j = 1, . . . , m, are run independently of

each other. Then the component consequences are said not to interact with respect to preference if
the statement L ′

j ∼ L ′′
j for all j = 1, . . . , m implies that L ′ ∼ L ′′).

If the component consequences interact with respect to preference, it is in general not possible
to define the utility u(C) in terms of the component utilities u1(κ1), . . . , um(κm) alone. As an
example consider a redundant structure where the failure or no failure of element number j are the
two relevant consequences for element j . For the structure the composite consequences are the
vectors of consequences related to the elements of the structure. It is obvious that the component
consequences in this example interact with respect to preference. In any such case of preference
interaction the decision maker must assign utilities directly to the composite consequences.

Example 12.6 The formulas of this example are formulated solely for the purpose of illustration.
They are not based on real evidence.

Consider the design of a chimney with a filter device for limiting the amount of pollutant re-
leased to the atmosphere. For a given chimney height it is assumed that there is a given probability
distribution of the concentration of the pollutant at a given point in the vicinity of the chimney for
one unit of pollutant released from the chimney. The mean concentration is assumed to decrease
inversely proportional to the square of the chimney height H . Moreover, it is assumed that the
mean concentration C is directly proportional to the released amount A per time unit of pollutant
within the relevant range of the release. Thus we assume that C = k A/H2, where k is some con-
stant. The release rate of pollutant depends on the filter capacity. The filter capacity is expressed
as the reduction factor F by which the pollutant release rate P is reduced by passing the smoke
through the filter, i.e. A = P F .

The construction and maintenance cost of the chimney is assumed to be proportional to H2

and of the filter to be a contant c0 plus an amount proportional to (1/F − 1)2. It has in principle
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been decided by the authorities that the owner of the chimney must pay a duty per time unit to the
state proportional to A, for A larger than some threshold value. However, it has not been possible
for the politicians to get unique scientifically based advices from environmentalists about what the
threshold value should be. Instead it has been decided to conglomerate the advices in terms of a
“fragility curve” expressing the probability that the release rate A is sufficiently harmful to justify
the full duty proportional to A. According to the same principles a duty must be paid to the local
community per time unit for causing the concentration C of pollutant.

Upon capitalization to present value the total cost of the chimney project becomes

c0 + c1

(
1

F
− 1

)2

+ c2 H2 + c3 P FG A(P F) + c4k
P F

H2
GC

(
k

P F

H2

)
(12.8.3)

which should be less than or equal to the capitalized net value of the production, of course. The
functions G A(x) and GC(x) are the fragility functions, c1, c2 are constant cost factors, while c3, c4

are constant duty factors including the effect of capitalization. G A(x), GC(x), c3, c4 are assumed
to be specified by the authorities presumably such that G A(x) and GC(x) both are continuously
increasing from G A(0) = GC(0) = 0 to 1 for suitably large x . The best choice of H and F for the
owner is then the choice that minimizes the total cost (12.8.3).

As an alternative to a system of duties the authorities can institute a mandatory code of practice
in which G A, GC , c3, c4 are specified. In the expression (12.8.3) the variables k, P , and F may be
generalized to be random variables or even to be more general probability theoretical concepts. In
any case, the minimum of the expected value of the total cost leads to the rational decision. �

12.9 Influence of radical errors∗

Let us look a little more critical on the assumptions on which (12.3.1) is based. We have defined
the indicator variable 1failure within a probabilistic failure model that includes ubiquitous internal
random fluctuations of the values of the relevant input variables and also the uncertainties of the
distribution parameters of these input variables. Also the model uncertainty is included both what
concerns the distributional types and the limit state. However, this probabilistic model does not
reflect the possibility of radical errors occurring at the design stage, in the construction process or
in service [human errors or “acts of God” (that is, natural disasters, war events or similar events)].
Such events are usually not classified as always present sources of uncertainty associated to the
given project. They are rare cases (hopefully) of radical misfits between the realized structural
design and the theoretical model used in the reliability analysis.

In order to take care of the possible occurrence of radical errors we can extend the probabilistic
model and assign the expectation

E[1failure] = P(failure and no radical errors) + P(failure and radical errors) (12.9.1)

The first term on the right hand side of (12.9.1) can be written as the product of the conditional
probability

ptheory = P(failure | no radical errors) (12.9.2)
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(the “theoretical” failure probability) and the probability

1 − perror = P(no radical errors) (12.9.3)

The second term on the right hand side of (12.9.1) can be written as the sum

P(failure and radical errors) =
∑

i

P(failure | radical error i)perror i (12.9.4)

where perror i is the probability of the occurrence of error radical error i . Here it is assumed that
the set of different possible radical errors are countable. Several together occurring errors are
considered as a combined radical error (a union of radical error events). In this way the numerated
radical error events become disjoint so that

perror =
∑

i

perror i (12.9.5)

is the probability of the occurrence of radical errors. The conditional probability

hi (ptheory) = P(failure | radical error i) (12.9.6)

is calculated by use of a modification of the probabilistic model corresponding to the altered struc-
ture that results as a consequence of the occurrence of the radical error i . The dimensions of
the altered structure are functions of the target value of the critical failure probability ptheory, of
course. Therefore this is also the case for P(failure | radical error i). All in all the failure proba-
bility (12.9.1) can be written as

E[1failure] = ptheory(1 − perror) +
∑

i

hi (ptheory)perror i (12.9.7)

Using this result the expected cost (12.3.2) is modified to

c(p) + [
p(1 − perror) +

∑
i

hi (p)perror i
]

d (12.9.8)

where p = ptheory. In this expression the capital investment c(p) should ideally be defined more
carefully in dependence of whether the structure is realized without radical errors or with the one
or the other radical error. However, this is of minor importance because perror � 1, c(p) � d and
the error capital investment for the structure with radical error and the structure without radical
errors is almost the same.

Usually it can be assumed that perror is independent of or only slightly dependent on ptheory.
Essentially there is only a variation of perror over the set of error alternative layouts of the structure
because dimension variations for a given layout are expected only to have a modest influence
on the potential proneness to radical error occurrences. For a given layout of the structure it
therefore makes sense to seek a minimum for the expected cost (12.9.8) under fixed values of
perror 1, perror 2, . . . . By differentiation of (12.9.8) with respect to p we then get the condition

c′(p) + [
1 − perror +

∑
i

h′
i (p)perror i

]
d = 0 (12.9.9)
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which by use of (12.9.5) reduces to

d = −c′(p)

1 + ∑
i [h

′
i (p) − 1]perror i

(12.9.10)

Without further modeling of the structural consequences of the considered radical errors it is
difficult to see whether the sum term can be neglected, and thereby obtain that the result (12.3.4)
can be considered to represent optimal design independent of whether or not radical errors can
occur.

Assume that numerator in (12.9.10) decreases with p. Then, for fixed d, the solution of
(12.9.10) with respect to p increases relative to that of (12.3.4) [i.e. d = −c′(p)] if the sum
term is negative. Since it is reasonable to assume that h′

i (p) > 0, the sum term is bounded from
below by −perror which in absolute value is assumed to be negligible as compared to 1. If the
sum term is positive, p as determined by (12.3.4) is a lower value for p as determined by solving
(12.9.10).

Among the different alternative layouts the optimal layout is that for which (12.9.8) becomes
smallest after substitution of the value of p valid for each layout.

Finally it should be noted that there are exceptions from the rule that perror can be modeled
to be independent of ptheory. An example is the radical design error of forgetting to investigate
the reliability of a column with respect to stability failure. If ptheory is very small the column
possibly becomes so voluminous that it is considered as a pillar, which hardly directly reminds the
engineer about the possibility of a stability failure. The probability perror of forgetting the stability
problem should presumably be assessed as being large in this situation. If ptheory is suitably large
the column becomes so slender that the need for a stability analysis becomes obvious. Therefore
the stability analysis is less prone to be forgotten. Thus it seems reasonable to model perror as a
decreasing function of ptheory.

12.10 Utility loss considerations

Utility and limit state

From a decision theoretical point of view the occurrence of undesirable structural behavior of a
certain type is associated with a loss of utility. The utility is conveniently defined as a scalar
function of the state of the structure, that is, of the basic input variables of the structural analysis
model. However, a design decision does rarely imply a specific choice of the values of the basic
variables. Rather a design decision implies a choice of a lottery between an infinity of states.

The concept of limit state as introduced in Chapter 2 is obviously applicable for such types of
undesirable behavior that reasonably can be represented by defining a certain subset of the space
of basic variables to be the set of undesirable values of the basic variables. Such a description
is applicable in situations where the utility of the structural state is anticipated to have a steep
decrease from a constant value in one part of the space of basic variables to a lower constant value
in another part of the space of basic variables. The decrease is anticipated to be so steep relative
to the dispersion of the random vector of basic variables that the utility function can be idealized
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as a two-valued function. The set of points at which the jump in value takes place can then be
considered as a limit state.

In case the space of the basic variables is the n-dimensional real space Rn , the expected utility
of the state of the structure is in general given by the integral

E[u(X)] =
∫

Rn
u(x) fX(x) dx1 · · · dxn (12.10.1)

of the utility function u(x) with respect to the probability density fX(x) of the set of basic variables.
For a limit state situation with utility loss C f (i.e., C f can be interpreted as the socio-economic
cost of failure), (12.10.1) reduces to

E[u(X)] = E[−C f 1X∈F ] = −C f

∫
F

fX(x) dx1 · · · dxn = −C f p f (12.10.2)

except for an arbitrary additive constant. Here F is the set of undesirable behavior (the failure set)
and p f = P(X ∈ F) is the probability of the event X ∈ F , that is, p f is the failure probability.

The anticipation of the steepness of the utility function can in some situations of undesirable
phenomena be less clear than for a collapse problem, say. In spite of this, codes often specify
formal limit states for such situations. It should be made clear, however, that such sharp defini-
tions of undesirable behavior can be in conflict with rational decision making. The point is that
rational decision making requires that alternative choices of the probability distribution of X (e.g.
alternative choices of the mean of X) are evaluated against each other by comparing the sum of the
direct construction costs and the expected utility loss for the different possible choices. This means
that if u(x) in (12.10.1) is approximated by a two-valued function then the approximation should
be reasonable not just for a specific choice of fX(x) but for all relevant alternative choices. This
requirement makes it sometimes difficult to justify the introduction of a physically non-existing
formal limit state. Code given formal limit states of this “non-physical” type ideally originate
from calibrations to results of more realistic models. Often they are only applicable within narrow
domains of value variations of the relevant structural parameters.

Another point is that the position of a physically existing (up to a reasonable degree of idealiza-
tion, of course) limit state in R

n can be uncertain. This means that the two-valued utility function
is uncertain. The uncertainty of the position of the limit state has the effect that it is not known
for sure whether a point in the space R

n of basic variables corresponds to undesirable behavior
or not. Given that X = x there is a probability P(x ∈ F) which is not necessarily either 0 or 1,
Section 3.4. Thus there is a conditional expected utility increment equal to

u(x) = −C f P(x ∈ F) (12.10.3)

The total expected utility increment is given by (12.10.1) with (12.10.3) substituted.

Time variant loss of utility

The time dimension is taken into account by considering the vector of basic variables to be a
function x(t) of time t . Then the utility concept is generalized to be associated to the entire ordered
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set of structural states defined by x(t), that is, the utility is a functional U[x(t)]. Often the time
developing structural states are only specified up to a random vector process X(t), Chapter 15.
In this case the expected utility is the average utility over the weighted ensemble of all possible
sample functions of X(t). This general concept of expected utility is rather abstract but it can in
special important modeling situations be made easy to appreciate.

One important example is related to the phenomenon of fatigue. Cyclic stress variations cause
increasing damage which may be considered as the same as increasing loss of utility just as con-
sumption of capital is a loss of utility. In the simplest models of the fatigue damage accumulation
process such as the Palmgren-Miner rule the utility loss is a weighted sum of the number of stress
cycles where the weights depend on the stress range of the corresponding cycles. Even for rather
simple random process descriptions of the stress variation it can be a quite complicated problem to
define the single cycles and to determine the expected utility loss.

Much simpler examples are considered in the following. These examples are related to the
concept of limit state.

The direct generalization of the time invariant limit-state model is obtained by considering the
random time T until first passage of X(t) into the set F of undesirable behavior and assuming
that the utility loss C f is obtained at time T while no further loss associated with the considered
structure can occur later than T . For example, the structure may cease to exist at time T . By
discounting back to present time the loss becomes the random variable

C f e−γ T (12.10.4)

where γ is the discount rate. Thus the expected utility loss becomes

E[U[X(t)]] = −C f

∫ ∞

0
e−γ t fT (t) dt (12.10.5)

in which fT (t) is the probability density function for the first passage time T of X(t) into F . In
the particular case where X(t) is a constant vector (the time invariant case) the first passage time
density becomes the defect density

fT (t) = p f δ(t) (12.10.6)

where δ(t) is Dirac’s delta function, and where the defect is the probability 1− p f of never passing
the limit state. Thus (12.10.5) reduces to (12.10.2). A reduction to (12.10.2) is also obtained when
the utility loss by passing the limit state is defined as

C f e−γ T 1T ∈[0,L] (12.10.7)

in which L can be interpreted as the design life time of the structure. Then (12.10.2) is obtained
from (12.10.5) for γ L → 0.

Utility loss by sequential excursions beyond the limit state

Another relevant example of a utility definition in the time variant case can be built directly on a
model that specifies a partitioning of the space of the instantaneous values of the basic variables
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into a set of less desirable values and the complementary set of desirable values. This partition-
ing can be fixed in time or it can be time variant. Each passage into the set of less desirable
behavior is assumed to be associated with a utility loss C . If the successive passage times are
T1, T2, . . . , Tn, . . . and the discount rate is γ , the total utility loss discounted to present value
becomes

C
∞∑

n=1

e−γ Tn (12.10.8)

The expected utility loss depends on the joint distribution of the passage times T1, T2, . . . , Tn, . . . .
A simple special example is obtained when T1, T2, . . . , Tn, . . . are points of a homogeneous Pois-
son process of intensity λ, Chapter 15. Then except for the factor C the expected utility loss
becomes

E

[ ∞∑
n=1

e−γ Tn

]
=

∞∑
n=1

[∫ ∞

0
e−γ tλe−λt dt

]n

=
∞∑

n=1

[
λ

λ + γ

]n

= λ

γ
(12.10.9)

showing that the expected utility loss is directly proportional to λ, that is, to the mean number of
passages per time unit into the set of less desirable behavior.

If only the behavior in the design life time L has importance, the utility loss corresponding to
(12.10.8) is defined as

C
∞∑

n=1

e−γ Tn1Tn∈[0,L] (12.10.10)

For the homogeneous Poisson process case the expected utility loss then becomes, except for the
factor C ,

E

[ ∞∑
n=1

e−γ Tn1Tn∈[0,L]

]
= E

[
E

[
1N>0

N∑
n=1

e−γ Tn

∣∣∣∣N
]]

= E

[
N

1

L

∫ L

0
e−γ t dt

]
= λL

1 − e−γ L

γ L

(12.10.11)

which approaches E[N ] = λL asymptotically as L → 0. In this calculation N is the random
number of passages into the set of less desirable values during the time L . Moreover, it is used
that T1, . . . , TN for any given value of N is a sample from the uniform distribution on the interval
[0, L]. The utility loss is seen to be directly proportional to the mean number E[N ] of passages
into the set of less desirable values during the design life time L .

Sometimes the duration of the excursion of X(t) into the set of less desirable behavior can be
important for the loss of utility. Except for a constant factor C an example of a utility loss of this
type is

∞∑
n=1

∫ Sn

Tn

e−γ t dt =
∞∑

n=1

e−γ Tn
1 − e−γ (Sn−Tn)

γ
(12.10.12)

in which Sn is the time of first passage back to the set of desirable behavior after the time Tn of the
nth passage into the set of less desirable behavior. Assuming that T1, T2, . . . , Tn, . . . are points
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of a homogeneous Poisson process of intensity λ, and that Sn − Tn is independent of T1, , . . . , Tn

with a distribution which is independent of n, it follows from (12.10.9) that the expected utility
loss becomes

C
λ

γ

1 − E[e−γ (Sn−Tn)]

γ
→ C

λ

γ
E[Sn − Tn] (12.10.13)

asymptotically as γ → 0. Thus the utility loss is approximately directly proportional to the mean
total excursion time per time unit given that the value of the discount rate is sufficiently small.

This utility definition does not distinguish between a situation with many short excursions or
few long excursions. It is simply the total time that matters. An example where the utility loss
increases with the duration of uninterrupted excursion periods is obtained by defining the utility
loss to be proportional to

∞∑
n=1

∫ Sn

Tn

(t − Tn)e
−γ t dt =

∞∑
n=1

e−γ Tn
1 − e−γ (Sn−Tn) − γ (Sn − Tn)e−γ (Sn−Tn)

γ 2
(12.10.14)

which with the same assumptions as above gives the expected utility loss

C
λ

γ
E[(Sn − Tn)

2] (12.10.15)

asymptotically as γ → 0. Thus the utility loss is directly proportional to the mean number of
excursions per time unit and directly proportional to the second moment of the duration of the
uninterrupted excursion.

Discount rate and design life

In purely economical cost evaluations the discount rate γ may have a real monetary meaning of
being the actual interest rate corrected with respect to the inflation rate. In the present state of
the financial market it seems not to be unreasonable to assess γ to be of the order of 0.05 to 0.10
per year. For the design life time L = 100 years, say, and for values of γ > 0.046 the factor
(1 − exp[−γ L])/γ L in (12.10.11) deviates less than 1% from 1/γ L . Thus (12.10.11) is quite
close to the result λ/γ as given by (12.10.9). This shows that the choice of the value of the design
life time L has negligible influence on the structural design if L is sufficiently large and if it is
given that socio-economic evaluations have no relevance in the considered situation. However, for
intangible values it may become relevant to apply discount rates very close to zero. It can be argued
that if the consequence of failure can be loss of human lives, then there is an ethical problem about
the choice of the value of γ . For example, if γ = 0.05 it means that the present value of a human
life lost 50 years from present is less than 10% of the present value of that life. The problem has
been avoided formally in practice by setting γ = 0 and instead introducing the concept of design
life time. Thus the right side of (12.10.11) becomes λL , which asymptotically for λL → 0 is the
same as the probability of failure during the design life time L . This is seen from computing the
expectation of (12.10.7) for γ = 0.

The use of the concept of a finite design life time can make the analysis unnecessarily compli-
cated. It is often mathematically much simpler to let the design life time be infinite and accept a
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suitably small non-zero discount rate for the intangible costs. In fact, setting γ = 1/L , the expec-
tation in (12.10.9) becomes λL . Thus the acceptance of L = 100 years, say, implies that a discount
rate of γ = 0.01 per year is accepted together with L = ∞.

In conclusion, the discount rate can be taken as a formal design criterion regulation parameter
with the same effect in practice as the formal design lifetime has. This conclusion does not exclude
the possibility of working simultaneously with several formal and realistic discount rate values
within the same structural decision problem.

Structural performance criteria

Generally the construction costs and the expected utility loss by passing into the set of less desir-
able values vary in opposite directions when the structural dimensions are varied. Assuming that
the utility loss can be compared with the construction costs on a common scale the rational choice
of the structural dimensions should correspond to the minimum of the sum of the construction
costs and the utility loss.

The previous examples illustrate that the expected utility loss corresponding to a limit state
model of the structural behavior is the product of a constant factor C and a quantity which is a sort
of an intensity measure for the occurrence of the undesirable behavior. In principle the choice of
the factor C is a matter for the decision maker. The optimization procedure will then lead to the
target value of the intensity measure. In order to avoid a conflict between a profit seeking decision
maker and the interests of the public of having high quality structures and of protecting lives and
environment it has become practice to set up code requirements that imply upper bounds on some
types of these intensity measures of undesirable behavior. This leads to definitions of structural
performance criteria. They have the effect that there in specific design situations can be a lower
bound on the choice of the constant C .

It is concluded from the previous discussion that structural performance criteria can be formu-
lated on the basis of utility loss considerations and optimization studies. Calibration of values to
existing practice can ensure public acceptance.

12.11 Examples of risk aversion modeling*

Referring to Section 12.6 on the risk aversion problem it is assumed as an example that a political
intervention after an accident occurs only if some scalar measure δ related to the structural state
of damage is larger than some critical number δc. Exceeding of this level is anticipated to imply a
larger number of losses of human lives at the same accident. Moreover it is assumed that political
intervention only happens the first time an exceeding at the level δc occurs. The point process of
action pulses is taken to be a homogeneous Poisson process, and the corresponding scalar mea-
sures δ1, δ2, . . . are outcomes of mutually independent and identically distributed random variables
�1, �2, . . . , respectively, Fig. 12.3. The common probability density function is f�(δ).

If the political intervention leads to an increased control of the actions on the structure the
effect is that the intensity λ of the Poisson process of action pulses is changed to a lower value λ′
after an exceeding of the critical level δc has occurred. The value to be assigned to λ′ is assessed on
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Figure 12.3: Illustration of two different policies to meet risk aversion consequences after the occurrence
of an adverse event.

the basis of a study of the system for increased control. The expected cost of failure then becomes
(see (12.11.7) - (12.11.12) for derivation of the first term)

λ

γ

(
γ + λ′ p
γ + λp

E[C(�)] + ap

γ + λp

)
(12.11.1)

in which the last term is the expected aversion cost in which a is the yearly cost of action control,
γ is the discount rate,

p = P(� > δc) =
∫ ∞

δc

f�(δ) dδ (12.11.2)

and C(δ) is the utility loss associated with a state measured by δ. The expected aversion cost is
derived as follows. The political intervention happens at the first point occurring in the thinned
Poisson process of action pulses obtained by using the thinning probability p. The random time
S until political intervention is therefore exponentially distributed with mean 1/(pλ). The cost
discounted to time S of the political intervention happening at time S becomes∫ ∞

0
ae−γ t dt = a

γ
(12.11.3)

Thus the expected aversion cost is

E

[
a

γ
e−γ S

]
= a

γ

∫ ∞

0
e−(γ+λp)t dt = a

γ

λp

γ + λp
(12.11.4)

If alternatively the political intervention leads to an increase of the resistance of the structure
against the considered action pulses, the density function f�(δ) should be changed accordingly
to f�′(δ) after the critical event has occurred. The expected cost of failure then becomes (see
(12.11.13) - (12.11.17) for derivation of the first term)

λ

γ

[
γ

γ + λp

(
E[C(�)] + λp

γ
E[C(�′)]

)
+ ap

γ + λp

]
(12.11.5)

in which p is given by (12.11.2) and a/γ is now the cost of the structural strengthening to be made
at time S.
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The uncertainty in the choice of δc and the control or strengthening cost a/γ (which very well
can depend on δc) can be taken into account by modeling (δc, a) as an outcome of the random pair
(�c, A). Then the expected aversion cost becomes

E

[
A

γ
E[e−γ S | �c]

]
= 1

γ

∫ ∞

0

∫ ∞

0

ap(δc)

γ + λp(δc)
f�c,A(δc, a) dδc da (12.11.6)

The first terms in (12.11.1) and (12.11.5) are treated similarly.

In practical applications it will ordinarily be so that λp/γ � 1. In that case the expected cost
of failure given either by (12.11.1) or by (12.11.5) simplifies to the same expression:

λ

γ

(
E[C(�)] + ap

γ

)
(12.11.7)

Thus the risk aversion is rationally taken care of simply by increasing the expected cost E[C(�)]
of a single failure event by the expected cost ap/γ of political intervention given that the failure
event occurs. Note that the value of life and limb is included in C(�) and not in a/γ .

Derivation

In order to derive the expression (12.11.1) let N be the random number of action pulses until the
critical event occurs. Then

P(N = n) = p(1 − p)n−1, n = 1, 2, . . . (12.11.8)

Let Xi be the cost at the i th action pulse. For given N = n the total cost is
n∑

i=1

Xi e
−γ Ti + e−γ Ti

∞∑
i=1

Xn+i e
−γ Si (12.11.9)

where T1, . . . , Tn are the first n time points in the Poisson process of intensity λ while S1, S2, . . .

are the time points of the Poisson process of intensity λ′. It is noted that Tn and Si are mutually
independent for all i .

The density of Ti (or Si ) is the Erlang density (special gamma density):

λi

(i − 1)!
t i−1e−λt , t ∈ R+ (12.11.10)

with λ = λ′ for Si . Then

E[e−γ Ti ] = λi

(i − 1)!

∫ ∞

0
e−(γ+λ)t t i−1 dt =

(
λ

γ + λ

)i

(12.11.11)

With E[Xi ] = µ for all i (and Xi independent of Ti ) the expectation of (12.11.9) then becomes

µ

[
n∑

i=1

(
λ

γ + λ

)i

+
(

λ

γ + λ

)n ∞∑
i=1

(
λ′

γ + λ′

)i
]

= µ

[
λ

γ

{
1 −

(
λ

γ + λ

)n}
+ λ′

γ

(
λ

γ + λ

)n]

= µ

[
λ

γ
+ λ′ − λ

γ

(
λ

γ + λ

)n]
(12.11.12)
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After multiplication of (12.11.12) by (12.11.8) and summing over all values of n we finally get

µ

(
λ

γ
− λ − λ′

γ

λp

γ + λp

)
= µ

λ

γ

γ + λ′ p
γ + λp

(12.11.13)

which is the first term in (12.11.1) with µ = E[C(�)].

For the alternative political intervention, (12.11.9) is changed to

n∑
i=1

Xi e
−γ Ti + e−γ Ti

∞∑
i=1

Yn+i e
−γ Si (12.11.14)

with λ = λ′ and E[Xi ] = µ, E[Yn+i ] = µ′ corresponding to the change of the density function of
the scalar measure � to that of �′. Thus (12.11.12) is changed to

µ
λ

γ

{
1 −

(
λ

γ + λ

)n}
+ µ′ λ

γ

(
λ

γ + λ

)n

= µ
λ

γ
− (µ − µ′)

λ

γ

(
λ

γ + λ

)n

(12.11.15)

Unconditioning with respect to N then gives

µ
λ

γ
− (µ − µ′)

λ

γ

λp

γ + λp
(12.11.16)

which is the first term in (12.11.5) with

µ = E[C(�)] =
∫ ∞

0
C(δ) f�(δ) dδ (12.11.17)

µ′ = E[C(�′)] =
∫ ∞

0
C(δ) f�′(δ) dδ (12.11.18)
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Chapter 13

RELIABILITY OF EXISTING
STRUCTURES

13.1 Information types for an existing structure

This chapter deals with the philosophy and the solution methods that are relevant for the evaluation
of the reliability of an existing structure. The theory is focused on reliability updating when new
information becomes available.

Evaluation of an existing structure becomes actual when damages are observed, when the use of
the structure is planned to be changed, when deviations from the project descriptions are observed,
when the life time is up to extension beyond what is planned, when inspection schedules are
planned to be revised, etc.

When compared to the information available in the design phase, new information may come
from reception control of concrete, certificates for steel and reinforcement, measurements of actual
geometry, collection of load data, proof load testing, inspection and damage evaluation. This extra
information is usually considered for the purpose of verifying that the structure to a reasonable
degree is realized as prescribed, that is, the information is used for detecting possible mistakes that
have occurred during the construction. Sometimes this verification reveals mistakes that concern
the model assumptions or the calculations. In connection with this control of the calculational
assumptions the information can be used for reliability updating. In this chapter we will solely
look at updating and related decisions that involve possible actions that may change the existing
structure (alternative actions: demolition, let the structure be unchanged, repair, strengthening,
introduction of restrictions in the use of the structure).

The information can divided in two main types:

1. Sampling information that updates the knowledge about distributional types with associated
distributional parameters for the random input vector X without conditioning on possible observed
relations between the components of X. This type of information has been treated in Chapter 11
and it will not be considered further.

2. Relation information saying that one or more known relations exist between the elements of
X. To explain what this concept is about the following division into two types is considered:

251
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(a) One or more of the components of X are realized such that the unknown outcome of X is
known to belong to a suitably characterized subset � of R

n . This set may often be defined by use
of a function h(x) such that

� = {x ∈ R
n|h(x) ≤ 0} (13.1.1)

Usually the function h(x) comes from an idealized model of the behavior of the structure. There-
fore model uncertainty should be assigned to the definition of � in the same way as model uncer-
tainty is assigned to the definition of a limit state. The model uncertainty can be included directly
in the definition of h(x) by use of suitable random parameters whose outcomes fix �. Thereby the
set becomes a random set. In a more simple form the model uncertainty can be represented by a
random correction to X in the same way as the model uncertainty of an idealized limit state was
represented in Section 3.4. In that case the set in (13.1.1) is a given set fixed before the registration
of the information. If significant measuring uncertainty influences the determination of whether
or not the event X has occurred, this measuring uncertainty similarly must be represented by a
random correction of X.

In certain applications it may also happen that � can posses internal randomness such that �

in its nature becomes a random set. Examples are given in the following.

(b) One or more of the components of X are realized such that the unknown outcome of X
has caused an effect that, except for model uncertainty, can be predicted uniquely by a theoretical
model ψ(x) for each realization X = x and also be measured uniquely except for measuring uncer-
tainty. It is assumed that the model uncertainty and the measuring uncertainty are both known from
previous investigations or that these uncertainties can be evaluated by theoretical and experimental
evaluations of the model and by repeated measurements of the considered effect, respectively.

The information obtained by the measurement of the effect then expresses that the unknown
outcome of X satisfies the relation

ψ(X) = Z (13.1.2)

in which Z is a random variable whose distribution is fixed by the measurement.

Example 13.1 A structural element has the carrying capacity R with respect to the load effect
S. Failure occurs if and only if R < S. It is assumed in the design phase of the element that R
and S are mutually independent logarithmic normal random variables such that X1 = log R has
parameters (µ1, σ1) and X2 = log S has parameters (µ2, σ2). Thus the reliability index becomes

β = µ1 − µ2√
σ 2

1 + σ 2
2

(13.1.3)

Assume that the structural element is subjected to a proof loading up to the value S = s and that
the element survives this load. This information says that the unknown outcome of X = (X1, X2)

belongs to the set

� = {(x1, x2) ∈ R
2|x1 > log s} (13.1.4)
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If s is fixed without significant uncertainty, it can be concluded that X1 has the conditional distri-
bution function

FX1(x |X ∈ �) = �γ

(
x − µ1

σ1

)
(13.1.5)

where

γ = log s − µ1

σ1
(13.1.6)

and �γ (·) is the lower truncated standardized normal distribution function with truncation point
γ , see (10.3.8).

The conditional failure probability is then

P(R < S|X ∈ �) = 1

σ2

∫ ∞

−∞
�γ

(
x − µ1

σ1

)
φ

(
x − µ2

σ2

)
dx (13.1.7)

For the values σ1 = 0.2(≈ VR), σ2 = 0.5(≈ VS), µ1 = 4
√

0.29 = 2.154, µ2 = 0, the uncondi-
tional reliability index (13.3.3) gets the value 4. The conditional reliability index corresponding to
(13.3.7) is shown in Fig. 13.1. It is seen that the proof loading must be made at rather high levels
relative to the strength distribution in order that an essential increase of the reliability-index value
over the value of 4 is obtained. For example, only an increase of 5% (from 4 to 4.2) is obtained for
γ ≈ −1.3. This fractile value corresponds to about 10% probability of getting failure during the
proof loading. �

Figure 13.1: Conditional reliability index β(γ ) as a function of the proof load level γ .

Example 13.2 Let us assume that the structural element in Example 13.1 is subject not only to
a single load effect S but to a sequence S1, S2, . . . , Sm, . . . of mutually independent load effects
that are identically distributed with logarithmic normal distribution. Moreover let us assume that
erroneously it was taken as given at the design stage that the element would be subject to one and
only one such load effect. The element is realized in a structure for which the total life time is
planned to be T . The load effects S1, S2, . . . have short duration and they occur in succession but
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randomly in time, implying that there is a random number N (τ ) of them within a time interval of
given duration τ .

It is assumed that N (τ ) has a Poisson distribution with parameter cτ where c is a constant
which can be interpreted as the mean value of the number of load effects per time unit. Thus we
have the probability

P[N (τ ) = n] = (cτ)n

n!
e−cτ (13.1.8)

Given that N (T ) = n, the maximal value of log S1, . . . , log Sn has the distribution function �[(x−
µ2)/σ2]n . The distribution function of

log S = max{log S1, . . . , log SN (T )} (13.1.9)

can then by use of (13.1.8) be obtained as

Flog S(x) =
∞∑

n=0

�

(
x − µ2

σ2

)n
(cT )n

n!
e−cT = exp

[
−cT �

(
−x − µ2

σ2

)]
(13.1.10)

An elegant way to see this result is as follows: If only those points of the Poisson process of
intensity c (see Chapter 15 for definition) for which log Si > x are considered, then a so-called
thinned Poisson process of intensity cP[log S1 > x] is obtained. Obviously the event log S ≤ x
occurs if and only if there are no points from this thinned Poisson process during the time T . The
right side of (13.1.10) is then directly obtained as the probability of this event (corresponding to
setting n = 0 in (13.1.8)).

Figure 13.2: Reliability index for structural element with logarithmic normal strength as a function of the
mean number cT of mutually independent identically distributed load effects within the time period T . The
parameter c is the intensity of the occurrence of the load effects in time by a Poisson process.

For cT = 1 and for large x the distribution function (13.1.10) approximatively equals �[(x −
µ2)/σ2]. In particular, for cT = 1, the effect of the simplification used in the design phase is
therefore without importance. The correct reliability index is

β(T ) = �−1
[∫ ∞

−∞
exp

[
−cT �

(
−x − µ2

σ2

)]
φ

(
x − µ1

σ1

)
dx

σ1

]
(13.1.11)
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and it is shown in Fig. 13.2 as a function of cT for the parameter values considered in Exam-
ple 13.1.

Figure 13.3: Updating of the reliability index in Fig. 13.2 on the basis of the information given by (13.1.12).

Due to a repair situation at time t after the time of start of the use of the structure it is discovered
during the inspection of the old calculations that the load assumption is to the unsafe side since
cT rather than being close to 1 is about 100. Therefore it is judged to be necessary to evaluate
the reliability of the structural element with respect to failure in the remaining service period of
duration T − t . This reliability evaluation uses the information that the structural element without
failure has survived all occurring loads in the time interval of length t . Thus the resistance R
satisfies the condition

R > max{S1, . . . , SN (t)} (13.1.12)

This is an example of relation information of the type X ∈ �, where � is a random set. The
conditional failure probability becomes

1 − P(R > max{SN (t)+1, . . . , SN (T )} | R > max{S1, . . . , SN (t)})
= 1 − P(max{S1, . . . , SN (T )} < R)

P(max{S1, . . . , SN (t)} < R)
= 1 − �[β(T )]

�[β(t)]
(13.1.13)

giving the updated reliability index

β∗(T − t) = �−1
[
�[β(T )]

�[β(t)]

]
(13.1.14)

corresponding to the remaining life T − t . Fig. 13.3 shows β∗(T − t) as a function of t/T for
cT = 1, 10, 100. It is seen that the updating effect is modest unless t/T is large. �

It is less easy to construct similarly simple examples of reliability updating by use of relation
information of the type ψ(X) = Z (the type 2(b)) obtained by non-destructive measuring methods
applied to an existing structure.
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A realistic but fairly complicated example will be given later. It is considerably easier to give
simple examples when the problem is about updating of the probability for exceeding a service-
ability limit-state. A typical example is the use of a sample of measured deformations for given
loads. These measuring results can be compared with results from theoretical models that contain
input variables for stiffnesses of the structural parts and the supports. Another typical example is
the use of a measurement of the lowest eigenfrequency of a mast. The calculated eigenfrequency
depends on input variables that describe the distribution of the masses and the stiffnesses.

13.2 General system formulation for updating by use of rela-
tion information*

For the representation of relation information it is convenient to introduce the concept of event
margin as an extension of the concept of safety margin. An event margin is defined by the random
variable

H = h(X, Z) (13.2.1)

where h(x, z) is identical to the function h(x) in (13.1.1) when relation information of the type
X ∈ �(Z) is considered. The vector Z is a random vector that governs the randomness of � in the
sense that � is uniquely fixed when given the outcome of Z.

If relation information of the type ψ(X) = Z is considered, the function h(x, z) is defined by

h(x, z) = ψ(x) − z (13.2.2)

Thus the relation information is expressed by H ≤ 0 for the type 2(a) and H = 0 for the type 2(b).
In the following we will change the notation for (x, z) and (X, Z) to x and X, respectively. The
function in (13.2.2) will be written as h(x).

For relation information of the first type we then have the updated failure probability

P(M ≤ 0 | H ≤ 0) = P(M ≤ 0, H ≤ 0)

P(H ≤ 0)
(13.2.3)

where M is the relevant safety margin.

The event H ≤ 0 can be an intersection of several events H1 ≤ 0, . . . , Hm ≤ 0 where
H1, . . . , Hm are the event margins corresponding to m different information contributions. The
failure event M ≤ 0 can be more or less complicatedly defined as the failure event of a series
system of parallel systems or as a parallel system of series systems.

The numerator in (13.2.3) is seen to have the form as the probability of failure of a parallel
system with two failure events M ≤ 0 and H ≤ 0. If the probability P(H ≤ 0) is small, both the
numerator and the denominator can usually be calculated with sufficient accuracy by use of (6.6.7)
(single-point multiple FORM) or a corresponding formula based on SORM.
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For relation information of the second type the updated failure probability is defined by

P(M ≤ 0 | H = 0) = lim
θ↓0

P(M ≤ 0 | − θ < H ≤ 0)

= lim
θ↓0

P(M ≤ 0, H ≤ 0) − P(M ≤ 0, H ≤ −θ)

P(H ≤ 0) − P(H ≤ −θ)
=

⎡
⎢⎣

∂

∂θ
P(M ≤ 0, H + θ ≤ 0)

∂

∂θ
P(H + θ ≤ 0)

⎤
⎥⎦

θ=0

(13.2.4)

Remark 13.1 Conditional probabilities P(B|A) with P(A) = 0 must be defined with particular
care because the numerator and the denominator of the ratio P(A ∩ B)/P(A) are both zero.

For any descending sequence of sets A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . with P(Ai ) �= 0 for all i and
with the limit set

A = ∩∞
n=1 An (13.2.5)

we have a well-defined sequence of conditional probabilities

P(B|A1), P(B|A2), . . . , P(B|An), . . . (13.2.6)

If this sequence is convergent, it is natural to define the conditional probability P(B|A) as the
limit of the sequence. However, by this procedure P(B|A) is not uniquely defined since the limit
depends of the chosen set sequence A1, . . . , An, . . . , see below. Any definition of P(B|A) is
therefore associated to a carefully defined class of sets from which any chosen descending set
sequence with A as limit set has the property that the corresponding sequence of conditional prob-
abilities is defined and is convergent with a limit which is common to all such sequences chosen
from the considered class of sets. The relevant definition for a given application of P(B|A) is
determined by those set sequences that have A as limit set and are relevant for the application.

The problem is illustrated in an elementary way by considering a pair (X, Y ) of random vari-
ables with density function fX,Y (x, y) together with the pair (X, Z) = (X, XY ) for which the
density function is

fX,Z (x, z) = fX,Y

(
x,

z

x

) 1

|x | (13.2.7)

(the mapping (x, y) � (x, z) = (x, xy) has the Jacobi determinant ∂(x, z)/∂(x, y) = x). Thus
we have the conditional densities

fX (x |Y = 0) = fX,Y (x, 0)

fY (0)
(13.2.8)

fX (x |XY = 0) = fX,Y (x, 0)/|x |∫ ∞
−∞ fX,Y (x, 0)/|x | dx

(13.2.9)

Assume that X cannot take the value zero. Without changing the event XY = 0 it then can be
written as Y = 0. But then the left hand sides of (13.2.8) and (13.2.9) become written with identical
symbols even though the right hand sides obviously are different. Therefore it is not advisable to
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cancel X in the event XY = 0 because the notation shows that the class of relevant sets that have
the event Y = 0 as intersection must be defined by {(x, y) ∈ R

2| − θ < xy ≤ 0} where θ ∈ R+. If
the condition is Y = 0 the defining class of events is given by {(x, y) ∈ R

2| − θ < y ≤ 0} where
θ ∈ R+. �

In (13.2.4) the numerator can be interpreted as a sensitivity of the reliability of the parallel
system {M ≤ 0}∩{H ≤ 0} with respect to a parameter θ . The equation corresponding to the event
H + θ = 0 is

h(x) + θ = 0 (13.2.10)

The sensitivity is calculated for θ = 0. The denominator can be interpreted in a similar way as the
sensitivity of the probability P(H ≤ 0) with respect to θ for θ = 0.

FORM-approximation*

In the standardized Gaussian space defined by the transformation y = T (x) the surface (13.2.10)
becomes represented by the equation

h[T −1(y)] + θ = 0 (13.2.11)

Then it follows from (8.2.10) that for the geometric event index (analogous to the geometric relia-
bility index) βH corresponding to H we have

dβH

dθ
= 1

||∇h[T −1(αHβH )]|| (13.2.12)

where ∇ is the gradient operator with respect to y and αH is the unit normal vector at the globally
most central point on the surface defined by (13.2.11) for θ = 0. For the denominator in (13.2.4)
the FORM-approximation (8.2.33) therefore becomes[

∂

∂θ
P(H + θ ≤ 0)

]
θ=0

≈ −ϕ(βH )
dβH

dθ
(13.2.13)

where dβH/ dθ is substituted from (13.2.12).

The FORM-approximation for the numerator in (13.2.4) is determined by using (8.3.4) and
(8.3.5). For q = 2 the following formula is obtained from (8.3.5):

d�2(−β1, −β2; ρ)

dθ
=

[
−∂�2

∂x1

dβ1

dθ
− ∂�2

∂x2

dβ2

dθ
+ ∂�2

∂ρ

dρ

dθ

]
(−β1,−β2;ρ)

(13.2.14)

From the formula, see Exercise 4.3,

�2(−β1, −β2; ρ) =
∫ x2

−∞
dy

∫ x1

−∞
1√

1 − ρ2
ϕ

(
y − ρx√
1 − ρ2

)
ϕ(x) dx (13.2.15)
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it is seen that

∂�2(−β1, −β2; ρ)

∂x2
=

∫ −β2

−∞
1√

1 − ρ2
ϕ

(
y − ρβ1√

1 − ρ2

)
ϕ(β1) dy = ϕ(β1)�

(
−β2 − ρβ1√

1 − ρ2

)

(13.2.16)

while (8.3.7) gives

∂�2

∂ρ
= ∂2�2

∂x1∂x2
(13.2.17)

where the right side is identically equal to the two-dimensional normal density. Thus we have

∂�2(−β1, −β2; ρ)

∂ρ
= ϕ(β1)

1√
1 − ρ2

ϕ

(
−β2 − ρβ1√

1 − ρ2

)
(13.2.18)

For large values of (β2 − ρβ1)/
√

1 − ρ2 the ratio between (13.2.18) and (13.2.16) is of the order
of size as (β2 −ρβ1)/(1−ρ2) (since �(−x) ∼ ϕ(x)/x as x → ∞). Except for ρ close to 1 (in the
case β1 �= β2) the derivatives (13.2.16) and (13.2.18) are thus not of essentially different order of
size. However, without making a serious error, the last term in (13.2.14) can usually be canceled
in the application (13.2.4). This is because the factor dρ/ dθ usually is small as compared to the
derivative dβH/ dθ . We have

ρ = αT
M HαH M (13.2.19)

and thus

dρ

dθ
= αT

M H
dαH M

dθ
+ αT

H M
dαM H

dθ
(13.2.20)

where αM H and αH M are the unit normal vectors to the surfaces that correspond to M = 0
and H = 0, respectively, and considered at the globally most central point of the intersection
{M = 0} ∩ {H = 0} represented in the standard Gaussian space. If H is linear in the Gaussian
variables, the surfaces corresponding to the events H = 0 and H + θ = 0 become two parallel
hyperplanes. In this case it then follows that dαH M/ dθ = 0. Moreover, if the event M = 0
corresponds to a hyperplane, then also dαM H/ dθ = 0. Using geometric considerations it can be
seen that the derivatives dαM H/ dθ and dαH M/ dθ are proportional to the principal curvatures
of the surface M = 0 and the surface H = 0, respectively, at the globally most central point.
Assuming small curvatures, the last term in (13.2.14) will be disregarded.

While βH denotes the geometric event index corresponding to H we will use the notation βH M

for the simple event index of the linear event margin defined by the tangent hyperplane to the
surface h[T −1(y)] = 0 at the globally most central point yM H of the intersection

{yh[T −1(y)] = 0} ∩ {y|g(y) = 0} (13.2.21)

where g(y) = 0 is the limit-state surface corresponding to the event M = 0. This hyperplane
has the unit normal vector αH M . Similarly βM H denotes the simple reliability index of the linear
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safety margin defined by the tangent hyperplane to the surface g(y) = 0 at the globally most central
point of the intersection. This hyperplane has the unit normal vector αM H . With this notation the
numerator in (13.2.4) becomes[

∂

∂θ
P(M ≤ 0, H + θ ≤ 0)

]
θ=0

≈ d�2(−βM H , −βH M; ρ)

dθ
≈

[
−∂�2

∂x2

dβH M

dθ

]
(−βM H ,−βH M ;ρ)

= ϕ(βH M)�

(
−βM H − ρβH M√

1 − ρ2

)
dβH M

dθ
(13.2.22)

noting that dβM H/ dθ is neglected with reference to the assumption of small curvatures since
βM H = αT

M H yM H , αT
M H dyM H/ dθ = 0 and dαM H/ dθ ≈ 0. The correlation coefficient ρ is

determined by (13.2.19), and

dβH M

dθ
= 1

||∇h[T −1(yM H )]|| (13.2.23)

is determined in the same way as (13.2.12) but with the globally most central point, see (8.3.8),

yM H =
[
αT

M H
αT

H M

]−1 [
βM H

βH M

]
(13.2.24)

in the intersection (13.2.21) substituted in the place of αHβH . Thus we have by substitution of
(13.2.13) and (13.2.22) in (13.2.4) that

P(M ≤ 0 | H = 0) ≈ ϕ(βH M)

ϕ(βH )
�

(
−βM H − ρβH M√

1 − ρ2

)
||∇h[T −1(αHβH )]||
||∇h[T −1(yM H )]|| (13.2.25)

If M and H are linear in the Gaussian variables we have βH M = βH , βM H = βM and the two
gradient vector lengths are equal. Thus the result (13.2.25) becomes

P(M ≤ 0 | H = 0) = �

(
−βM − ρβH√

1 − ρ2

)
= �(−βM |H=0) (13.2.26)

where the conditional reliability index βM |H=0 is introduced from (8.1.6). The result (13.2.26) is
exact.

With k relations of the second information type the formula (13.2.4) is directly generalized to

P(M ≤ 0 | H1 = 0, . . . , Hk = 0)

=

⎡
⎢⎢⎣

∂k

∂θ1 · · · ∂θk
P(M ≤ 0, H1 + θ1 ≤ 0, . . . , Hk + θk ≤ 0)

∂k

∂θ1 · · · ∂θk
P(H1 + θ1 ≤ 0, . . . , Hk + θk ≤ 0)

⎤
⎥⎥⎦

θ=0

(13.2.27)
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which by use of the FORM-approximation (8.3.4) becomes

≈
∂k

∂θ1 · · · ∂θk
�k+1(−β̃k+1, Pk+1)

∂k

∂θ1 · · · ∂θk
�k(−βk, Pk)

(13.2.28)

Here β̃k+1 is the vector of event indices β̃0 = βM(H1...Hk), β̃1 = βH1(M H2...Hk), . . . , β̃1 = βHk(M H1...Hk−1),
defined similarly as βM H and βH M . The correlation matrix Pk+1 is defined by the scalar products
between the unit normal vectors α̃0 = αM(H1...Hk), α̃1 = αH1(M H2...Hk), . . . , α̃k = αHk(M H2...Hk−1).
Correspondingly βk is the vector of event indices β1 = βH1(H2...Hk), β2 = βH2(H1 H3...Hk) . . . ,

βk = βHk(H2...Hk−1), while the correlation matrix Pk is defined by the scalar products between the
unit normal vectors α1 = αH1(H2...Hk), . . . , αk = αHk(H2...Hk−1). All these event indices and unit
normal vectors are functions of (θ1, . . . , θk). It is noted that

∂β̃0

∂θi
≡ 0 for i = 1, . . . , k (13.2.29)

∂β̃ j

∂θi
≡ ∂β j

∂θi
≡ 0 for i �= j (13.2.30)

∂β̃i

∂θi
= 1

||∇hi [T −1(yM H1...Hk )]||
(13.2.31)

∂βi

∂θi
= 1

||∇hi [T −1(yH1...Hk )]||
(13.2.32)

yM H1...Hk =

⎡
⎢⎢⎢⎣

α̃T
0

α̃T
1
...

α̃T
k

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

β̃0

β̃1
...

β̃k

⎤
⎥⎥⎥⎦ yH1...Hk =

⎡
⎢⎣

α̃T
1
...

α̃T
k

⎤
⎥⎦

−1 ⎡
⎢⎣

β1
...

βk

⎤
⎥⎦ (13.2.33)

It follows from (13.2.29) and (13.2.30) that the mixed derivatives of β̃0, . . . , β̃k, β1, . . . , βk all are
zero. If the derivatives of the correlation coefficients are disregarded as above, (13.2.28) is reduced
to

P(M ≤ 0 | H1 = 0, . . . , Hk = 0) ≈
ϕk(β̃1, . . . , β̃k; {α̃T

i α̃ j )})
ϕk(β1, . . . , βk; {αT

i α j )})
�

⎛
⎝−Ê[M̃ |H̃1 = 0, . . . , H̃k = 0]√

1 − ρ[M̃; (H̃1, . . . , H̃k)]2

⎞
⎠ k∏

i=1

||∇hi [T −1(yH1...Hk )]||
||∇hi [T −1(yM H1...Hk )]||

(13.2.34)

where M̃, H̃1, . . . , H̃k are the event margins with mean values β̃0, β̃1, . . . , β̃k and standard devi-
ations 1 that correspond to the tangent hyperplanes at yM H1...Hk . The linear regression Ê[M̃ |H̃1 =
0, . . . , H̃k = 0] is calculated by use of (4.3.4) and the multiple correlation coefficient ρ[M̃; (H̃1,

. . . , H̃k)] is calculated by use of (4.4.17).
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If M, H1, . . . , Hk all are linear in the Gaussian variables we obtain the exact result, see
(4.4.14),

P(M ≤ 0 | H1 = 0, . . . , Hk = 0) = �

⎛
⎝−Ê[M̃ |H̃1 = 0, . . . , H̃k = 0]√

1 − ρ[M̃; (H̃1, . . . , H̃k)]2

⎞
⎠ = �(−βM |H = 0)

(13.2.35)

Formulas for mixtures of the two information types can be constructed according to similar prin-
ciples.

Example 13.3 The creep and shrinkage properties of concrete are often more uncertain than the
strength properties. This is of particular importance when designing prestressed concrete struc-
tures. For such structures the choice of the prestressing and the poststressing arrangements with
the corresponding stress levels are often made such that the creep and shrinkage deformations
become small. Considering the large uncertainty it can be useful to revise the poststressing lev-
els on the basis of a probabilistic model using updating from observed deformations during the
construction phase or later on.

As an example consider the prestress loss in a prismatic prestressed concrete beam with the
cross-section shown in Fig. 13.4. At time t the force in the prestressing cable is denoted as N (t).
With N (0) given, N (t) varies as a function of t as a random variable with distributional properties
that depend on the joint distribution of a set of random input variables in the mathematical model
that defines N (t). The results shown in the following figures are obtained on the basis of the usual
linear visco-elastic Bernoulli beam theory applied to prestressed concrete beams. The creep and
shrinkage parameters that are needed in this theory are defined in terms of the input variables on
the basis of empirical models formulated by Bazant and Panula [13.1]. The elements of the random
input vector X are humidity X1 , cement content X2 , water-cement ratio X3, gravel-cement ratio
X4, 28-day cylinder strength X5, additive model uncertainty of the shrinkage model X6, additive
model uncertainty of the model for the so-called basic creep X7, and additive model uncertainty of
the model for the so-called drying creep X8. All eight input variables are assumed to be mutually
independent and distributed according to the normal distribution with realistic values of the mean
values and the standard deviations. These values will not be reported here but they are given in
[13.3].

The distribution function for the prestressing force N (t) can be calculated for the argument
n by calculating the failure probability associated to the safety margin M = N (t) − n. The
distribution function shown in Fig. 13.5 (marked “original curve”) is calculated by use of FORM
for different values of n. Also the sensitivity factors with respect to the eight random input variables
are calculated. For n = 2.5 MN the following sensitivity factors (= squares of the components of
α, where α is the unit vector directed from the origin to the globally most central limit-state point
in the standard Gaussian space, see Section 8.1) were obtained: (4.2, 0.0, 0.3, 0.4, 1.4, 0.5, 93.1,
0.1) (times 0.01). From this it is seen that the dominant contribution to the uncertainty comes from
the uncertainty of the model for the basic creep.

After the beam has been fabricated and built in at its permanent position, measurements of the
displacements of the midpoint of the beam are made at different time points. The displacement
u(t) is measured at a time t0 directly after the application of the load and at a later time t1. The
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Figure 13.4: Cross-section of prestressed concrete beam.

measuring uncertainty is considered in terms of the difference � which is assumed to be a Gaussian
random variable. Then the event margin is H1 = u(t1) − u(t0) − �1. The event margin H2 =
u(t2) − u(t0) − �2 corresponds to a displacement measurement at the time t2 > t1, etc. After the
time tn, n = 1, 2, . . . , the updated distribution function P[N (T ) ≤ n | H1 = 0, . . . , Hn = 0] is
calculated.

To the left in Fig. 13.5 the original distribution function is shown together with two updated
distribution functions that correspond to zero measuring uncertainty D[�1] = 0 and a measuring
uncertainty of D[�1] = 1 mm, respectively. These updated distribution functions are obtained
after a displacement measurement at the time t1 = 1 year (t0 = 1 day) resulting in E[�1] = −4
mm. It is seen that the influence of the measuring uncertainty on the updating information is quite
essential. To the right in Fig. 13.5, two of the curves are the same as in the left side while the third
curve corresponds to an updating after a measurement at the time t2 = 10 years. The measuring
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Figure 13.5: Distribution functions before and after updating with respect to the prestressing force
N (10.000 days) for the concrete beam with cross-section as in Fig. 13.4 and with span 10 m and bend-
ing moment 1 MNm. (The ordinate axis scale is the fractile scale for the standardized normal distribution,
and δ� = D[�].)

uncertainties are D[�1] = D[�2] = 1 mm and �1, �2 are assumed to be mutually independent.
The updating after 10 years has given a considerable reduction of the uncertainty of the prestressing
force. (The assumption about independence between �1 and �2 is applicable if the displacement
measurement at time t0 is made with considerable larger accuracy than the later displacement
measurements and all the measurements are mutually independent. The last assumption implies
that Cov[�1, �2] equals the variance of the displacement measurement at time t0 ). �

Example 13.4 Alternating stresses in a structure may cause growth of so-called fatigue cracks.
This possibility of crack growth is often decisive for the reliability of several types of steel and
aluminum structures. Failure can show up in many ways for example as local leakage (in pipelines
and containers), as local or global brittle fracture, or as a global ductile failure triggered from a
local fracture. Often the relevant failure criteria can be based on the existence of a critical crack
length that depends on the toughness of the material. Both this toughness and the parameters that
influence the crack growth are generally encumbered with large uncertainty.

As an illustration consider a crack in a plate subject to cyclically varying stresses in the plane
of the plate and orthogonal to the crack. Far away from the crack the cyclic stress state is homoge-
neous and uniaxial with the constant stress range S. At the crack tip the stresses are intensified in a
way described by the so-called stress intensity factor. In terms of linear elasticity theory this stress
intensity factor can be deduced to be

√
πx , where x is half the crack length. This result is based on

the assumption that the crack is situated far away from the boundaries of the plate. If this is not the
case the factor

√
πx is modified by multiplication with a function of x which is almost constant

and equal to 1 for small values of x . This function depends on one or more geometric quantities
that fix the crack position and orientation relative to the boundaries of the plate. Therefore the
function is called the geometry function. With sufficient accuracy the geometry function can be
put to 1 in this example.

Experimental investigations have shown that the increment �x per stress period (per cycle) of
the crack length can be approximated by

�x = C(
√

πx S)m (13.2.36)



13.2 General system formulation for updating by use of relation information* 265

where C and m are material constants. This equation is known as the Paris-Erdogan law for crack
growth. Often the crack length increment �x per cycle is very small as compared to the variation of
xm/2. Therefore �x can be idealized to be the differential quotient dx/ dn where n is the number
of cycles considered as a continuous parameter. Then (13.2.36) becomes a differential equation
in which the variables x and n can be separated. Written as a random variable X (n) the solution
becomes

X (n) =
[(

1 − m

2

)
Cπm/2Smn + X1−m/2

1

](1−m/2)−1

(13.2.37)

where X1 is the random initial crack length. Let X2 be the random critical crack length with respect
to which we have the safety margin

M(n) = X2 − [(1 − 1

2
X4)X5(

√
π X3)

X4n + X
1− 1

2 X4

1 ](1− 1
2 X4)

−1
(13.2.38)

where X3 = S, X4 = m, X5 = C .

The random variables X1, X2, X3 and the pair (X4, X5) are assumed to be mutually indepen-
dent in what follows. However, the random variables X4 and X5 are correlated to a degree that
depends on the chosen physical unit system. (Since the formula (13.2.36) must be correct as to
physical dimension the unit for the constant C besides depending on the units for length and stress
also depends on the dimensionless exponent m). The units for length and stress are here mm and
N/mm2, respectively. The following distributional assumptions are given: X1 has exponential dis-
tribution with mean value 1, X2 has normal distribution with mean value 50 and standard deviation
10, X3 has normal distribution with mean value 60 and standard deviation 100, (X4, log X5) has
joint normal distribution with mean value point (3.5, -33.00), standard deviations (0.3, 0.47), and
correlation coefficient -0.9.

The distribution function for the number N of cycles to failure is P(N ≤ n) = P[M(n) ≤ 0]
and approximations to it are shown in Fig. 13.6 as obtained by FORM and by SORM. For n =
1.5 × 106 cycles the sensitivity factors are obtained as

(α2
1, α

2
2, α

2
3, α

2
4 + α2

5) = (30, 0, 13, 57)% (13.2.39)

where α2
4 and α2

5 are not separated because X4 and X5 are strongly correlated. Structures in
which dangerous crack growth can occur are usually more or less regularly subject to inspections
for cracks. In particular such inspections are made at the so-called “hot-spots”, that is, points
in the structure with predicted strong concentration of stresses. Assume that a crack has been
detected after n j cycles and that the crack length has been measured. Due to measuring uncertainty
this measurement does not reveal the exact crack length but, by repeated measurements, rather
the parameters of the distribution of a random variable A j that represents the crack length. A
measurement like this may be made at several time points giving a number of event margins

Hj = A j − X (n j ), j = 1, ..., s (13.2.40)

with X (n) given by (13.2.37). The collected information is of the type H1 = 0, . . . , Hs = 0, that
is, relation information of the second type.
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Figure 13.6: Approximate distribution functions for number of stress cycles until failure as calculated by
FORM and SORM. (The ordinate axis scale is the fractile scale for the standardized normal distribution.)

It may happen (and hopefully often so) that no crack is found at the inspection after ni cycles.
Thus information of the first type is obtained giving the event margin

Hi = X (ni ) − Bi (13.2.41)

in which Bi is a random variable that represents a length below which a crack cannot be detected
with the given measuring technique. Such an inspection result obtained successively r times thus
gives the information H1 ≤ 0, . . . , Hr ≤ 0 of the first type. In the formulation (13.2.41) it
is assumed that, with probability 1, there is at least one small crack in the close vicinity of the
considered “hot spot” already before the start of the cyclic stressing. Besides it is a condition for
the validity of the Paris-Erdogan law that the initial crack is larger than a certain smallest size.
It is obvious that if Bi is deterministic and has the same value for all inspections, then the entire
information is contained in the last inequality Hr ≤ 0.

The general situation is that a crack is detected for the first time at the (r + 1)th inspection.
Then after r + s inspections the collected information gives the following updated distribution
function for the cycle number N until the occurrence of failure:

P(N ≤ n | X (n1) ≤ B1, . . . , X (nr ) ≤ Br , X (nr+1) = Ar+1, . . . , X (nr+s) = Ar+s)

= P(M(n) ≤ 0 | H1 ≤ 0, . . . , Hr ≤ 0, Hr+1 = 0, . . . , Hr+s = 0) (13.2.42)

Further generalization deals with simultaneous inspection at several “hot spots”. Under due consid-
eration of the mutual dependency that may exist between the input variables associated to several
positions in the structure the updating can be made according to the explained principles.

Some illustrative examples:

a) Let us consider an example in which a crack is observed after n1 = 105 cycles. For the
random crack length A1 the measurement gives the mean value E[A1] = 3.9 mm. It is assumed
that A1 is normally distributed with standard deviation σA expressing the measurement accuracy.
The crack is not repaired but a new measurement is made after n2 = 2 × 105 cycles by use of the
same measurement technique. The mean value E[A] = 4.0 mm is obtained. Figure 13.7 shows
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the updated distribution functions for N after the second inspection in dependence of different
assumed values of σA. The results in Fig. 13.7 are based on the assumption that A1 and A2 are
mutually independent. The measurement accuracy is seen to have a very large influence.

Figure 13.7: Updated distribution functions for number of cycles N to failure after two inspections of
a crack with observed mean crack lengths of 3.9 mm at the first inspection and 4.0 mm at the second
inspection. The influence of the measuring uncertainty is illustrated by different choices of σA. (The ordinate
axis scale is the fractile scale for the standardized normal distribution.)

b) If the situation is that no crack is observed at the first inspection at n1 = 105 cycles, the dis-
tribution properties of the detection limit B1 enters the updating. With the assumption that B1 has
exponential distribution with mean value λ, Fig. 13.8 shows the distribution functions for N corre-
sponding to different values of λ. These values of λ reflect the quality of the inspection technique.
The figure also shows the distribution function before the updating. If the reliability requirement is
formulated such that the reliability index must be at least 3 throughout a presupposed service time
of the structure of 1.5 × 106 cycles, it is seen from the figure that it is not needed to make more
inspections if λ ≤ 0.3. For larger values of λ new inspections should be made at time points that
can be read at the successively updated distribution function intersections with the level β = 3.

c) We may also study the effect of gathering new information after a crack has been repaired.
The result depends very much of whether the repair has been made such that the material around
the crack has been completely renewed or whether it is still the old material. In the first case the
new material parameters can be assumed to be stochastically independent of the old parameters
while they are unchanged in the second case. Possibly a certain mixing of the old and the new
material parameters may take place introducing correlation between the parameters before and
after the repair.

Assume that a repair is made after nrep cycles at a crack length represented by the random
variable Arep. In this situation we formulate the event margin

Hrep = Arep − X (nrep) (13.2.43)

of the type as in (13.2.40). The updated distribution function for N then becomes

P(N ≤ n | Hrep = 0) = P(Mrep(n) ≤ 0 | Hrep = 0) (13.2.44)
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Figure 13.8: Updated distribution functions for number of cycles N to failure after an inspection where no
crack is detected. The mean value of the detection limit is λ. The lowest curve is the distribution function
before the updating and it is the same as the FORM-curve in Fig. 13.6. (The ordinate axis scale is the fractile
scale for the standardized normal distribution.)

where Mrep(n) is a safety margin different from M(n) given in (13.2.38). We have

Mrep(n) = X2 − [(1 − 1

2
Y4)Y5(

√
π X3)

Y4(n − nrep) + Y
1− 1

2 Y4

1 ](1− 1
2 Y4)

−1
(13.2.45)

in which Y1 is a new random initial length of a crack assumed to exist at the “hot spot” just after
the repair, while (Y4, Y5) corresponds to a new value pair of (m, C) with the same distribution as
(X4, X5). If the material parameters have the same values before and after the repair the random
pair (Y4, Y5) in (13.2.45) is replaced by (X4, X5).

Figure 13.9: Updated distribution functions for number of cycles N to failure after an inspection and crack
length measurement which has been followed by a repair of the crack. The repaired crack length has the
mean E[Arep] = 8 mm corresponding to nrep = 2 × 105 cycles. (The ordinate axis scale is the fractile scale
for the standardized normal distribution.)

Figure 13.9 shows the distribution function for N after a repair of a crack with mean length
E[Arep] = 8 mm for nrep = 2 × 105 cycles. It is assumed that Y1 has the same exponential
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distribution as X1 . It is seen that there is an immediate increase of the reliability after the repair
but also that the reliability drops fast to a level under the level defined by the original distribution
function before any updating. This reflects that the information about the large mean crack length
E[Arep] at nrep cycles contains the information that the stress range X3 has taken a relatively large
value. According to our model this large value acts also after the repair. �

13.3 Decision criteria for existing structures*

Usually a structure is designed such that it satisfies a codified safety requirement. This require-
ment is related to some formal calculational model and it is proved to be satisfied by use of the
information available at the time of design. The codified requirement is in its nature equivalent
to a requirement that the generalized reliability index βprior with respect to a given limit state is
not smaller than a specified value βtarget. The notation indicates that the reliability index corre-
sponds to the design phase, that is, to a time period before the structure is realized and thus before
information based on the existence of the structure is available.

Following the principles explained in the previous sections, collection of information after
the realization of the structure makes it possible to calculate an updated reliability index βposterior.
While the code requirement

βprior ≥ βtarget (13.3.1)

has a rational explanation consistent with decision theoretical considerations made from the point
of view of the public society, see Section 12.3, it is less clear whether rational decision theoretical
arguments can be given for a code requirement like

βposterior ≥ βtarget (13.3.2)

It will be shown in the following that (13.3.2) as a criterion for not making further actions with
respect to the reliability of an existing structure in fact can be based on decision theoretical ar-
guments. However, (13.3.2) is not a necessary condition for sufficient reliability of an existing
structure.

In order to show the validity of these two statements we must consider the possible actions that
may lead to changes of the existing structure and the consequences of these actions. In principle
there are three action categories: (a) let the structure be unchanged, (b) strengthen the structure
and/or change its use, (c) demolish the structure and replace it with a new structure. The ac-
tion category (b) may embrace several alternative actions corresponding to alternative structural
strengthening designs and/or possibilities of use. The same holds for the action category (c) since
there may be a choice between different demolition methods and also many alternative designs of
the new structure.

As in Section 12.3 the consideration will be made in terms of a simplified cost function. Let
the capital investment in a strengthening system of a given type be given as a function e(β) of the
reliability index β for the strengthened structure. This function can be written as

e(β) =
{

k + h(β) for β > βposterior

0 for β = βposterior
(13.3.3)
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where k is a constant initial cost of starting up the strengthening work of the given type while h(β)

is an increasing function of β defined for β ≥ βposterior and starting at the value zero, see Fig. 13.10.
The cost function e(β) is not defined for β < βposterior because any structural strengthening system
has the purpose of increasing the reliability level beyond the value βposterior. Including the optimal
capital investment in a new structure in the direct cost d of the failure event, the total expected cost
is then

�(β)[k + h(β)] + �(−β)d ≈ k + h(β) + �(−β)d (13.3.4)

where �(−β) is the theoretical failure probability as a function of β. Reasoning as in Section 12.6
we have for simplicity neglected contributions to (13.3.4) that comes from the probability of the
occurrence of mistakes. In case no strengthening is made, (13.3.4) is replaced by

�(−βposterior)d (13.3.5)

Comparison of (13.3.4) and (13.3.5) leads to the following decision rule:

1. If there is a solution β0 > βposterior to the equation

h′(β) − ϕ(β)d = 0 (13.3.6)

so that

k + h(β0) < [�(−βposterior) − �(−β0)] d (13.3.7)

then a strengthening of the structure should be made. It is not necessarily the considered strength-
ening design that should be realized. Possibly an alternative design may correspond to a less
expected cost.

2. If there is no such solution to (13.3.6) then the considered strengthening design should not
be realized. This does not exclude that an alternative design of the strengthening system should be
realized.

If βposterior is considerably smaller than βtarget, the best decision can turn out to be to choose an
action of the third category, that is, demolition and replacement by a new structure. Let cdemolition

be the optimal cost for a demolition and let βtarget be the optimal reliability index for the new
structure with the corresponding optimal capital investment cnew. Then we can conclude that an
action of the third category is not optimal if the criterion

cdemolition + cnew + �(−βtarget)d > �(−βposterior)d (13.3.8)

is satisfied. The right side of (13.3.8) is the expected cost by letting the existing structure be
unchanged. Usually it is so that cdemolition � cnew, implying that cdemolition can be neglected in the
following. Then (13.3.8) can be rewritten as the criterion

�(−βposterior) < �(−βtarget) + cnew

d
(13.3.9)

Unless the right side defines a suitably small probability, society will hardly allow an application
of this criterion. Thus it is seen that it should be required not only that d is large but also that

cnew

d
� 1 (13.3.10)
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Figure 13.10: Illustration of the expected cost curve of making strengthening. In the case of the curve 1 the
best decision is to make a strengthening. In the case of the curve 3 the best decision is not to use the consid-
ered type of strengthening. The curve 2 shows indifference. Possibly then there is an alternative design of
the strengthening system that should be preferred as alternative to letting the structure be unchanged. (The
curves are schematic, 1

2(d + cny) should be changed to 1
2 d).

This is consistent with the considerations in Example 12.2 concerning the size of d. It was argued
that d/cnew is of the order of size 104 (for βtarget = 4) to 106 (for βtarget = 5) which is of an order
of size of 10 times larger than the first term �(−βtarget) on the right side of (13.3.9). Considering
this we can with sufficient accuracy reduce (13.3.9) to the criterion

βposterior > �−1
(cnew

d

)
(13.3.11)

If this criterion is satisfied a demolition and a complete renewal should not be made. It is noted
that neglecting cdemolition and �(−βtarget) in the reduction from (13.3.8) to (13.3.11) is conserva-
tively in favor of demolition. If (13.3.11) is not satisfied, the choice is between strengthening of
the existing structure or total renewal. If (13.3.11) is satisfied, the choice is between letting the
structure be unchanged or to strengthen it.

Finally it will be shown that for the practical decision situation the criterion (13.3.2) is a suf-
ficiently accurate condition for doing nothing after the updating of the reliability. Let kmin be the
smallest value of k for the strengthening systems that are relevant in the given practical situation.
Then it is clear that no one of these strengthening systems satisfies the criterion (13.3.7) if

kmin ≥ �(−βposterior)d (13.3.12)

Thus this condition is a criterion for doing nothing. Then it is seen that if

kmin ≥ �(−βtarget)d (13.3.13)

then the validity of the inequality

βposterior ≥ βtarget (13.3.14)
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is also a criterion for doing nothing since (13.3.13) and (13.3.14) together imply (13.3.12). Since
the right side of (13.3.13) after division by cnew as previously noted is of the order of size 10−1, the
inequality (13.3.13) is likely to be satisfied in many practical cases. Therefore we can conclude that
the simple canonical decision criterion (13.3.14) in practice often will be consistent with optimal
decision making.

A discussion that includes the probabilities of occurrences of mistakes is given in [13.2]. The
criteria (13.3.11) and (13.3.14) are unchanged. The sole modification of some importance for the
choice of action is in the inequality (13.3.7). In the parenthesis [. . . ] an extra term is the difference
between p0 = P (failure and mistakes for the unchanged structure) and p1 = P (failure and
mistakes for the strengthened structure), see Section 12.3. This term, p0 − p1, can be judged to be
negative because p0 is the posterior probability corresponding to the information that the structure
has survived until the present. This fact makes it reasonable to assume that at least some of the
possible and more grave mistakes that could have been made during design, construction and use of
the existing structure actually have not been made and therefore can be disregarded as possibilities.
However, there may still have been mistakes with hidden effects in the existing structure and to
these can be added mistakes made during the design and the realization of the strengthening. This
pulls in the direction of increasing the probability of the occurrence of mistakes with serious effects
on the strengthened structure. On the other hand, the strengthening can decrease the seriousness
of the possibly hidden effects of mistakes in the existing structure. All in all, though, it seems
reasonable to assume that p1 ≥ p0. This implies that the right side of (13.3.7) becomes smaller,
which is a change in favor of not making the strengthening.

13.4 Updating by revision of the limit state

Sometimes the largest reliability updating effect can be obtained by making a revision of the math-
ematical model used in the design phase to represent the verbally formulated limit-state require-
ment. This is particularly relevant if the applied mathematical limit state is “on the safe side”. It
was shown in Chapter 3 how model uncertainty can be handled in the reliability analysis both with
respect to bias in the mean position of the limit-state surface and with respect to the variation about
the mean position in a neighborhood of the globally most central limit-state point. The practice of
applying models that are on the safe side implies that no correction is made in the design phase
in order to achieve correctness in the mean and also often that model uncertainty related to the
applied model is disregarded. Such an “on the safe side” procedure is not necessarily optimal,
naturally, even though considerations about investment of time in the structural analysis pulls in
the direction of simplicity. Nonetheless it is and it has been a wide spread practice. Of course, this
has been so to a larger degree for older structures that have been designed by use of very primitive
calculational aids.

For structures designed “on the safe side” a change of the limit-state surface by reference to a
more detailed and non-biased mathematical model leads to an extension of the safe set and thus
an increase of the calculated reliability. The necessary inclusion of model uncertainty pulls in the
opposite direction, of course.

By the application of the principle of consequence calculations for calibration of different codes
against each other, this issue should be remembered. If given safety elements (safety factors, partial
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safety factors, characteristic values, etc.) are assigned to specified limit-state surfaces chosen on
the safe side (or possibly even on the unsafe side) these biases should be carefully considered
when making the calibration such that “hidden safeties” are taken care of in a correct way in the
consequence calculations.

13.5 Historical and bibliographical notes

In the framework of the usual deterministic methods for design according to the partial safety
factor method it is very difficult if not impossible in a rational way to include new information as
described in this chapter. Therefore it is not surprising that practical applications of probabilistic
methods gain a place for the evaluation of existing structures. For example it can be observed that
inspection for fatigue cracks in all the Danish offshore structures are based on principles that are
based on the models for crack growth and inspection described in this chapter [13.6].

The calculational problems were solved in connection with the development of FORM for
parallel systems. H.O. Madsen [13.4], R. Rackwitz and K. Schrupp [13.7] have presented the first
results in this direction in 1985. A more complete description is given by H.O. Madsen in 1987
[13.5].

It should be expected that probabilistic methods in the future will get wide spread applications
for existing structures. Applications on bridge structures are under development both in USA and
in Europe.
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Chapter 14

SYSTEM-RELIABILITY ANALYSIS

14.1 Series systems and parallel systems

System-reliability analysis concerns the formulation of the limit state and calculation of the fail-
ure probability when the structure has more ways of failing. Mathematically we encounter system
reliability analysis if the limit-state surface is composed by more pieces that generally intersect
pairwise in sets of singular points, which are points at which the limit-state surface is not differ-
entiable. Each of these pieces will usually be a part of a limit-state surface for a specific global
failure mode or for a local failure. An example of a local failure is rupture of a redundant structural
element.

We have earlier considered systems for which the total failure event can be written as

F =
m⋃

i=1

Fi (14.1.1)

where Fi is the failure event corresponding to the i th failure mode. Such systems are denoted
as series systems. The most common example is a statically determinate structure composed of
several elements. If just one of these elements fails, the structure looses its carrying capacity,
Example 6.3. Another example is a frame structure made of a rigid-ideal plastic material. Each
mechanism is then a possible failure mode, Example 6.4. A series system is also denoted as a
“weakest link” system.

Earlier we have also considered systems for which the total failure event can be written as

F =
m⋂

i=1

Fi (14.1.2)

Here all elements must fail in order for total failure to occur. Such systems are denoted as parallel
systems and they most often appear as elements in a series system. For a statically indeterminate
structure with several failure modes several of the single failure modes do not occur unless several
structural elements have failed. For example, in a statically indeterminate rigid-ideal-plastic frame
structure several yield hinges must be generated before a mechanism can develop.

275
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14.2 General systems. Cut sets and tie sets*

Series systems and parallel systems are the two basic system types from which any system can be
built. Any system can be represented both as a series system of parallel systems and as a parallel
system of series systems. To see this we assume that there are m different potential local failure
modes that in specific combinations cause total failure. We can then divide all of R

n into the 2m

disjoint subsets

Fi1 ∩ Fi2 ∩ . . . ∩ Fik ∩ Sik+1 ∩ . . . ∩ Sim (14.2.1)

where k = 0, 1, . . . , m and i1, . . . , ik are k different indices chosen among 1, 2, ..., m and ik+1,

. . . , im are the remaining indices. The total failure set F is the union of all the sets among the
sets (14.2.1) that correspond to total failure. We will use the property that if (14.2.1) is a subset
of the total failure set, then any of the sets obtained by replacing one or more of the safe sets
Sik+1, . . . ,Sim by the corresponding failure sets among Fik+1, . . . ,Fim are also subsets of the total
failure set. This is because a failed system does not change to a safe state if even more elements
fail. By taking the union of all these sets the set Fi1 ∩ . . . ∩ Fik is obtained. Thus we have that

F =
⋃

(Fi1 ∩ . . . ∩ Fik ) (14.2.2)

where the union is taken over all intersections of the form Fi1 ∩ . . . ∩ Fik that are subsets of
F . By this the system is represented as a series system of parallel systems. It is seen that the
intersections in (14.2.2) are not necessarily disjoint. We can take a step more and replace each of
these intersections by an intersection F j1 ∩ . . . ∩ F jq that satisfies the condition

F ⊃ F j1 ∩ . . . ∩ F jq ⊃ Fi1 ∩ . . . ∩ Fik (14.2.3)

where q ≤ k and { j1, . . . , jq} ⊂ {i1, . . . , ik}. Each such index set { j1, . . . , jq} is called a cut set.
In particular we can choose q as the smallest number for which (14.2.3) is valid. The index set
{ j1, . . . , jq} is then said to be a minimal cut set. Thus we can write (14.2.2) as

F =
⋃
mc

(F j1 ∩ . . . ∩ F jq ) (14.2.4)

where mc indicates that the union is taken over the set of minimal cut sets among the subsets of
{1, . . . , m}.

The safe set S with respect to total failure is the complementary set to the total failure set F
and S is the union of all the sets among the sets in (14.2.1) that do not correspond to failure. We
can now state exactly the same arguments that led to (14.2.2), (14.2.3) and (14.2.4) but with the
symbol F replaced in all expressions by the symbol S and vice versa and with the words “total
failure set” replaced everywhere with the words “safe set with respect to total failure” and vice
versa. In particular the sentence just before (14.2.2) should read: “an unfailed system does not fail
when one ore more elements are changed from the failed state to the unfailed state”.

Corresponding to (14.2.2) we thus get that

S =
⋃

(Si1 ∩ . . . ∩ Sik ) (14.2.5)
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which in terms of the complementary sets is equivalent to (Morgan’s rule):

F =
⋂

(Fi1 ∪ . . . ∪ Fik ) (14.2.6)

This shows that the system can be represented also as a parallel system of series systems. We can
make a further reduction of (14.2.6) corresponding to the reduction from (14.2.2) to (14.2.4). With
S in place of F in (14.2.3) we get

S ⊃ S j1 ∩ . . . ∩ S jq ⊃ Si1 ∩ . . . ∩ Sik (14.2.7)

where q ≤ k and { j1, . . . , jq} ⊂ {i1, . . . , ik}. Each such index set { j1, . . . , jq} is called a tie set.
In particular we can choose q as the smallest number for which (14.2.7) is valid. The index set
{ j1, . . . , jq} is then said to be a minimal tie set. Thus (14.2.6) can be reduced to

F =
⋂
mt

(F j1 ∪ . . . ∪ F jq ) (14.2.8)

where mt indicates that the intersection is taken over the set of minimal tie sets among the subsets
of {1, . . . , m}.

It is emphasized that the index sets { j1, . . . , jq} are different in (14.2.4) and in (14.2.8). The
terminologies “cut set” and “tie set” are loan-words from the theory of electrical systems. Failure
of the system corresponds to a situation where all connections are cut while functioning of the
system corresponds to a situation where at least one of the connections works.

Figure 14.1: Geometrically one degree overdeterminate truss structure and the corresponding six geo-
metrically determinate truss structures that correspond to the six minimal tie sets that preserve geometric
determinacy.

Example 14.1 Figure 14.1 shows a truss structure with crossing diagonals 1 and 2. The structure
is one degree geometrically overdeterminate (∼ one degree statically indeterminate). By removal
of one of the bars 1, 2, 3, 4, 5, 6 a geometrically determinate (i.e. statically determinate) structure
is obtained.

The corresponding six geometrically determinate truss systems are also shown in Fig. 14.1.
Removal of one more bar will cause that the structure becomes geometrically underdeterminate,
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which is the same as saying that it becomes movable. Thus there are in total 6 minimal tie sets:

{2, 3, 4, 5, 6; 7, 8, 9, 10}
{1, 3, 4, 5, 6; 7, 8, 9, 10}
{1, 2, 4, 5, 6; 7, 8, 9, 10}
{1, 2, 3, 5, 6; 7, 8, 9, 10}
{1, 2, 3, 4, 6; 7, 8, 9, 10}
{1, 2, 3, 4, 5; 7, 8, 9, 10}

(14.2.9)

These minimal tie sets represent the truss system with respect to geometric determinacy as a paral-
lel system with six parallel elements. Each of these elements is a series system with nine elements.

A cut set with respect to geometric determinacy is obtained by choosing one and only one
element from each of the minimal tie sets. Since the bar numbers 7, 8, 9, 10 are contained in all the
minimal tie sets, we get the four minimal cut sets {7}, {8}, {9}, {10} with only one element in each
set. Each of the remaining six bar numbers 1, 2, 3, 4, 5, 6 is contained in five of the six minimal
tie sets. All other minimal cut sets thus have two elements and they appear in identical pairs where
each of the six bar numbers is taken together with each of the five remaining bar numbers. Thus
there are 5 × 6/2 = 15 minimal cut sets with two bar numbers in each:

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}
{2, 3}, {2, 4}, {2, 5}, {2, 6}

{3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}
(14.2.10)

These in total nineteen minimal cut sets represent the truss system as a series system with nineteen
elements of which the fifteen elements are parallel systems with two parallel elements. �

Remark 14.1 In Example 14.1 no considerations were made concerning failure or no failure
of the individual truss bars in dependence of their strengths and the external loads on the truss
structure. The concern was solely about system failure defined as the occurrence of geometric
underdeterminacy. Even though considerations about this can be useful in connection with the
statical analysis, they are less relevant for the reliability analysis.

For example, if all truss bars are linear elastic and ideal brittle (a bar is said to be ideal brittle if
the internal force in the bar drops abruptly to zero when it reaches the strength of the bar), it will
depend on the load history which bar is the first to fail. There can even be such a distribution of bar
stiffnesses and bar strengths in the truss in Fig. 14.1 that it will be bar 1 that fails first irrespective
of how the loads x and y varies within the positive domain. After failure of bar 1 the internal
forces redistribute immediately to the statically determinate solution corresponding to system 1.
The strengths of the bars 2-6 can, however, be such that the internal forces after redistribution are
larger than the strengths of one or more of the bars. If so the truss structure suffers total failure
by the redistribution of the internal forces. None of the tie sets formulated in Example 14.1 have
in such a case any relevance with respect to reliability. It is solely the bar 1 that determines the
reliability of the system.

Linear elastic structural systems with ideal brittle failure elements will be reconsidered in Sec-
tion 14.5. �
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14.3 Influence on the definition of the limit state of the time
variation of the input variables

The truss structure example (Remark 14.1) indicates that considerable difficulties can appear when
it comes to the mathematical formulation of the limit state for a structural system. These diffi-
culties appear in particular when the limit state is defined such that it corresponds to loss of the
bearing capacity of the structure after previous successive deterioration of the structure by failure
of statically redundant parts.

The successive deterioration depends on circumstances that are not uniquely fixed by the mere
specification of the outcome of the random input vector X = (X1, . . . , Xn). In the previous chap-
ters problems of this type have not been considered. In fact, the problem of how X1, . . . , Xn

physically get assigned their values when the structure is realized has simply not been addressed.
The detailed development of the load history can, however, have a decisive influence on the defi-
nition of the limit state.

The real structure is incomplete during a period of construction. In this period the input vari-
ables have changing values. After finishing the structure and bringing it into service, the loads
on the structure change systematically and/or randomly throughout the entire service life. In the
different states of completion and use the structure can naturally be analyzed with respect to relia-
bility by the described methods. These methods only require that a safe set S ⊂ R

n is defined and
that a probability distribution for X is defined. Besides the modeling of these objects the reliability
analysis consists in calculating the probability that X ∈ S. By use of a comparison standard it is
thereafter evaluated whether the structure is sufficiently reliable.

The reliability analysis can be formulated without introduction of new concepts in such a way
that it embraces all the resistance and action situations as they develop systematically or randomly
through a sequence of initially specified time points t1, t2, . . . , tm chosen in the construction period
and in the service period. The reliability of the structure hereby is evaluated on the basis of the
probability of the event

{X(t1) ∈ S(t1)} ∩ . . . ∩ {X(tm) ∈ S(tm)} (14.3.1)

where X(ti ) is the random vector if input variables to the time ti and S(ti ) ⊂ R
n is the safe set

corresponding to the time ti . In several situations the safe sets S(t1), . . . ,S(tm) can be defined
independently of the outcomes of X(t1), . . . , X(tm). Having formulated a probability distribution
for the n × m-dimensional random vector (X(t1), . . . , X(tm)) it is then the probability content of
the safe set S(t1)× . . .×S(tm) that should be calculated. In the previous chapters we have several
times seen examples of this special case. These are the examples with independent replacements
of loads. The FBC load model in Chapter 10 is directly formulated with this special temporal
treatment in mind. In these simple applications the safe set has been constant in time and an
obvious definition has existed of an extreme scalar load effect corresponding to the considered
time period.

The problem becomes considerably more difficult if the safe set S(t) in its development in time
is dependent on the previous development of the outcome of the input vector X(t). Let us consider
a statically indeterminate truss structure where the bars, including the connections, behave linearly
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elastic up to a strength value that varies randomly from bar to bar and differently for tension and
compression. The truss structure is assumed to be subject to a set of random loads that increase
proportionally from zero to the final random values drawn from the given distribution. This load
history is controlled by use of a scalar load level factor λ that increases from 0 to 1. A calculation
based on the elasticity theory determines uniquely the internal forces in all bars as functions of
λ. If λ can reach the value 1 without the occurrence of failure in any bar, the vector of input
variables is a point in the safe set, of course. However, it may happen that one or more redundant
bars fail before λ reaches the value 1 but simultaneously that the structure with these redundant
bars removed has internal forces that are all below the respective strengths. This means that the
damaged structure can still carry the load, so if this property is the verbally formulated limit-state
requirement, then the vector of input variables is also a point in the safe set in this situation.

Under the assumption of proportional loading we thus get a well defined limit-state surface in
the space of input variables. The surface can be extremely complicated because it depends on the
succession of failures of the redundant bars. This succession depends on the redistribution of the
internal forces that takes place after each bar failure. Each bar failure may even trigger a cascade
of bar failures. The succession of the bar failures in the cascade determines the final state of the
structure after the end of the cascade.

If there are load histories that are not uniquely determined by the set of input variables X, the
limit state surface in the x-space is not necessarily uniquely determined. Such ambiguity can be
considered as model uncertainty. Due to the complicated nature of the problem it is not easy to use
theoretical considerations to quantify this model uncertainty in order to formulate a representation
using the principles of Chapter 3.

When formulated in the space that corresponds to the input variables associated to all the
chosen discrete time points, the ambiguity of the limit state surface comes from the unspecified
variation of the input variables between the chosen time points. A consistent extension of the
time-discrete model by including more time points will give a larger failure probability because a
finer discretization cannot lead to a decrease of the set of failure possibilities. The discretization
effect of underestimating the failure probability can be overcome by use of the theory of random
processes. In principle this theory makes it possible to formulate a reliability analysis which do not
necessitate a discretization of the time and the space. Unfortunately such process-based reliability
analysis gives only few possibilities of exact determination of the failure probability even in the
simplest examples. However, the process theory leads to a general formulation of a useful upper
bound of the failure probability. The random process theory will be given an introductory treatment
in Chapter 15.

14.4 “Jury definitions” of the safe set

The difficulties of including the influence of the load history on the definition of the safe set show
up in the literature on reliability analysis of general structural systems by different often not very
clear suggestions of ”jury definitions”. This (home made) terminology is introduced here because
the time variations are either not considered or, when it is claimed to be considered, then often on
the basis of vague arguments that aim a convincing the reader that the defined safe set by and large
corresponds to proportional loading from zero.
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The most commonly seen system-failure definitions are of a type given implicitly through a
calculational scheme (an algorithm) which contains a failure-sequence concept that, without any
tenable basis, is claimed to mirror proportional growth of the loads. The following jury definition
seems to be used in many system-reliability algorithms.

Assume that there are q potential failure elements in the structure and consider the q! different
ordered sets of failure elements. To each of these ordered sets there corresponds an ordered set of
structural models. These models represent successively reduced fragments of the original structure
in the sense that each model of the ordered set has exactly one failed element more than its direct
predecessor.

Let now x be a value of the input vector and focus on any one of the ordered sets S of failure
elements. First the basis model is considered, that is, the model of the undamaged structure. It is
assumed to be linear-elastic. Thus the state of the structure is completely defined by x. If there
is a stable state of equilibrium and the limit state is not passed for the first failure element of the
considered ordered set S of failure elements, then the structure for the given x is said to be statically
stable in S. If not, we change the linear-elastic properties of the first failure element in S to the
constitutive post-failure properties. Often these properties are simulated simply by replacing the
failed element by a system of “equivalent” external forces with fixed values that correspond to the
residual carrying capacity of the failed element (zero for ideal brittle failure, the yield strength
for ideal plastic failure). A statical analysis is next made for this first model in the ordered set
of models corresponding to the sequence S. If there is a stable state of equilibrium and the limit
state for the second failure element in the sequence S is not passed, then the structure for the given
x is said to be statically stable in S. If not, the second failure element is changed following the
same principles as for the first failure element. This defines the second model in the ordered set
of models corresponding to S whereafter the statical calculation is carried through as for the first
model. Recursive calculation and modeling in this way reveals either that the structure for the
given x is statically stable in S or that one of the models in the ordered sequence shows statical
instability. Of course, at the latest this occurs for the qth model.

On the basis of this model formulation the following jury definition of the safe set can be
made: The point x is said to belong to the safe set for the structure if and only if the structure
corresponding to x is statically stable in all the q! different ordered sets of failure elements. The
set defined in this way will be denoted as the sequential stable-configuration set. It is a subset,
and often a genuine subset, of the union of the safe sets with respect to the terminal load for all
substructures that are not movable. This union will be denoted as the stable-configuration set.
For the truss structure in Example 14.1 the stable-configuration set is the same as the union of the
safe set with respect to first bar failure and the six safe sets that corresponds to the six statically
determinate substructures.

Example 14.2 Figure 14.2 shows a simple linear-elastic frame structure with the indicated beam
stiffnesses and with two potential failure elements concentrated at the points 1 and 2. The failure
elements are ideal brittle with moment strengths ±M at point 1 and ±2M/3 at point 2. After
failure the points are changed to moment-free points (hinges). The example (taken from [14.4,9])
is well suited for illustration of the influence of the load history on the safe set. Moreover, it is a
counter example to the intuitive claim that the sequential stable-configuration set corresponds to
proportional loading.
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The bending moments of the intact failure elements are shown on the frame structure at the top
and to the right. Next row of drawings shows the bending moments after failure at point 1 and point
2, respectively. The following three (x, y)-coordinate systems show the safe sets corresponding to
the load paths indicated as arrows. In all three cases the two limit states are shown for each of the
two failure elements before and after the first failure either at point 1 or at point 2. The failure set
in the first coordinate system corresponds to the situation where S1 is applied first to its final value,
after which S2 is applied to its final value. In the second coordinate system, S2 is applied first
to its final value, whereafter S1 is applied. In the third coordinate system, S1 and S2 are applied
simultaneously by proportional loading from zero. All three safe sets are seen to be genuine subsets
of the stable-configuration set. Indeed, due to its definition the stable-configuration set is equal to
the union {3−3x −5y > 0, 2−3x +3y > 0}∪{y < 27

64}∪{y < 18
64} = {3−3x −5y > 0, y < 27

64}.
This set is bounded by the limit state lines corresponding to point 1. For brevity we have used the
notation {statement} for the set {(x, y)| statement}.

Figure 14.2: Illustration of the influence of the load path on the definition of the safe set for a linear-elastic-
ideal-brittle frame structure.

To determine the sequential stable-configuration set we consider the complete set of ordered
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sets {1,2} and {2,1} of failure elements. The sets of points (x, y) for which the structure is statically
stable in the ordered set {1,2} and {2,1} of element failures, respectively, are {3 − 3x − 5y >

0} ∪ {y < 18
64} and {2 − 3x + 3y > 0} ∪ {y < 27

64}. It is seen that first set is a genuine subset of the
second set. The intersection of the two sets is the sequential stable-configuration set and thus it is
the first of the two sets, which is identical to the safe set shown in the second coordinate system. It
is different from the safe set that corresponds to proportional loading. It has been claimed [14.4]
that the sequential stable-configuration set is a subset of any safe set that has been defined under
due considerations of the load path. For this statement to be true it is necessary to introduce some
restrictions on the set of possible load paths. In this example it is only needed to choose a piecewise
axis parallel load path as (x, y) = (0, 0) → (0.9, 0) → (0.9, 0.1) → (0.1, 0.1) → (0.1, 0.5) to
generate a total failure. This load path is seen to be completely contained in the sequential stable-
configuration set. �

14.5 Ideal-plastic systems and ideal-brittle systems*

The definition of the sequential stable-configuration set appeals intuitively to be used as a jury
definition of the safe set. However, as shown in Example 14.2, a clear physical interpretation
is missing of this jury definition in relation to given specifications of the load path. Except for
two special idealized cases it seems difficult to characterize the sequential stable-configuration set
as either embracing or being contained in a safe set defined in a physically interpretable way in
relation to an extended model that includes load-path specifications.

The one idealized case is a structure with rigid-ideal-plastic failure elements. Under the as-
sumption of the associated flow rule (the normality condition) the stable-configuration set becomes
identical to the safe set defined under the assumption of proportional loading from zero. This is
a consequence of the lower-bound theorem of the plasticity theory: if and only if there exists a
state of internal stresses which is in equilibrium with the external system of forces and which
in all failure elements is inside or on the yield surface, then the structure is safe with respect to
collapse. If the normality condition is dropped, the theorem cannot be maintained as a sufficient
condition that there is no collapse. Then it can only be claimed that the safe set is a subset of the
stable-configuration set.

With the normality condition maintained the assumption of proportional loading can be re-
laxed to a much larger class of load paths. A discussion of this requires some few concepts from
the theory of random vector processes. The problem will be treated in the next chapter. The im-
plied load-path independence in the sense as explained in the next chapter makes it attractive to
try to apply the ideal plasticity theory on structures with ductile behavior at failure even though
the premises of the theory are not valid in all details for the real structure. The obtained simplifi-
cation of the mechanical modeling must be paid, naturally, by the introduction of suitable model
uncertainty variables.

The other ideal case is a linear-elastic structure with ideal-brittle failure elements. In the fol-
lowing let X denote the terminal load solely. All the remaining not explicitly shown input variables
are assumed to have constant values throughout time. Assume that the structure is subject to pro-
portional loading, that is, assume that the load changes along a load path L(X) from zero to the
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terminal load point X where L(X) defines a straight line in the space of X. Either no element will
fail before X is reached or there will be a first element that fails. By this failure a redistribution of
the internal forces of the structure will take place. Assuming that dynamic effects of the failure can
be neglected, a statical analysis will show whether the structure can resist the redistributed internal
forces or whether other failure elements will be stressed over their strengths immediately upon the
first failure. In the last case the first failure triggers another element failure or even a cascade of
element failures. Along the load path we may thus have either no failure, a sequence of single
failures or a sequence of failures of which some or all occur in cascades. The load path terminates
at a point that either corresponds to a safe state of the structure, that is, to a point of S, or at a point
that corresponds to loss of the carrying ability of the structure, that is, at a point of F .

To be able to keep track of the succession of element failures in a cascade failure solely by
statical calculations it is necessary to introduce a jury hypothesis that fix the succession of failures.
For simplicity, but sufficiently general, consider the situation where the elements fail according to
the applied jury hypothesis in the order of their numeration. In case the elements 1, 2, . . . , i are
removed from the structure and the remaining structural configuration defines a system which is
not movable, we can define the q − i safety margins

M12...i
i+1 , . . . , M12...i

q (14.5.1)

as functions of the actual load x . For i = 0 we get the safety margins for the failure elements of
the original undamaged structure. During the load growth from the zero load point along the load
path L(X) these safety margins M0

1 , . . . , M0
q have initial values that are all in the positive domain.

The event

L(X) ⊂ S0 = {x|M0
1 > 0, . . . , M0

q > 0} (14.5.2)

will be denoted as the safe basis event. Obviously this event does not occur if the load path L(X)

has points in common with the set

F0
1 = {x|M0

1 ≤ 0, M0
2 > 0, . . . , M0

q > 0} (14.5.3)

since the load then reaches a point A on the load path where M0
1 = 0 and M0

2 > 0, . . . , M0
q > 0.

At this point A, element 1 fails whereafter the safety margins M1
2 , . . . , M1

q become actual for
the analysis of the behavior of the structure. If two or more of these new safety margins are
zero or negative at A, a cascade of element failures occurs. Then we have a situation where it is
undetermined which element fails first when solely statical calculations are made. Therefore we
introduce the jury hypothesis that if the load path L(X) has points in common with the set

F1
2 = {x|M1

2 ≤ 0, M1
3 > 0, . . . , M1

q > 0} (14.5.4)

then the element 2 is the first failure element in the cascade. The hypothesis gives a unique answer
because all the safety margins vary linearly along the load path and all are positive at the zero load
point. Consequently this hypothesis states that if the structure in which element 1 is missing is
loaded from the zero load point along L(X) and it by this loading is element 2 that fails first, then
it is also element 2 that fails first in the actual structure as a consequence of the redistribution of
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the internal forces released by the failure of element 1. The principle of the hypothesis can without
change be applied during the further load development. If L(X) has points in common with the set

F12
3 = {x|M12

3 ≤ 0, M12
4 > 0, . . . , M12

q > 0} (14.5.5)

the hypothesis states that element 3 is the next element that fails either within the first cascade of
failures or as a single failure or as the first failure of a new cascade of failures.

On the basis of the failure order specified in this way we thus see that the safe failure sequence
{1, 2, ..., i} occurs if an only if the structure obtained by the removal of elements 1, ..., i is not
movable and that both the events

L(X) ∩ F12...( j−1)

j �= ∅, j = 1, . . . , i (14.5.6)

and the event

X ∈ S12...i �= ∅ (14.5.7)

occur. The symbol ∅ denotes the empty event and

F12...( j−1)

j = {x|M12...( j−1)

j ≤ 0, M12...( j−1)

j+1 > 0, . . . , M12...( j−1)
q > 0} (14.5.8)

S12...i = {x|M12...i
i+1 > 0, . . . , M12...i

q > 0} (14.5.9)

We have denoted the failure sequence {1, 2, . . . , i} as a safe failure sequence because the load path
L(X) terminates at a point X for which the structure is not totally failed.

The event

X ∈ S12...i ∩
(

i⋂
j=1

F12...( j−1)

j

)
(14.5.10)

obviously implies that the safe failure sequence {1, 2, ..., i} occurs. Therefore the probability

P(M0
1 ≤ 0, M0

2 > 0, . . . , M0
q > 0,

M1
2 ≤ 0, M1

3 > 0, . . . , M1
q > 0, . . . ,

M12...(i−1)
i ≤ 0, M12...(i−1)

i+1 > 0, . . . , M12...(i−1)
q > 0,

M12...i
i+1 > 0, . . . , M12...i

q > 0) (14.5.11)

is a lower bound on the probability that the safe failure sequence {1, 2, . . . , i} occurs.

This probability can be calculated approximately by use of single-point or multi-point FORM
or SORM, see Section 6.6. If the set of all safety margins appearing in (14.5.11) is jointly Gaussian,
the probability is given by the possibly singular m-dimensional normal distribution function

�m(−β0
1 , β0

2 , . . . , β0
q ,

−β1
2 , β1

3 , . . . , β1
q , . . . ,

−β
12...(i−1)
i , β

12...(i−1)
i+1 , . . . , β12...(i−1)

q ,

β12...i
i+1 , . . . , β12...i

q , PM) (14.5.12)
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where m = q + (q −1)+ . . .+ (q − i) = (i +1)(q − i/2). The matrix PM is the correlation matrix
for the vector M of m safety margins and β0

1 , . . . , β12...i
q are the corresponding reliability indices.

The safe failure sequences are disjoint events. The probability of the safe event is therefore the
sum of the probability of the safe basis event and the probabilities of all the safe failure sequences.
Except for very simple structures it is not practicable to include all the safe failure sequences in
the reliability evaluation.

Of course, by only including some of the events (14.5.15) we get a lower bound evaluation. We
will not discuss here systematic search methods for the identification of the safe failure sequences
that give essential contributions to the sum. However, it should be noted that there is a simple way
of deciding whether a given safe failure sequence contributes negligible relative to the contributions
of other safe failure sequences. For this purpose an upper bound evaluation is needed. Such an
evaluation can be constructed by use of the fact that the occurrence of the events (14.5.6) implies
the occurrence of the events

L(X) ∩ {x|M12...( j−1)

j ≤ 0} �= ∅, j = 1, . . . , i (14.5.13)

Since the safety margin M12...( j−1)

j is negative for x = X if it is negative at a point of the load path
L(X), it is seen that the events (14.5.13) are the same as the events

X ∈ {x|M12...( j−1)

j ≤ 0}, j = 1, . . . , i (14.5.14)

Thus we have that the probability

P(M0
1 ≤ 0, M1

2 ≤ 0, M12...i
i ≤ 0, M12...i

i+1 > 0, . . . , M12...i
q > 0)

≤
i∑

j=1

P(M12...( j−1)

j ≤ 0) +
q∑

j=i+1

P(M12...i
j > 0) (14.5.15)

is an upper bound of the probability that the safe failure sequence {1, 2, . . . , i} occurs.

A non-safe failure sequence {1, 2, . . . , i} is characterized by the property that the structure is
movable after the failure of the first i failure elements but still is not movable when solely the first
i −1 failure elements have failed. This non-safe failure sequence occurs only if the events (14.5.6)
occur. If the last row of inequalities M12...i

i+1 > 0, . . . , M12...i
q > 0 are removed in (14.5.11) we

get a lower bound on the probability that the non-safe failure sequence {1, 2, . . . , i} occurs. Since
the non-safe failure sequences just as the safe failure sequences are mutually disjoint, any sum of
such lower bounds becomes a lower bound on the total failure probability. The relative importance
of the different non-safe failure sequences can be judged by an evaluation as in (14.5.15) after
removal of the last sum with the terms P(M12...i

j > 0).

It appears from this discussion that even for the considered very idealized structural type subject
to proportional loading from zero it is quite complicated to formulate the safe set and to calculate
the corresponding probability. It is noted that the events (14.5.14) are the events that are considered
in the definition of the sequential stable-configuration set in Section 14.4. The safe set given by
the union of the safe basis event and all the sets that correspond to the safe failure sequences is
then a subset of the sequential stable-configuration set. The probability of the event defined by
the sequential stable-configuration set therefore overestimates the reliability with respect to total
failure.
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14.6 Historical and bibliographical notes

There is a general theory for systems of components where failure of one or more components
of the system does not change the action conditions for the remaining not failed components, or
at least only does it in a very simple way. This theory is today a well-developed tool for the
reliability analysis of electrical apparatus systems or similar systems. The concepts of cut sets and
tie sets come from this theory. Among the contributors to the development of what today could be
characterized as classical theories of system reliability we will here mention R.E. Barlow and F.
Proschan for their books from 1965 and 1975 [14.2,3].

When it concerns reliability analysis of structural systems the problem becomes of a much
more complicated type than dealt with in the classical theory of system reliability. This is caused
both by the influence of the load-path history and the complicated redistribution of the load effects
after each component failure. The development trends are described in 1985 by G.I. Schuëller
[14.10]. He tends to require realism in the details of the system reliability analysis to a degree that
can be somewhat relaxed, perhaps. The difficulties of the system reliability analysis have been
pointed out by C.A. Cornell in 1982 [14.6]. Supported by the extremely fast development of the
technical means of calculation it seems as if formal calculational methods for system reliability
analysis has developed ahead of the development of logically healthy and transparent mechanical
and probabilistic principles. The discussion given in Section 14.4 about jury definitions of the safe
set is thus a reaction of O. Ditlevsen presented the first time in 1987 [14.8,9].

There are too many contributors to the development of the formal calculational methods of
reliability analysis of general so-called realistic structural systems for it to be feasible to give
references to them all. Instead reference is made to a state-of-the-art paper by O. Ditlevsen and P.
Bjerager from 1986 [14.7].

Transparent reliability analysis of rigid-ideal-plastic structures using both the upper-bound the-
orem and the lower-bound theorem of the plasticity theory was published first by G. Augusti and
A. Baratta in 1972 [14.1]. Most contributions to the topic are based solely on the upper-bound
theorem, that is, on the identification of collapse mechanisms. References are given in [14.7].

The upper and lower bounds for ideal-brittle structures under proportional loading are given by
P. Bjerager in 1984 [14.5].
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Chapter 15

INTRODUCTION TO PROCESS
DESCRIPTIONS

15.1 Processes. Gaussian processes. Poisson processes

In several of the previous chapters we have encountered examples of simple modeling of random
variations in time and space. The formal mathematical tools for such modeling are given in the
theory of random processes or fields. In this chapter we will give an introduction to some few of
the concepts and results that have relevance in the theory of structural reliability. The mathematical
side of the presentation will be based on heuristic arguments. Attempts to maintain mathematical
rigor will complicate the essentials with finer points that hardly are particularly useful for a reader
that primarily is interested in the engineering applications.

A random process or a random field X (t) is a family of random variables or vectors. Each
member of the family is determined by a scalar or vectorial parameter t. For example, this par-
ameter can be the time or it can be a position vector. An outcome (realization, sample function)
x(t) of the random process X (t) is a function of the parameter t . For t = t0 the value x(t0) is an
outcome of the random variable X (t0). An example of an outcome is a specific load history from
a weighted set of possible load histories. This weighted set is an example of a random process

The principles of the probabilistic description of a random process follow directly from the
evident property that any chosen set of parameter values (t1, . . . , tn) defines a random vector
(X (t1), . . . , X (tn)) which is described by an n-dimensional distribution in dependency of (t1, . . . ,

tn). The probability structure of the process is fixed by assigning the set of all finite-dimensional
probability distributions given that the assignment is made such that certain obvious requirements
of consistency are satisfied.

One of the most often applied examples of such a consistent assignment of finite-dimensional
distributions is the one that leads to the class of Gaussian processes. Assume that the mean value
E[X (t)] is assigned as a function µ(t) of t (the mean value function) and that the covariance
Cov[X (t1), X (t2)] is assigned as a function c(t1, t2) of (t1, t2) (the covariance function). Then the
mean value vector {E[X (ti )]} and the covariance matrix {Cov[X (ti ), X (t j )]} are determined for
any choice of (t1, . . . , tn). The assumption that the distribution of the vector (X (t1), . . . , X (tn))
is Gaussian then leads to a complete definition of a process. This process is called Gaussian with

289
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mean value function µ(t) and covariance function c(t1, t2). It is noted that the class of covariance
functions must satisfy certain requirements that ensure that variances cannot be negative (the re-
quirement is that the expectation functional must be positive). The requirements to c(t1, t2) are
that

c(t1, t2) = c(t2, t1) (15.1.1)

and that

n∑
i=1

n∑
j=1

c(ti , t j )ai a j ≥ 0 (15.1.2)

for any n and any choice of t1, . . . , tn and arbitrary numbers a1, . . . , an . If these two requirements
are satisfied, the function c(t1, t2) is said to be non-negative definite. The left side of (15.1.2) is
just the variance of the linear combination a1 X (t1) + . . . + an X (tn).

For a Gaussian process with constant mean value function it is the properties of the covariance
function (continuity, differentiability, behavior in the infinite, etc) that determine the properties of
the sample functions. For example, we may talk about a Gaussian process with sample functions
that are differentiable with continuous derivatives. This characterization is interpreted such that
realizations without these properties only occur with zero probability. Concerning further details
the reader should consult the literature on random processes.

Another fundamental example of a class of random processes is the class of Poisson processes.
A Poisson process can be defined as a so-called counting process N (t), t ∈ R+, that counts the
number of certain uniquely defined incidents that occur at random in time. Thus the sample func-
tions of N (t) are ascending step functions with jumps of size 1 each time an incident occurs. The
probability laws for a so-called homogeneous Poisson process are fixed by assigning the properties:

1. N (t) has mutually independent increments, that is, for any t1 < t2 ≤ t3 < t4 the random
variables N (t2) − N (t1) and N (t4) − N (t3) are mutually independent,

2. the probability that a jump occurs in the interval ]t, t + �t] is c�t+ (terms of higher order in
�t) where c is a constant,

3. the probability that two or more jumps occur in the interval ]t, t + �t] is of second or higher
order in �t .

These conditions uniquely lead to the probabilities

P[N (t + τ) − N (t) = i] = e−cτ (cτ)i

i!
, i = 0, 1, . . . (15.1.3)

If N (0) = 0 we get the n-dimensional distribution

P[N (t1) = i1, . . . , N (tn) = in] = e−ctn cin
t i1
1 (t2 − t1)i2−i1 . . . (tn − tn−1)

in−in−1

i1!(i2 − i1)! . . . (in − in−1)!
(15.1.4)

where 0 ≤ t1 ≤ . . . ≤ tn, i1 ≤ i2 ≤ . . . ≤ in . The parameter c is called the intensity of the Poisson
process. The right side of (15.1.3) is called a Poisson distribution with parameter cτ .
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We get an inhomogeneous Poisson process if c is a function of the time t . All what is needed
is to change cτ in (15.1.3) to the integral

∫ t+τ

t c(x) dx while (15.1.4) is modified correspondingly.

More generally, we can define a Poisson field over the q-dimensional space as a counting pro-
cess N (x1, . . . , xq) that counts the number of randomly positioned points (concentrated objects)
with coordinates that each at most is x1, . . . , xq , respectively. Using completely analogous assign-
ments of properties as for N (t), it follows that the number of objects belonging to any given set V
is distributed according to the Poisson distribution with its parameter equal to the integral of the
intensity function c(x1, . . . , xq) over V .

The class of Gaussian processes and the class of Poisson processes make up the building stones
for quite many of the random processes that appear in the applications.

15.2 Upper bound of the failure probability

Let a possibly time-dependent safe set S(t) for a structure be given. The input vector X(t) is
modeled as a random vector process such that failure within the time interval [0, T ] occurs if and
only if there is some point in time t ∈ [0, T ] at which X(t) ∈ F(t) = �S(t). The safe set
{X(t) ∈ S(t) for all t ∈ [0, T ]} is obviously identical to the event

{X(0) ∈ S(0)} ∩ {N (T ) = 0} (15.2.1)

where N (T ) is the number of outcrossings of X(t) out of S(t) in [0, T ]. Loosely speaking, an
outcrossing at time t is the event that X(t) at time t passes from S(t) to the complementary set F(t).
This definition obviously makes sense if the sample functions of X(t) are continuous. However, a
point at which X(t) makes a jump from S(t) to F(t) is also denoted as an outcrossing point.

The complementary set to the safe set (15.2.1) is

{X(0) ∈ F(0)} ∪ {N (T ) > 0} (15.2.2)

which is the failure set. Let the probability on this set be denoted by pf(0, T ). Since the two events
in (15.2.2) are not disjoint we have

pf(0, T ) ≤ pf(0, 0) + P[N (T ) > 0] (15.2.3)

where

pf(0, 0) = P[X(0) ∈ F(0)] (15.2.4)

Moreover, since

P[N (T ) > 0] = P[N (T ) = 1] + P[N (T ) = 2] + . . .

≤ P[N (T ) = 1] + 2P[N (T ) = 2] + ... = E[N (T )] (15.2.5)

we get by substitution into (15.2.3) that

pf(0, 0) ≤ P

[
n⋃

i=1

{X(ti ) ∈ F(ti )}
]

≤ pf(0, T ) ≤ pf(0, 0) + E[N (T )] (15.2.6)
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where t1 = 0 < t2 < . . . < tn ≤ T are arbitrary time points. The inequalities (15.2.6) remains
true, of course, if pf(0, 0) is replaced by pf(ti , 0) = P[X(ti ) ∈ F(ti )] for any arbitrary ti . The
right side can similarly be replaced by pf(t, 0) + E[Nin(0, t)] + E[Nout(t, T )] where E[Nin(0, t)]
is the number of incrossings in the time interval from 0 to t while E[Nout(t, T )] is the number of
outcrossings in the time interval from t to T . It follows from this that in order to determine an upper
bound on the failure probability it is only needed to determine the instantaneous failure probability
pf(t, 0) (the marginal failure probability) corresponding to an arbitrary time point t ∈ [0, T ] and
the expected number of incrossings in the interval [0, t] and the expected number of outcrossings
in the interval [t, T ].

For slowly varying load vector processes a statical analysis of the structure will usually be
sufficient. For slowly varying stationary load processes and relevant planned lifetimes T of the
structure the expectation E[N (T )] is often of the same order of size as pf(0, 0). (A vector process
X(t) is said to be stationary if the vector process X(t + τ) corresponding to an arbitrary but fixed τ

has the same probabilistic structure as X(t).) Since uncertainties up to a factor as large as 2 in the
determination of the practically relevant very small failure probability pf(0, T ) only have modest
consequences for the dimensions of the structure, it is in such cases less important to determine
E[N (T )] with great accuracy. Noting this we get the advantage in such cases that it is unnecessary
to formulate a load model with large degree of detailing. A crude evaluation of E[N (T )] can be
sufficient especially when E[N (T )] < pf(0, 0).

If the load process is not stationary, more care should be exercised. For example, the situation
might be that the load process always starts within the safe set and at most has one outcrossing
of the safe set in the interval [0, T ]. Then pf(0, 0) = 0 such that the upper bound on pf(0, T )

is determined solely by E[N (T )]. This situation is present for a rigid-ideal plastic structure with
the load applied by proportional loading from zero. In this case we have pf(0, T ) = pf(T, 0) =
E[N (T )], that is, pf(0, T ) is the marginal failure probability at the time T .

In Chapter 14 we assumed as a condition for the reliability analysis of a rigid-ideal-plastic
structure that the loading path corresponds to proportional loading. The purpose of this limitation
of the load path behavior was to ensure that there is at most one outcrossing out of the time invariant
safe set S such that the analysis can be based solely on a specification of the probability distribution
of the end point of the loading path. It is seen here that if E[N (T )] can be calculated, then
completely general load paths corresponding to a random vector process X(t) can be handled.
If the calculations are based on the lower-bound theorem of the plasticity theory we just use the
right side of (15.3.6). In case of using the upper-bound theorem it is the left side of (15.3.6) that
should be used, of course. This generality with respect to the loading path is a consequence of
the fact that the safe set S is independent of the load-path history. As it has been demonstrated in
Chapter 14, this simple property is lost for the structural systems that are not rigid-ideal-plastic.
The inequalities (15.3.6) are valid generally, however. The difficulty is to use the inequalities when
the failure set depends on the loading path.

15.3 Expected number of outcrossings

If we assume that the vector process X(t) and the set S(t) have such properties that the time interval
from t to t + �t contains two or more crossings through the boundary ∂S(t) (in- or outcrossings)
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with a probability which is of higher order in �t than �t (that is, for each integer i ≥ 2 there is
a constant pi such that the probability of getting i ≥ 2 crossings is pi o(�t) ) then we obviously
have that

lim
�t→0

1

�t
E[N (t + �t) − N (t)] = lim

�t→0

1

�t
P[N (t + �t) − N (t) = 1] (15.3.1)

provided
∑∞

i=2 i pi < ∞ and provided the limit value in (15.3.1) exists. Within the structural
reliability theory it is sufficient to consider outcrossing problems for processes with these general
properties. It is noted that the event

{X(t) ∈ S(t)} ∩ {X(t + �t) ∈ F(t + �t)} (15.3.2)

implies the event

{N (t + �t) − N (t) ≥ 1} (15.3.3)

and that the difference event between (15.3.3) and (15.3.2) (that is, the event that (15.3.3) occurs
without the occurrence of (15.3.2)) is a subevent of the event that at least two crossings occur
(in or out). It follows from this that the probability of the event (15.3.3) is bounded between the
probability of the event (15.3.2) and the sum of this probability and the probability of getting an
even number of crossings. Since this last term is o(�t), we obviously get that

lim
�t→0

1

�t
E[N (t + �t) − N (t)] = lim

�t→0

1

�t
P[{X(t) ∈ S(t)} ∩ {X(t + �t) ∈ F(t + �t)}]

(15.3.4)

since P[N (t + �t) − N (t) ≥ 1] and P[N (t + �t) − N (t) = 1] in (15.3.1) only differs by terms
of the order o(�t). The limit on the left side of (15.3.4) is denoted as ν+(t) and it is called the
outcrossing intensity at the time t . For a given deterministic time variation of S(t) it is seen to
depend solely on the two-dimensional distributions (in time) for the vector process X(t) and solely
on the properties of these distributions within a neighborhood along the “diagonal” t1 = t2. Finally
the mean number of outcrossings of S(t) during the time interval [0, T ] becomes

E[N (T )] =
∫ T

0
ν+(t) dt (15.3.5)

because N (T ) is the sum of the increments N (t + �t) − N (t) from t = 0 to t = T .

In particular, if the process is a scalar process and S(t) =] − ∞, z(t)] where z(t) is a given
level function, the upcrossing intensity becomes, see Fig. 15.1 at the left side,

ν+ = lim
�t→0

1

�t
{FX (t)[z(t)] − FX (t),X (t+�t)[z(t), z(t + �t)]} (15.3.6)

Example 15.1 Define a load process according to the same principles as for the FBC load process
but with the points of the load changes occurring as the incidents of a Poisson process. This type
of process is called a Poisson “square-wave” process. Let the amplitudes be mutually independent
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Figure 15.1: Coordinate system diagrams that illustrate the deduction of the level upcrossing intensity of a
random process (Rice’s formula).

with the distribution function F(x) and let the Poisson process have the intensity c. According to
(15.3.6) the upcrossing intensity of the level z equals

ν+ = lim
�t→0

1

�t
{F(z) − [F(z)(1 − c�t) + F(z)2�t)]} = cF(z)[1 − F(z)] (15.3.7)

This result is directly obtained by considering that the point process of upcrossings are obtained by
independent thinning of the Poisson point by the thinning probability F(z)[1 − F(z)]. The point
process of upcrossings is then itself a Poisson process. �

If the process possesses two-dimensional probability densities, the formula (15.3.6) may be
written as

ν+ = lim
�t→0

1

�t

∫ z(t)

−∞
du

∫ ∞

z(t+�t)
fX (t),X (t+�t)(u, v) dv (15.3.8)

By the one-to-one mapping

(u, v) = (x, x + ẋ�t), (x, ẋ) =
(

u,
v − u

�t

)
(15.3.9)

we have that

fX (t),X (t+�t)(u, v) = fX (t),Ẋ(t)(x, ẋ)
1

�t
(15.3.10)

where Ẋ(t) = [X (t + �t) − X (t)]/�t . Thus (15.3.8) can be written as, see Fig 15.1 at the right
side,

ν+ = lim
�t→0

∫ ∞
z(t+�t)−z(t)

�t

[
1

�t

∫ z(t)

z(t+�t)−ẋ�t
fX (t),Ẋ(t)(x, ẋ) dx

]
dẋ (15.3.11)

The mean-value theorem applied to the inner integral of (15.3.11) followed by the limit passage
�t → 0 then gives

ν+ =
∫ ∞

ż(t)
[ẋ − ż(t)] fX (t),Ẋ(t)[z(t), ẋ] dẋ (15.3.12)
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Figure 15.2: Direct graphical interpretation of Rice’s formula.

in which ż(t) is the derivative of z(t) and Ẋ(t) is the derivative of X (t). This is Rice’s formula,
obtained here without consideration of mathematical rigor.

Example 15.2 For a stationary Gaussian process with mean value 0 and covariance function
c(t1, t2) = σ 2ρ(t2 − t1), ρ(0) = 1, ρ ′(0) = 0, ρ ′′(0) > −∞, the variables X (t) and Ẋ(t) are
mutually independent because X (t) and Ẋ(t) are uncorrelated for any stationary process. The
derivative Ẋ(t) has zero mean value and the variance

Var[Ẋ(t)] = lim
�t→0

Var

[
X (t + �t) − X (t)

�t

]

= lim
�t→0

{
1

�t2
(σ 2 + σ 2 − 2σ 2ρ(�t)

}
= −σ 2ρ ′′(0) (15.3.13)

using l’Hospital’s rule. Thus we find that (15.3.12) gives

ν+(t) =
[∫ ∞

0
ẋ

1

σ
√−ρ ′′(0)

ϕ

(
ẋ + ż(t)

σ
√−ρ ′′(0)

)
dẋ

]
1

σ
ϕ

(
z(t)

σ

)
(15.3.14)

In particular, if ż(t) ≡ 0, the mean upcrossing rate (15.3.14) becomes

ν+(t) =
√

−ρ ′′(0)

2π
ϕ

( z

σ

)
(15.3.15)

�
The formula (15.3.12) can be interpreted directly by help of a sketch of the sample curves as

they pass through the interval from t to t + �t , see Fig. 5.2. With given slope ẋ the fraction of the
set of sample curves that cross up through the curve defined by the level function z(t) will be given
by the product of the interval length [ẋ − ż(t)]�t for x and the density fX (t),Ẋ(t)[z(t), ẋ]. Since
upcrossings only exist for slopes ẋ that are larger than the slope ż(t), the probability of getting an
upcrossing in the considered interval is obtained by integration of this product from ż(t) to ∞.

It is noted that (15.3.12) can be written as

ν+(t) = E[max{0, Ẋ(t) − ż(t)}|X (t) = z(t)] fX (t)[z(t)] (15.3.16)

The outcrossing intensity of the vector process X(t) out of S(t) can be written in an analogous way.
Let the time development of S(t) be given by a deterministic velocity vector field v(x, t) in the
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sense that the surface ∂S(t) follows the velocity field v(x, t) and changes its form in accordance
with v(x, t). Consider any outcome x(t) of the vector process X(t) as the position vector of a
particle that moves with the velocity ẋ(t) − v(x, t) relative to an infinitesimal surface element part
of ∂S(t) with “area” d∂S(t) and situated at the point x. Then the particle will cross out through this
surface element in the time interval from t to t + dt if and only if x(t) is within an infinitesimal
volume element contained in S(t) and having the volume [ẋ(t) − v(x, t)]Tn(x) d∂S(t) dt . The
vector n(x) is the outwards directed unit normal vector to ∂S(t) at the point x. If this volume is
negative the particle crosses from the outside and into S(t). The probability of occurrence within
a time unit at time t of an outcrossing with velocity ẋ(t) through the surface element at the point
x(t) ∈ ∂S(t) and with an orientation given by the unit normal vector n(x) thus is

max{0, [ẋ(t) − v(x, t)]Tn(x)} fX(t),Ẋ(t)(x, ẋ) d∂S(t) dR
n (15.3.17)

Hereafter the probability of occurrence of an outcrossing through ∂S(t) within a time unit at time
t is obtained by integration with respect to ẋ followed by an integration with respect to x over all
of ∂S(t). This is a consequence of the fact that outcrossing through disjoint surface elements at
time t are mutually exclusive events. Thus we get the outcrossing intensity

ν+(t) =
∫

x(t)∈∂S(t)
d∂S(t)

∫
ẋ(t)∈Rn

max{0, [ẋ(t) − v(x, t)]Tn(x)} fX(t),Ẋ(t)(x, ẋ) dR
n

=
∫

x(t)∈∂S(t)
E[max{0, [Ẋ(t) − v(x, t)]Tn(x)}|X = x] fX(t)(x) d∂S(t) (15.3.18)

This formula is a generalization of Rice’s formula. It is sometimes referred to as Belayev’s formula.

The formulas (15.3.4) and (15.3.6) and Rice’s and Belayev’s formulas for the determination of
the integrand ν+(t) in (15.3.5) form, together with the tools given in this textbook, the basis that
with reference to the inequalities (15.2.6) can be used for a reliability analysis based on random
process models. The practical calculation of the outcrossing intensity depends on the specific
process type relevant for the application. The evaluation can often be made with sufficient accuracy
by use of asymptotic results of the same nature as the results that underlie FORM and SORM.
However, these topics are outside the scope of this book. Here we will be content by illustrating
that the outcrossing intensity as given by Belayev’s formula (15.3.18) can be estimated by use of
the Monte Carlo simulation technique described in Chapter 9.

15.4 Determination of the expected number of outcrossings by
directional simulation*

As in Chapter 9 on Monte Carlo methods we can reformulate the integral in (15.3.18) over the
surface ∂S(t) to an expectation of a suitable random variable that has all its probability distribution
concentrated on ∂S(t). This can be made in a simple way in a polar representation of the surface
∂S(t). For simplicity, let us assume that the origin of the coordinate system is in the inner of S(t)
and that S(t) is star-shaped with respect to the origin. Moreover, let us assume that the unit normal
vector n(x) almost everywhere on the surface ∂S(t) is not orthogonal to x, that is, xTn(x) �= 0
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almost everywhere on ∂S(t) (by which we mean everywhere except for x in a subset of zero
“area”). By a projection consideration setting x = r(α, t)α, ||α|| = 1, it is then seen that the
relation

d∂S(t) = r(α, t)n−1

αTn[r(α, t)α]
dK (15.4.1)

is valid between the “area” dK of the infinitesimal surface element on the unit sphere K with
center at the origin and the “area” d∂S(t) of the infinitesimal surface element on the surface
∂S(t). This means that it is easy to rewrite the integral (15.3.18) to an integral over K. If we
define an everywhere positive probability density fA(α) on K for the unit directional vector A,
we can divide and multiply the integrand by this density and thereafter interpret the integral as an
expectation exactly as in Chapter 9. Here this expectation gets the form

ν+(t) = E

[
r(A, t)n−1w(A, t)

fA(A)ATn[r(A, t)A]
fX(t)[r(A, t)A]

]
(15.4.2)

where

w(A, t) = E
[
max

{
0, {Ẋ(t) − v[r(A, t)A, t)]}Tn[r(A, t)A]

}∣∣X(t) = r(A, t)A
]

(15.4.3)

In principle, therefore, we can get an estimate of the outcrossing intensity ν+(t) by directional
simulation under use of a suitable simulation distribution that defines the density fA(α) on the
unit sphere K. The class of simulation distributions suggested in Chapter 9 may also be useful in
this connection. In particular the density corresponding to uniform directional simulation is

fA(α) = 1

“area” of K = �(n/2)

2πn/2
(15.4.4)

where �(x + 1) = x�(x), �(1
2) = √

π , and �(1) = 1.

In the particular case where X(t) is a Gaussian vector process that satisfies the condition that
X(t) and Ẋ(t) are mutually independent for any fixed t , the function w(A, t) in (15.4.3) becomes
(see e.g. [9.5])

w(A, t) = D[Ṅ (A, t)]ψ

(
E[Ṅ (A, t)]

D[Ṅ (A, t)]

)
(15.4.5)

where

Ṅ (A, t) = {Ẋ(t) − v[r(A, t)A, t]}Tn[r(A, t)A] (15.4.6)

and ψ(·) is the function defined by the formula

ψ(x) = ϕ(x) + x�(x) (15.4.7)

The applicability of the simulation method depends to a large degree whether it is possible to
obtain a fast determination of w(α, t) for each outcome α of A.
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15.5 Some simple load models of Poisson type

The load model in Chapter 10 (the FBC load model) is formulated with the purpose of representing
so-called intermittent load histories and their combinations to a degree of detailing sufficient for
the reliability analysis of buildings. A load history is said to be intermittent if it consists of a
sequence of load pulses of more or less random form and duration separated by time intervals
without loads. In particular, these time intervals without load can have vanishing duration. In the
FBC model both the load pulse durations and the separating time intervals are discretized to have
certain specific durations and the pulse shapes are rectangular. Moreover, the different FBC load
processes considered for combination are artificially fitted to each other with respect to the choice
of the load pulse durations and the duration of the separating intervals.

A more natural class of load models for intermittent load histories is generated by use of Pois-
son processes. Let N (t), t ∈ R+, be a homogeneous Poisson process with intensity c, that is, a
process for which (15.1.3) is valid. Assume that each of the incidents that are counted by N (t)
are occurrences of a load pulse whose time position, shape and size are jointly given by a function
h(t, N (·), S, D) of the time t , the Poisson process N (·), the pulse size S (= the amplitude), and the
pulse duration D. Then the load process can be written as

X (t) =
N (t)∑
n=0

h(t, {Ti }, Sn, Dn) (15.5.1)

in which we have written the Poisson process N (·) as the sequence Ti of jump points. Examples
are the compound Poisson point process where the load pulse has the shape

Snδ(t − Tn) (15.5.2)

the Poisson “square-wave” process where the load pulse has the shape, see Example 15.1,

Sn1Tn≤t<Tn+1 (15.5.3)

and which is a special case of the Poisson pulse process where the load pulse has the shape

SnW

(
t − Tn

Tn+1 − Tn

)
1Tn≤t<Tn+1 (15.5.4)

In (15.5.4), W (·) is a pulse shape function with the interval [0, 1] as definition set. Finally the
filtered Poisson “square-wave” process should be mentioned. In this process the load pulse has the
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shape

Sn1Tn≤t<Tn+Dn (15.5.5)

and the load pulses may overlap each other.

For these types of load models the load combination problem becomes quite difficult. In this
respect the compound Poisson point process defined by (15.5.2) is an important exception. This
is because the sum of an arbitrary number of mutually independent Poisson processes is a Poisson
process with intensity c1 + . . .+cm , where c1, . . . , cm are the intensities of the individual Poisson
processes. Since the load pulses are of zero duration and the jumps of a Poisson process are
separated in time, the load pulses will almost never overlap each other.

Assume that the load pulses of the i th process are mutually independent and identically dis-
tributed with the distribution function Fi (x) and denote the complementary distribution function
by F̄i (x) = 1− Fi (x). Then the probability that a load pulse with amplitude larger than x occurs in
the time interval from t to t + �t in the i th process is equal to ci F̄i (x)�t+ (terms of higher order
in �t). Thus the counting process that counts the number of load pulses with amplitude larger
than x is a Poisson process with intensity ci F̄i (x). For the sum of the m compound Poisson point
processes we therefore have that the corresponding counting process is a Poisson process N (t)
with intensity c1 F̄1(x)+ . . .+ cm F̄m(x). The probability that there is no load pulse with amplitude
that exceeds x within the interval [0, T ] is thus

P[N (T ) − N (0) = 0] = exp

[
−T

m∑
i=1

ci F̄i (x)

]
(15.5.6)

As a function of x the right side of (15.5.6) is the distribution function of the maximal load pulse
amplitude (or load effect amplitude, if the load amplitudes have been multiplied by the relevant
influence factors) within the time interval [0,T].

This simple model is applicable if the load pulse durations are very short relative to the time
distances between the load pulses in all the load processes that are considered for combination. If
this assumption is doubtful, it is possible to introduce corrections to (15.5.6) that take the possi-
bility of overlapping load pulses into consideration. These corrections give some overestimation
of the probability that the combined load process gets a realization with a load effect value larger
than x in the interval [0, T ]. The procedure is only reasonable, however, if it can be assumed that
the load pulse durations are essentially shorter than the time distances between the load pulses.

Let us assume that the load processes considered for combination are mutually independent
filtered Poisson “square-wave” processes with E[Dn] � E[Tn+1 − Tn] = 1/c, see (15.5.5).
Moreover, let us assume that all the pulse amplitudes and pulse durations within the same process
are identically distributed and mutually independent, and that the amplitudes and durations are
mutually independent. In the following we change the indexing such that FDi (x) and FSi (x) from
now on denote the distribution functions for the load pulse duration and the load effect pulse
amplitude in the i th process, respectively.
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Obviously the probability that there is a load pulse from the i th process in the time interval
[t, t + �t] followed by one or more load pulses from the j th process within the duration interval
given by Di is (assuming that Di has the density function fDi (x))

[ci�t + o(�t)]
∫ ∞

0
(1 − e−c j x) fDi (x) dx < ci c j E[Di ]�t + o(�t) (15.5.7)

since 1 − e−c j x < c j x is the probability that at least one load pulse occurs in process j within
a time interval of duration x . For E[Di ] � 1/c j there is only a small difference between the
two sides of (1.5.7). The considered event implies that after the occurrence of the load pulse from
the i th process in [t, t + �t] there occurs an overlap with a load pulse from the j th process. By
interchanging of i and j another event of overlap is obtained. The event of getting an overlap
directly after the occurrence of a load pulse either from the i th process or the j th process within
the time interval [t, t + �t] is the union of the two events. Thus the overlap events occurring in
the sum of the two processes are incidents in a Poisson process with an intensity which is less than

ci j = ci c j (E[Di ] + E[D j ]) (15.5.8)

Due to the overlapping load pulses the intensity of the Poisson point process with isolated load
pulses within the i th process will be less than ci .

For the case m = 2 in (1.5.6) we thus get that (1.5.6) can be modified to the inequality

P

(
max
[0,T ]

{
combined

load process

}
≤ x

)
≥ exp{−T [c1 F̄S1(x) + c2 F̄S2(x) + c12 F̄S1+S2(x)]}

(15.5.9)

We now take a step further and consider the overlap of three load pulses, one from each of the
processes with indices i, j and k. For this case the probability problem becomes much more
difficult. Therefore we will be content by considering an event that contains the overlap event as a
subevent. Consider the event that there is a load pulse from the kth process in the interval [t, t+�t]
and that this event is followed by one or more pairs of overlapping load pulses from the i th and
the j th process with start of occurrence within the duration interval given by Dk . Following the
principle in (1.5.7) we then have by use of (1.5.8) that the intensity of the Poisson process of this
type of events are less than

ci c j (E[Di ] + E[D j ])ck E[Dk] (15.5.10)

The considered event implies an overlap of a load pulse from the kth process with a load pulse
from the i th process or the j th process where the load pulses from the last two processes overlap.
The succession of load pulse starts in time is either k, i, j or k, j, i with load pulse start for the kth
process in the interval [t, t + �t]. Since besides this there are two index combinations that start
with i and j , respectively, that can imply overlap of all three load pulses, we find that the Poisson
process with the intensity

2ci jk = 2ci c j ck(E[Di ]E[D j ] + E[Di ]E[Dk] + E[D j ]E[Dk]) (15.5.11)
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has larger intensity than the Poisson process in which the incidents are overlap of three load pulses,
one from each of the three load processes.

For the case m = 3 in (1.5.6) we thus have that (1.5.6) can be modified to the inequality

P

(
max
[0,T ]

{combined load process} ≤ x

)

≥ exp

{
−T

[
3∑

i=1

ci F̄Si (x) +
3∑

i �= j

3∑
ci j F̄Si+S j (x) + 2

3∑ 3∑
i �= j �=k

3∑
ci jk F̄Si+S j+Sk (x)

]}

(15.5.12)

The principle for generalization of (1.5.12) is now obvious. We have

P

(
max
[0,T ]

{combined load process} ≤ x

)

≥ exp

{
−T

m∑
n=1

(n − 1)!
m∑ m∑

i1 �=i2 �=...�=in

· · ·
m∑

ci1i2...in F̄Si1+Si2+...+Sin
(x)

}
(15.5.13)

By approximate probability considerations and simulation studies Wen [15.7,8] has experienced
that (1.5.13) without the factors (n-1)! in a large number of examples gives a good approximation
to the left side. In fact, in the special case where all durations are equal one finds that the overlap
event conditional on the event considered in the derivation of (1.5.10) occurs with the probability∫ 1

0 dx2
∫ x2

0 dx3 . . .
∫ xn−2

0 xn−1 dxn−1 = 1/(n − 1)!.

This model for combination of intermittent load processes with “rare” load pulses of short
duration is in the literature known as Wen’s load-coincidence model. It is clear that the inequality
(1.5.13) is valid for any type of load processes of the form (1.5.1) and not just for the filtered
Poisson “square-wave” process given that the load effect pulses all are non-negative and that S
denotes the maximal load effect within the load pulse.

Finally it is noted that the combined intermittent load process with “rare” occurrences of load
pulses of short duration usually is considered for combination with an intermittent load process that
have load pulses of long duration and very short time intervals without load (e.g. a load process
for sustained load and service load). An exact solution exists for the sum of a compound Poisson
point process (process 1) and a Poisson square-wave process (process 2). Without giving the proof,
[15.3], we have that

P[max
[0,T ]

{X1(t) + X2(t)} ≤ x] = g(T, x)e−c2T (15.5.14)

where the function g(T, x) satisfies the integral equation

F(t, x) + c2

∫ t

0
F(t − u, x)g(u, x) du = g(t, x) (15.5.15)

with

F(t, x) =
∫ x

0
fX2(x − y) exp{−c1t[1 − FX1(y)]} dy (15.5.16)
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15.6 Historical and bibliographical notes

The evaluation of the failure probability by the expected number of outcrossings through the limit-
state surface was first considered by V.V. Bolotin in 1959 [15.1,p.371] and in the more complete
form (15.2.6) by M. Shinozuka in 1964 [15.6].

Load coincidence studies for pulse process models of Poisson type were made systematically
by Y-K. Wen in 1977 [15.7], and in 1990 he published a monograph about the topic [15.8]. The
integral equation (15.5.15) is formulated by A.M. Hasofer in 1974 [15.3].

Examples on the application of the random processes described in this chapter to model the
commonly appearing load types are given by H.O. Madsen et al. [15.4]. There exists a very large
literature that describes applications of the concept of random processes in the theory of structural
reliability. Since the present chapter is only introductory, the description of this literature is outside
the scope of the book. Also it is not relevant to make a historical exposition of the enormous
literature on random processes in general. Here it should only be mentioned that the book of H.
Cramér and M.R. Leadbetter [15.2] has been a useful source for the authors. Concerning Poisson
processes the book of E. Parzen [15.5] is reasonably easy for engineers with good mathematical
background.
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Chapter 16

Appendix 1: CODE CALIBRATION

16.1 Principles of code calibration

The concept of a design code for structures is explained in Chapter 2. In this appendix we need
the abstract concept of a code format. A code format is a formal system of variables together
with a set of rules. The rules define the relations between these variables and their relations to
the mechanical modeling of the structure and the actions on the structure. Code calibration is
the particular activity exercised by some authority (a code committee, say) when it applies some
superior method to assign values to the variables of the code format such that a specific design code
is formulated. For a code format of the partial safety factor type, the variables are characteristic
values, partial coefficients, and load reduction factors. A code can be calibrated on different levels
of superior methods. By and large the calibration levels can be categorized as use of judgemental
value assignment, calibration to existing design practice, or best fit to a superior formal reliability
evaluation method (code optimization).

Calibration by judgment was the predominant way of value assignment until about 1960. A
code that gives satisfactory experiences of safe design through several years of practical use was
considered to have reasonably correct values of the parameters. Economical reasons might lead
to revisions of the values in the direction of giving cheaper and less safe structures. On the other
hand, experiences about too many failures or weaknesses caused revisions with changes of the
parameter values in the direction of more safe structures. In the long run the value assignments to
the code format stabilize because no reasons appear for pointing at the necessity of new revisions.
Obviously there are several drawbacks of such judgemental calibration. In particular it has a
restrictive influence on the use of new materials, new structural principles, and developments in
new fields where only limited experiences about the extreme actions are available. Due to the lack
of rational analysis as the basis for the judgemental calibration, the resulting code, when used on
such new developments, will often lead to unnecessarily safe and expensive structures and thus be
restrictive with respect to the technological development.

Calibration to existing design practice is often used as a value assignment method in situations
where a change of the code format is actual. The motivation for such a change of the code format
can be the wish to get a simpler code or it can be caused by a superior goal of obtaining national
or international harmonization of different codes. The calibration then is about assigning values to
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the new code format such that the obtained code to the largest possible degree leads to the same
structural dimensions as obtained by use of the existing and supposedly well functioning codes.
Thus the calibration is based solely on comparative consequence calculations.

The highest level of code calibration consists of a best fit optimization aiming at approximating
the results of a superior reliability analysis model. Several codes made since about 1975 are based
on more or less extended principles of best fit optimization. The following sections describe one
possibility of a procedure for optimal value assessment for a partial safety factor code format. The
aim is to produce a code with a specified target value of the generalized reliability index for the
structures that will be designed according to the rules of the code.

16.2 Formulation of code optimization

The formulation of a code optimization problem can be made in five steps. Possibly this five step
formulation is both too simple and too rigid. It may not be a particularly precise description of the
way a code optimization problem is formulated in practice. Neither it is a recipe for the formulation
but rather to be considered as a crude schematic description of the most important components of
the best fit code optimization procedure.

Structure class

The first step is to define the class of structures on which the code should operate. This definition
may contain limitations, e.g. in geographical domains of validity of the code, failure modes,
materials and geometric properties.

With the exception of well-defined physical or mathematical constants (e.g. the mass density
of water or the acceleration of gravity) the numerical constants of a code can be considered as
variables. With these variables taking values from some set of values, a set of different codes is
obtained. This set of codes is the code format as defined in the previous section and the actual code
is one of several possible realizations of the code format.

A code format can be more or less complicated. For example, it can consist of a specific set of
characteristic values and a simple table of corresponding partial safety factors. Alternatively, more
complicated partial safety factors can be given as functions of different cases (e.g. as different load
factors for steel columns and beams or for different types of structures depending of the type and
size of the risk related to a failure) or be defined implicitly in terms of mathematical expressions.
Compared to what can be achieved by a simple code format, a complicated code format generally
makes it possible to obtain structures that are closer to be optimal, that is, closer to satisfy the goal
of the code. It is emphasized, however, that an accurate definition of the domain of the code is a
necessity. A set of load factors that is best suited for a given technology is not necessarily best for
another technology.
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Goal of the code

The second step is to define the goal of the code. For a partial safety factor code format the goal
can be the maximization of the expected utility as considered in Chapter 12, to obtain a specified
failure probability, or to obtain a specified geometric or generalized reliability index. The goal is
thus defined in terms of a reliability method on a higher level.

Importance weighting

The third step is to obtain information about the frequency of practical occurrence of different
structural designs and related parameter values within the structural class defined in the first step.
Since a code in general cannot be both simple and exactly satisfy the goal, it is necessary to define
the most important structural data for which the goal should be satisfied as well as possible. For
example, if most action effects in a cross-section are limited to the effects that correspond to a ratio
between self weight and movable load that ranges from 1/2 to 2, it is generally possible to obtain a
better fit for this restricted interval than for the entire load ratio interval from 0 to ∞.

16.2.1 Measure of fit

The fourth step is to define a measure for the degree of fit between a code and the goal of the code.
Consider the example where a probabilistic reliability analysis model has been formulated and the
goal of the code is to have a given target value pt of the failure probability with corresponding
target reliability index βt = −�−1(pt). Let β be the value of the reliability index for a design case
within the class of structures of the code. Then the degree of fit between β and βt can be measured
by the difference between the expected total costs corresponding to β and βt, respectively. In a
simple way the expected total cost CT can be written as, see Example 12.1,

CT = CI + CF p (16.2.1)

where p is the failure probability corresponding to β, CI is the initial cost and CF is the failure
cost. The initial cost CI can as in Example 12.1 be approximated by

CI = a(1 + bβ) (16.2.2)

where a and b are constants for the individual structural part. The expected failure costs CF p can
be approximated by

CF p = CF�
−1(−β) ≈ CF c exp

(
−β

d

)
(16.2.3)

where c and d are constants of which c will be eliminated in the following. The value d ≈ 0.23
gives a good approximation within a range of p from 10−6 to 10−3. As a function of β the total
expected cost can then be written as

CT(β) = a(1 + bβ) + CF c exp

(
−β

d

)
(16.2.4)
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Figure 16.1: The penalty function defined by (16.2.6) to be used for code calibration with respect to the
goal of achieving a target reliability index βt.

According to the goal of the code (the optimality postulate, Chapter 12) this function takes its
smallest value for β = βt. From this it follows that

CF = abd

c
exp

(
βt

d

)
(16.2.5)

such that

CT(β) − CT(βt)

abd
= β − βt

d
− 1 + exp

(
−β − βt

d

)
(16.2.6)

The right side of (16.2.6) defines a function M(β, βt) which is proportional to the loss coming
from the deviation of β from βt. In the following such a function is called a penalty function. The
graph of the right side of (16.2.6) is shown in Fig. 16.1.

The weighted average

� =
∑

geographical domain

∑
materials

∑
failure modes

∑
parameters

pi M(βi , βt,i ) (16.2.7)

of the penalty function is a measure of the degree of fit between the code and its goal. The av-
eraging is made over all structures within the class of the structures defined in the first step. The
weights pi are chosen on the basis of the relative frequencies determined in the third step under
consideration of the variation with respect to the summation index i of the parameters a and b.
These parameters determine the initial cost of the i th design case. The influence from a and b can
be neglected if the monetary values of the structural elements do no vary essentially within the
domain of the code. It is indicated in (16.2.7) by the index i that different values of the target value
βt may be actual. For example, this may be the case when different failure modes are considered.
The code optimization hereafter consists in determination of the values of the variables in the code
format such that � takes its smallest value. The optimization can also be made with restrictions
like βi ≥ βi,min where βi,min is a specified smallest allowable value of the reliability index. Also
some of the variable values may be chosen in advance.

It is seen from Fig. 16.1 that the penalty function defined by (16.2.6) is skewed such that under-
design gives a larger penalty than overdesign. A simpler penalty function without this skewness is
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the square of the deviation β − βt. It turns out that the final result of the code optimization is not
very sensitive to the choice of the penalty function.

Remark 16.1 If βopt as given by (12.4.2) is taken as the target reliability index βt for calibration
of a design value code format, Section 16.3, the penalty function on the reliability index deviations
from the target reliability index should ideally be such that it preserves the damage cost expectation
E[D]. This suggests that the penalty function should be chosen such that it is a function of β solely
through exp[1

2(β2 − β2
t )] − 1 rather than through β − βt. �

An example of results from a code optimization comes from the calibration of the 1977-edition
of the Canadian code for buildings. The chosen code format was

ϕR ≥
{

1.25 D + 1.50 L

1.25 D + 0.70(1.50 L + 1.40 W )
(16.2.8)

where the capital letters symbolize characteristic values for strength R and load effects from dead
load D, imposed load (live load) L and wind load W , and where ϕ is an unknown partial safety
factor on the strength. The partial safety factors and the reduction factor for load effects were
chosen in advance. The target reliability index values were

βt =

⎧⎪⎨
⎪⎩

4.00 for collapse by yielding in tension or bending

4.75 for collapse by compression or by loss of stability

4.25 for collapse by shear

(16.2.9)

These target reliability-index values were chosen on the basis of an analysis of structural elements
designed according to the code actually in use. The penalty function was chosen as the square of
β − βt. The result of the optimization was

cold formed steel yielding ϕ1 = 0.90

hot rolled steel yielding ϕ2 = 0.85

compression/instability ϕ3 = 0.85

bending ϕ4 = 0.83

reinforced concrete compression/instability ϕ5 = 0.68

compression/instability ϕ6 = 0.64

A flow chart with the different steps of the calibration procedure is shown in Fig. 16.2.

Code format optimization

A fifth step may be taken doing a code optimization for each code format in a chosen sequence
of code formats ordered with respect to increasing complexity. In general even the simplest goal
cannot be satisfied exactly by any chosen code format except possibly for code formats of an
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Figure 16.2: Flow chart for code optimization.

unacceptable level of complexity. Thus the search for a reasonable choice of a code must be
restricted to formats that lead to sufficiently simple design methods. In the obtained sequence of
realizations of the code formats, a code is chosen on the basis of a compromise between simplicity
and degree of fit to the goal.

According to [A1.1] such an optimization procedure has been applied to the British code for
steel bridges BS 5400: Part 3. This code calibration example is described in detail in [A1.2,p.196].

16.3 Design-value format

The design-value format represents a code format which is well adapted to be calibrated with
respect to the reliability-index method. The following considerations are based on single-point
FORM (the geometric reliability index).
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For an independent input variable X the relation between the design value xd in the physical
formulation space and the corresponding coordinate αβ to the globally most central limit-state
point in the standardized Gaussian space is determined by

FX (xd) = �(αβ) (16.3.1)

The design value xd then is

xd = F−1
X [�(αβ)] (16.3.2)

For some common distributions of mean value µ and coefficient of variation V the result is

xd =

⎧⎪⎨
⎪⎩

µ(1 + αβV ) normal distribution

µ exp(αβV − 1
2 V 2), V 2 � 1 lognormal distribution

µ(1 − 0.78 V {0.577 + log[− log �(αβ)]}) Gumbel distribution

(16.3.3)

If the mean value µ is known, the design value can thus be determined by explicit consideration of
distribution type FX , coefficient of variation V , importance of uncertainty α and reliability level
β.

For the possible design cases within the domain of a code the directional vector α for a given
target reliability index βt will vary from case to case. The situation is illustrated in two dimensions
in Fig. 16.3 with two different limit states 1 and 2. The radius β of the circle defines the common
reliability level. If this β is the target reliability level βt, the value of the design variable (rein-
forcement area of a concrete beam cross-section, say) in the limit-state problem 1 is determined
such that the limit-state curve 1 becomes tangential to the circle. For this particular design there
are an infinity of partial safety factor pairs applied to given characteristic values for X1 and X2, see
Section 2.5. Clearly all what is needed is arbitrarily to define a single design point Q on the limit-
state curve, given that the family of limit-state curves for the design situation 1 is a one-parameter
family with the design variable as parameter. If D1 is chosen as design point, where D1 is the
most central limit-state point, the partial safety factors, Section 2.4, that produce the same design
become

γ11 = F−1
X1

[�(α11βt)]

xc
1

, γ12 = x2c

F−1
X2

[�(α12βt)]
(16.3.4)

where (in accordance with Fig. 16.3) xc
1 is an upper fractile characteristic value of X1 (load type

variable) and x2c is a lower fractile characteristic value of X2 (resistance type variable), e.g.

xc
1 = F−1

X1
(p1), x2c = F−1

X2
(p2) (16.3.5)

with p1 = 0.98, say, and p2 = 0.05, say. For the other limit state 2 the point D2 may be taken as
design point and partial safety factors γ21, γ22.

Needless to say, since the partial safety factor method serves a purpose only if it can be used
directly for design without first making a design according to the reliability-index method, it is
necessary that the partial safety factors be fixed at least within a reasonably wide class of design



310 Chapter 16. Appendix 1: CODE CALIBRATION

Figure 16.3: Exact replacement vector δ for two α-vectors α1 and α2.

problems. For the case with the two limit states in Fig. 16.3 it is immediately seen that if the
intersection point D between the two limit-state curves is taken as design point, then the partial
safety factors are common for the two limit states. The vector δ acts as a replacement vector for α1

and α2 without introducing any error of approximation. Clearly, with more than two limit states
in the class of design problems containing solely the two random variables X1 and X2 there is no
replacement vector δ that exactly reproduces all the designs. By given superior requirement there
will only be one design point βδ for the class, and all the limit-state curves are therefore adjusted
to contain this point. Thus the reliability indices will vary over the class. The strategy is then to
determine the replacement vector δ such that the expected loss (penalty) for the entire design class
becomes minimal, that is, such that the function � in (16.3.7) is minimized. In this optimization
problem it is not required that δ is a unit vector. By design “to the limit” in the i th design case
the limit-state surface will, in stead of the equation gi (u) = 0, get an equation g̃i (u) = 0 which is
satisfied for the point u = βtδ. In general this point is not necessarily the same as, or even close
to, the most central point on the surface g̃i (u) = 0 .

The situation is illustrated in Fig. 16.4 . If the limit-state surfaces defined by gi (u) = 0 and
g̃i (u) = 0 are almost plane and parallel within a domain that contains the points βtαi , βtδ, βi α̃i ,
then it follows directly from the figure that the geometric reliability index βi is approximately

βi ≈ βtα
T
i δ (16.3.6)

The penalty function (16.3.6) can hereafter with sufficient accuracy be modified to

M(βi , βt) = βt(α
T
i δ − 1)

d
− 1 + exp

(
−βt(α

T
i δ − 1)

d

)
(16.3.7)

and the optimization of the weighted average � defined in (16.3.7) can be made. A flow chart
for this optimization is shown in Fig. 16.4. Compared to the optimization in Fig. 16.2 a major
computer time saving is gained because the box: “Determination of dimensions by design to the
limit according to new code” due to (16.3.6) can be moved outside the optimization procedure.
Thus it is only made once and the optimization can be made by a standard algorithm. Of course,
the range of obtained reliability index values within the class should be controlled. If the range is
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Figure 16.4: Illustration of limit-state surfaces and reliability indices for the i th design case in the opti-
mization of a design value format with fixed replacement vector δ for direction vector αi to the most central
limit-state point.

Figure 16.5: Flow chart for code optimization of design-value format.

judged to be too wide, the class should be divided into subclasses each with its own set of partial
safety factors.

It should be noted that the obtained optimal replacement vector δ for α can be used with
good accuracy for other specified values of βt in the vicinity of the value used in the optimization.



312 Chapter 16. Appendix 1: CODE CALIBRATION

By a moderate change of the target reliability level it is therefore not necessary to make a new
optimization as it is the case if the procedure of Fig. 16.2 is used.

Example 16.1 A rectangular cross-section of a reinforced concrete beam has in pure bending the
yield moment

Mu =
(

1 − K
As fy

bhnσ ′
c

)
As fyhn (16.3.8)

given that the cross-section is normally reinforced. As is the cross-section area of the reinforce-
ment, fy is the yield stress of the reinforcement, σ ′

c is the compression failure stress of the concrete,
b is the width of the cross-section, hn is the effective height, and K is a factor that depends on the
strain-stress curve of the concrete. For a linear-elastic strain-stress curve we have K = 2/3 while
K = 1/2 for a rigid-ideal-plastic strain-stress curve.

The acting bending moment consists of a contribution Mg from the dead load and a contribution
Mq from the live load such that the limit-state function in the physical formulation space is given
by

G = Mu − Mg − Mq (16.3.9)

Table 16.1 shows the uncertainty modeling for this example. Six different design cases are
chosen corresponding to three values of the ratio between the mean values of Mg and Mq and two
values of the coefficients of variation for Mq. The six design cases are assumed to occur with the
same frequency, that is, pi = 1/6, i = 1, 2, . . . , 6.

Parameter Mean value Coefficient of variation Distribution type
Mg 25,75,25 kNm 0.07 normal
Mq 25,25,75 kNm 0.15,0.30 Gumbel
σ ′

c 35 MPa 0.10 lognormal
fy 485 MPa 0.06 normal
K 0.55 0.05 lognormal
b 0.25 m - fixed value
hn 0.50 m (As is the design variable) fixed value
As 6 × 10−4 m2 (hn is the design variable) fixed value

Table 16.1: Distributions for input parameters in bending failure model for normally reinforced concrete
beam.

The target value of the reliability index is βt = 5.00. For the six design cases the beam is
designed such that β = 5.00. The design variable is first taken to be the reinforcement area As

and hn = 0.50 m. 16.2 shows the vector α for the six cases and the solution δ to the optimization
problem.

The design values for the individual input parameters are next calculated by use of (16.3.2) and
(16.3.3) substituting the relevant coordinate of βtδ for βα. The design values become: Mgd =
1.07 E[Mg], Mqd = 2.41 (3.81) E[Mq] for VMq = 0.15 (0.30), respectively, σ ′

cd = 0.98 E[σ ′
c],
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E[Mg]/E[Mq] VMq Mg Mq σ ′
c fy K

1/1 0.15 [0.11 0.92 -0.01 -0.38 0.01] = αT
1

3/1 0.15 [0.34 0.72 -0.03 -0.60 0.02] = αT
2

1/3 0.15 [0.04 0.95 -0.03 -0.29 0.01] = αT
3

1/1 0.30 [0.06 0.96 -0.01 -0.27 0.01] = αT
4

3/1 0.30 [0.17 0.91 -0.03 -0.37 0.01] = αT
5

1/3 0.30 [0.02 0.98 -0.04 -0.22 0.02] = αT
6

[0.20 0.90 -0.04 -0.44 0.02] = δT

Table 16.2: Calculated sensitivities (that is, components of α) for each of the 6 design cases for a reinforced
concrete section and all with the reliability index β = 5.00. The last row shows the optimal replacement
vector δ.

fyd = 0.87 E[ fy], Kd = 1.004 E[K ]. If the characteristic value for Mq is the 98%-fractile, it is
1389 (1778) E[Mq] for VMq = 0.15 (0.30), respectively. The corresponding partial safety factors
thus become 1.74 (2.14), respectively.

Next the beam is designed on the basis of these design values. The design parameter As is
determined as

As =
hn ±

√
h2

n − 4K (Mgd + Mqd)/(bσ ′
cd)

2K fyd/(bσ ′
cd)

(16.3.10)

The values of the reliability index for the resulting cross-sections are shown in Table 16.3. It is seen
that there is a good fit to the target value βt = 5.00 by the values obtained from use of the optimal
replacement vector δ given in Table 16.2. This replacement vector for α has also been applied
upon a change of the target reliability index to βt = 3.00. New design values are calculated by use
of (16.3.3) and the reliability index values for the resulting cross-sections are given in Table 16.3. It
is seen that there is a good fit between the target and the calculated values even though the optimal
replacement vector δ is determined for βt = 5.00.

E[Mg]/E[Mq] VMq β(βt = 5.00) β(βt = 3.00)

1/1 0.15 5.10 3.08
3/1 0.15 5.01 2.83
1/3 0.15 5.01 3.02
1/1 0.30 5.00 3.01
3/1 0.30 5.12 3.07
1/3 0.30 4.92 2.95

Table 16.3: Resulting reliability indices for each of six design cases of the steel area in reinforced concrete
beam cross-section for a fixed replacement vector δ determined to be optimal for βt = 5.00.

Calculations with the effective height hn as design parameter have also been made with As =
6 × 10−4 m2. A table like Table 16.2 is produced and the optimal replacement vector δ is obtained
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as δ′ = [0.18 0.89 − 0.02 − 0.47 − 0.01]. It is seen not to deviate much from the replacement
vector obtained in Table 16.2 where As is the design variable.

The effective height is determined from the obtained design values as

hn = Mgd + Mqd

As fyd
+ K As fyd

bσ ′
cd)

(16.3.11)

Table 16.4 in analogy with Table 16.3 gives the values for the resulting reliability index for the
same two values of the target reliability index as for the case of As as design variable.

E[Mg]/E[Mq] VMq β(βt = 5.00) β(βt = 3.00)

1/1 0.15 5.00 3.07
3/1 0.15 5.01 2.84
1/3 0.15 5.01 3.02
1/1 0.30 4.99 3.00
3/1 0.30 5.11 3.06
1/3 0.30 4.93 2.94

Table 16.4: Resulting reliability indices for each of six design cases of the effective height of a reinforced
concrete beam cross-section for a fixed replacement vector δ determined to be optimal for βt = 5.00.

�
There is a particularly important issue related to the classification of design problems into

classes of constant partial safety factors. For limit states of the same mechanical type (same col-
lapse mode) the α-vectors as defined in Fig. 16.3 tend to be close to each other such that the
corresponding most central points form a cluster on the sphere of radius βt (in Fig. 16.3 the points
D1 and D2 on the circle of radius β). As an example consider reinforced concrete, and in partic-
ular consider, as one type, the bending failure of a beam cross-section where the yield moment is
mainly determined by the yield strength X1 of the tension reinforcement and, as another type, the
compression failure of a short column where the carrying capacity is mainly determined by the
compression strength X2 of the concrete. Then the situation in the (u1, u2)-plane is as sketched
in Fig. 16.6. For the bending failure limit states the variability of X2 has only small influence and
the cluster of most central limit-state points is therefore situated on the vicinity of (−β, 0). For
the limit states of compression failure type the cluster of most central limit-state points is similarly
situated on the circle in the vicinity of (0, −β), about 90◦ apart from the first cluster of points.
If the two limit-state types are put in two different design-case classes we get the two optimal re-
placement vectors δ1 and δ2 centrally placed within each cluster, as illustrated in Fig. 16.6. If both
types of limit states are required to be treated by the same partial safety factors, that is, if they are
put together in one class, the optimal replacement vector δ will have some direction between the
two clusters depending on the relative weighting of the two types. In the final steps of the itera-
tive optimization procedure to obtain δ the approximation (16.3.6), and thus the penalty function
(16.3.7), may not be sufficiently accurate. Fig. 16.6 (left) shows two limit states of each type. With
equal weight on the two types a first crude assessment of an optimal δ is obtained by letting βδ
be the vector to the crossing point of the two orthogonals to δ1 and δ2 at the points βδ1 and βδ2,
respectively.
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Figure 16.6: Illustration of effect of using replacement vector

Fig. 16.6 (right) illustrates the possible consequence of having a single replacement vector δ
for the α-vectors of about 90◦ separated clusters of most central limit-state points. All the limit
states are now required to contain the point βδ with β = βt. Obviously the approximation errors
for the reliability indices increase when extending the class of design cases. What intuitively can
be seen from Fig. 16.6 (right) is that from having quite small approximation errors when keeping
δ1 and δ2 for practical design, the error may blow up to considerable size when requiring that there
should only be one set of partial safety factors.

Whether the minor complication of having some few classes of partial safety factors is of
sufficient inconvenience to justify the resulting much larger reliability variability when there is
only a single class, can in principle be decided in a rational way by a cost benefit analysis. At
the very least it must be ensured that there within the class is no relevant structures for which the
reliability index becomes much smaller than the target reliability index.

16.4 Sensitivity of the replacement vector δ in the design-value
format*

Under the approximation βi ≈ βtα
T
i δ, (16.3.6), any twice differentiable penalty function defined

as a function of βi − βt becomes some function h(αT
i δ) solely of the scalar product αT

i δ such that
h(1) = h′(1) = 0, h′′(1) > 0. Then � in (16.3.7) may be written as

� =
∑

i

pi h(αT
i δ) (16.4.1)

and the optimal replacement vector δ is obtained as the solution to the n equations ∂�/∂δ1 =
. . . = ∂�/∂δn = 0. Written together on vector form these n equations become

∑
i

pi h
′(αT

i δ)αi = 0 (16.4.2)
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The sensitivity of the optimal δ with respect to some parameter θ is now obtained through implicit
differentiation by interpreting (16.4.2) as an identity with respect to θ . Thus we get

∑
i

pi

[
h′′(αT

i δ)

(
dαT

i

dθ
δ + αT

i
dδ

dθ

)
αi + h′(αT

i δ)
dαi

dθ

]
= 0 (16.4.3)

assuming that the weights pi are independent of θ .

The solution of (16.4.3) with respect to dδ/ dθ becomes

dδ

dθ
= −

[∑
i

pi h
′′(αT

i δ)αiα
T
i

]−1 ∑
i

pi

[
h′′(αT

i δ)αiδ
T + h′(αT

i δ) I
] dαi

dθ
(16.4.4)

The sensitivity dαi/ dθ is given by (8.2.25) for β = βi , g = gi .

16.5 Sensitivity of the partial safety factors in the design-value
format*

Let xd j be the design value corresponding to the component δ j of the replacement vector δ, and let
xc j be the characteristic value of the random variable X j . In the following we simplify the writing
by omitting index j . Then

xd = F−1
X [�(βt δ); θ ] (16.5.1)

xc = F−1
X [�(p); θ ] (16.5.2)

explicitly indicating the possibility that the distribution of X depends on the parameter θ . Then the
derivative of the partial safety factor γ = xd/xc with respect to θ becomes

dγ

dθ
= 1

x2
c

(
xc

dxd

dθ
− xd

dxc

dθ

)

= 1

x2
c

{
xc

fX (xd; θ)

[
ϕ(βt δ)βt

dδ

dθ
− ∂

∂θ
FX (xd; θ)

]
+ xd

fX (xc; θ)

∂

∂θ
FX (xd; θ)

}
(16.5.3)

For γ = xc/xd the derivative dγ / dθ is obtained from (16.5.3) by replacing the left side by
d(1/γ )/ dθ . The derivative dδ/ dθ is the j th component of dδ/ dθ given by (16.4.4).
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Chapter 17

Appendix 2: NATAF DISTRIBUTION

17.1 Correlation coefficients in Nataf distribution

The ratio R = ρi j/ri j of the correlation coefficients in (7.2.9) to be used for defining the Nataf
distribution can be determined exactly or approximately by solving the equation (7.2.6) with re-
spect to ρi j for given ri j = r . The following tables give the results that are obtained from [7.2].
The tables are set up with reference to a categorization of the considered marginal distribution
types into two categories. The first category consists of those distribution types that by a suitable
transformation of the random variable can be given a parameter-free standard form. The second
category consists of those distribution types that are not of the first category. All the considered
distributional types are listed in Tables 17.1 and 17.2.

Among the possible pairs of distribution types there are two for which R is given explicitly.
These are (see distribution class symbols in Table 17.1 and 17.2 ):

(Xi , X j ) ∈ (N,LN) : R = Vj√
log(1 + V 2

j )
(17.1.1)

(Xi , X j ) ∈ (LN,LN) : R = log(1 + r Vi Vj )√
log(1 + V 2

i ) log(1 + V 2
j )

(17.1.2)

The ratio R is independent of r if Xi ∈ N. Under this assumption, Table 17.3 lists the values of
R when X j has a distribution of the first category. Table 17.4 lists the coefficients of 1, Vj and
V 2

j , respectively, of a linear combination that approximates R. The error of this approximation is
bounded as indicated in the table given that 0.1 ≤ Vj ≤ 0.5.

The other cases of combinations of distributional types into pairs are given in the Tables 17.5,
17.6 and 17.7, which are all self-explanatory. The intervals for Vi and Vj are in all cases from 0.1
to 0.5.

The allowable domain of variation for the correlation matrix {ri j } depends on the dimension
of the corresponding multidimensional distribution. The Nataf distribution is only definable if the
solutions to the equation (7.2.6) define a positive definite matrix {ρi j }.

317
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Name (symbol) Distribution Standard parameter-free
function distribution function

normal (Gauss) (N) �

(
x − µ

σ

)
�(y)

uniform (U)
x − a

b − a
, x ∈ [a, b] y, y ∈ [0, 1]

shifted 1 − exp[−λ(x − a)] 1 − e−y

exponential (SE) x ∈ [a, ∞[ y ∈ [0, ∞[

shifted Rayleigh (SR) 1 − exp

[
− 1

2

(
x − a

α

)]
1 − exp

(− 1
2 y2

)
x ∈ [a, ∞[ y ∈ [0, ∞[

Gumbel (type I) exp{exp[−α(x − a)]} ee−y

largest value (GL)

Gumbel (type I) 1 − exp{exp[−α(x − a)]} 1 − ee−y

smallest value (GL)

Table 17.1: Distributions of the first category

Name (symbol) Distribution function

lognormal (LN) �

(
log x − λ

ζ

)
, x ∈ R+

gamma (�)
�(k, λx)

�(k)
, x ∈ [0, ∞[

�(k, x) = ∫ x
0 uk−1e−u du, �(k) = �(k, ∞)

Fréchet (type II) exp

[
−

(a

x

)k
]

, x ∈ R+

largest value (F)

Weibull (type III) 1 − exp

[
−

(
x − a

b − a

)k
]

, x ∈ [a, ∞[

smallest value (W)

Table 17.2: Distributions of the second category

For the two-dimensional Nataf distribution with marginal distributions of the first category the
allowable variation intervals for r are shown in Table 17.8. For distributions of the second category
the allowable variation intervals depend on Vi and Vj but similarly wide intervals are obtained.
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(Xi , X j ) (N,U) (N,SE) (N,SR) (N,GL) (N,GS) max error %
R 1.023 1.107 1.014 1.031 1.031 0.0

Table 17.3: Values of R for Xi normal and X j of the first category

(Xi , X j ) 1 V V 2 max error %
(N,�) 1.001 -0.007 0.118 0.0
(N,F) 1.030 0.238 0.364 0.1
(N,W) 1.031 -0.195 0.328 0.1

Table 17.4: Coefficients of 1, V, V 2 in a linear combination of 1, V, V 2 that approximates R. V = Vj .

(Xi , X j ) 1 r r2 max error %
(U,U) 1.047 - -0.047 0.0
(U,SE) 1.133 - 0.029 0.0
(U,SR) 1.038 - -0.008 0.0
(U,GL) 1.055 - 0.015 0.0
(U,GS) 1.055 - 0.015 0.0
(SE,SE) 1.229 -0.367 0.153 1.5
(SE,SR) 1.123 -0.100 0.021 0.1
(SE,GL) 1.142 -0.154 0.031 0.2
(SE,GS) 1.142 0.154 0.031 0.2
(SR,SR) 1.028 -0.029 - 0.0
(SR,GL) 1.046 -0.045 0.006 0.0
(SR,GS) 1.046 0.045 0.006 0.0
(GL,GL) 1.064 -0.069 0.005 0.0
(GL,GS) 1.064 0.069 0.005 0.0
(GS,GS) 1.064 -0.069 0.005 0.0

Table 17.5: Coefficients of 1, r, r2 in the linear combination of 1, r, r2 that approximates R.
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(Xi , X j ) (U,LN) (SE,LN) (SR,LN) (GL,LN) (GS,LN)
1 1.019 1.098 1.011 1.029 1.029
r - 0.003 0.001 0.001 -0.001
r2 0.010 0.025 0.004 0.004 0.004
V 0.014 0.019 0.014 0.014 0.014
V 2 0.249 0.303 0.231 0.233 0.233
r V - -0.437 -0.130 -0.197 0.197
max error % 0.7 1.6 0.4 0.3 0.3
(Xi , X j ) (U,�) (SE,�) (SR,�) (GL,�) (GS,�)
1 1.023 1.104 1.014 1.031 1.031
r - 0.003 0.001 0.001 -0.001
r2 0.002 0.014 0.002 0.003 0.003
V -0.007 -0.008 -0.007 -0.007 -0.007
V 2 0.127 0.173 0.12 0.131 0.131
r V - -0.296 -0.090 -0.132 0.132
max error % 0.1 0.9 0.9 0.3 0.3
(Xi , X j ) (U,F) (SE,F) (SR,F) (GL,F) (GS,F)
1 1.033 1.109 1.036 1.056 1.056
r - -0.152 -0.038 -0.060 0.060
r2 0.074 0.130 0.028 0.020 0.020
V 0.305 0.361 0.266 0.263 0.263
V 2 0.405 0.455 0.383 0.383 0.383
r V - -0.728 -0.229 -0.332 0.332
max error % 2.1 4.5 1.2 1.0 1.0
(Xi , X j ) (U,W) (SE,W) (SR,W) (GL,W) (GS,W)
1 1.061 1.147 1.047 1.064 1.064
r - 0.145 0.042 0.065 -0.065
r2 -0.005 0.010 - 0.003 0.003
V -0.237 -0.271 -0.212 -0.210 -0.210
V 2 0.379 0.459 0.353 0.356 0.356
r V - -0.467 -0.136 -0.211 0.211
max error % 0.5 0.4 0.2 0.2 0.2

Table 17.6: Coefficients of 1, r, r2, V, V 2, r V in the linear combination of these parameters that approxi-
mates R for Xi of the first category and X j of the second category. V = Vj .
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(Xi , X j ) (LN,GM) (LN,F) (LN,W) (GM,GM) (GM,F) (GM,W) (F,F) (F,W) (W,W)
1 1.001 1.026 1.031 1.002 1.029 1.032 1.086 1.065 1.063
r 0.033 0.082 0.052 0.022 0.056 0.034 0.054 0.146 -0.004
r2 0.002 0.018 0.002 0.001 0.012 - -0.055 0.013 -0.001
r3 - - - - - - -0.020 - -
Vi 0.004 -0.019 0.011 -0.012 -0.030 -0.007 0.104 0.241 -0.200
V 2

i 0.223 0.288 0.220 0.125 0.174 0.121 0.662 0.372 0.337
Vj -0.016 0.222 -0.210 -0.012 0.225 -0.202 0.104 -0.259 -0.200
V 2

j 0.130 0.379 0.350 0.125 0.379 0.339 0.662 0.435 0.337
r Vi -0.104 -0.441 0.005 -0.077 -0.313 -0.006 -0.570 0.005 0.007
r Vj -0.441 -0.277 -0.174 -0.077 -0.182 -0.111 -0.570 -0.481 0.007
Vi Vj 0.029 0.126 0.009 0.014 0.075 0.003 0.203 0.034 -0.007
V 3

i +V 3
j - - - - - - -0.218 - -

r(V 2
i +V 2

j ) - - - - - - -0.371 - -
r2(Vi+Vj ) - - - - - - 0.257 - -
Vi Vj (Vi+Vj ) - - - - - - 0.141 - -
max error % 4.0 4.3 2.4 4.0 4.2 4.0 4.3 3.8 2.6

Table 17.7: Coefficients in linear combinations of the variables listed in the first column of the table. Each
column defines a linear combination that approximates R with both Xi and X j of the second category as
indicated in the first row.

Distribution N U SE
N -1.000/1.000 -0.977/0.977 -0.903/0.903
U -0.977/0.977 -0.999/0.999 -0.886/0.886
SE -0.903/0.903 -0.866/0.866 -0.645/1.000
SR -0.986/0.986 -0.970/0.970 -0.819/0.957
GL -0.969/0.969 -0.936/0.936 -0.780/0.981
GS -0.969/0.969 -0.936/0.936 -0.981/0.780
distribution SR GL GS
N -0.986/0.986 -0.969/0.969 -0.969/0.969
U -0.970/0.970 -0.936/0.936 -0.936/0.936
SE -0.819/0.957 -0.780/0.981 -0.981/0.780
SR -0.947/1.000 -0.915/0.993 -0.993/0.915
GL -0.915/0.993 -0.886/1.000 -1.000/0.886
GS -0.983/0.915 -1.000/0.886 -0.886/1.000

Table 17.8: Variation intervals for the correlation coefficient r in the two-dimensional Nataf distribution
when both marginal distributions are of the first category.
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Chapter 18

Appendix 3: PROPOSAL FOR A CODE
FOR THE DIRECT USE OF
RELIABILITY METHODS IN
STRUCTURAL DESIGN

Reprint of Working Document of November 1989 of the JOINT COMMITTEE
ON STRUCTURAL SAFETY (Associations supporting the JCSS: CEB, CIB,
ECCS, FIP, IABSE, IASS, RILEM, authored by O. Ditlevsen and H.O. Madsen)

Introduction

This is the first document of an envisaged series of publications, prepared by individual authors but
discussed within the Joint Committee on Structural Safety (JCSS), in particular within its Working
Party. They are referred to as “working documents” since they generally will give information
on the state of development of certain concepts or subjects, rather than giving approved guide-
lines. Where a document is officially approved by the Plenum of the JCSS, this will be identified
explicitly.

This document is a first step towards a code for direct use of reliability methods in design.
Previous JCSS documents as, for example the “General Principles on Reliability for Structural
Design” also published by IABSE, were mainly concerned with providing the background for a
reliability based code. It is the general opinion of the JCSS Working Party, that reliability methods
have advanced to an extent, that they may not only be used for deriving safety provisions in codes.
A design which utilizes the full statistical information available and the advantages of a direct
probabilistic modelling is possible - if only relevant for - special situations. These special situations
may arise, for example, where a major part of the design information needs to be updated to account
for specific conditions of the project or where detailed failure analyses are required.

It is well understood, that this type of code will never replace present (deterministic or reliability-
based) codes. However, it may serve as a fundamental code which is supplemented by codes giving
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rules for common design.

With this document it is intended to show, how a code for direct use of reliability methods
may look like. Main emphasis is given on identifying those conventions and models which need
to be codified. It is far from being a complete proposal. In the present form the document ad-
dresses reliability experts only, i.e. - as a potential code - it does not intend to promote the general
understanding of reliability concepts. This issue may be disputable.

This document has been discussed within the JCSS Working Party and the basic ideas and
concepts are approved. Some details of modelling, e.g. concerning model uncertainties and nu-
merical values, in particular for safety indices, mainly reflect the opinion of the authors. Also, the
terminology and some conceptual details are still under discussion.

Irrespective of these reservations, publication is supported in order to initiate discussions and
exchange of comments at an early stage. The document will be revised subsequently.

Marita Kersken-Bradley

for the Working Party

Julio Ferry Borges

(General Reporter of the JCSS) (President of the JCSS)

1 Preface

When making considerations about structural safety it is essential to appreciate that a measure of
safety based on a general probabilistic model in general does not express a pure physical property
of the structure in its environments of actions. Rather the safety measure is a decision variable that
embraces the applied knowledge about the strength properties of the structure in relation to the
actions on the structure. The value of the safety measure therefore may change in both directions
with the amount and quality of the information on basis of which it is calculated.

With this philosophy in mind the structural reliability theory becomes a design decision tool
based on scientific methods rather than being a scientific theory itself aiming at a description of
the “truth of nature”. It may be looked upon as a formal language of rational thinking to facilitate
good engineering decisions in the process of the design of structures. It should contain several
formal elements and mathematical composition rules to allow for inclusion of all sorts of relevant
information of sufficient confidence to let it effect the decisions. On the other hand, it should not
be too rich of elements forcing the user of this reliability theory to make almost non-verifiable
value assignments to which the design decisions are unreasonably sensitive. The consequence is
that reliability theories for codes of practice should contain certain restrictive standardized value
assignments.

In this context “code of practice” means a model universe agreed upon as a basis for design
decisions. This agreement is thought of as made within the group of parties of concern (e.g. the
designer, the manufacturer, the owner, the user, the last two parties possibly being represented by
the public authorities). The code of practice may in this sense be specific for a given project, or
it may be more general as a part of public building regulations. Thus the terminology “code of
practice” as applied herein is an abstraction that should not be tied to existing types of codes of
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practice. In the same spirit the term “code committee” should be interpreted as the group of parties
agreeing on a code of practice.

The following text aims at presenting an example (a model) of a code of practice enabling
reliability methods for design. The code text is indented. It is given in parallel with an explanatory
text, which is not indented. The latter does not have the status of a code. The terminology has
been discussed within the JCSS-Working Party but general agreement has not been reached. The
terminology is therefore up to revision.

2 General

It is a fundamental requirement of this code that the reliability measure is relative
in the sense that it induces an ordering of any set of structures according to their
reliability with respect to any well-defined adverse event. Furthermore, for each
structure it is required that the measure induces an ordering of any set of adverse
events. It must even possess sufficient generality to allow for an ordering of any set
of pairs: (structure, adverse event).

A reliability ordering relation like

(structure 1, adverse event 1) < (structure 2, adverse event 2)

may be needed for different types of structures for which the adverse events are not the same.

The question of whether there is an absolute interpretation of the reliability measure is less
important for the applications. Often there is no direct physical relative frequency interpretation
related to the measure. Rather such an interpretation is related to the relative frequency of no
adverse event occurring in the consistent long run use of the reliability analysis methodology in
the absence of gross errors (mistakes).

This code allows for design on the basis of a reliability measure that deviates from
the reliability measure defined herein provided it is within the scope of probability
theory and well-documented by scientific methods and arguments.

If the reliability requirement is given in terms of a value of the reliability measure
of this code, but an alternative reliability measure is used for the design decisions,
a corresponding transformation of the requirement must be made. This transforma-
tion must be such that the alternative reliability measure when meeting the require-
ment leads to at least the same structural dimensions as obtained by use of the code
reliability measure when both measures are applied on a sufficiently representative
example structure.

Further details on reliability requirements are given in Section 6.
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3 Concept of adverse state

The structural performance of a whole structure or part of it should be described
with reference to a specified set of adverse states beyond which the structure no
longer satisfies the performance requirements. Each adverse state is the boundary
of an adverse event declared to be so by the committee setting up the performance
requirement. A binary description of the performance is inherent in the adverse
event concept.

Examples of adverse events are:

- loss of static equilibrium of the structure, or a part of the structure, considered as a rigid body,

- rupture of critical sections of the structure caused by exceeding the ultimate strength, possibly
reduced by repeated loading, or the ultimate deformation of the material,

- transformation of the structure into a mechanism,

- loss of stability,

- progressive collapse,

- deformations which affect the efficient use or appearance of structural or non-structural ele-
ments,

- excessive vibrations producing discomfort or affecting non-structural elements or equipment,

- local damage, including cracking, which reduces the durability of a structure or affects the
efficiency or appearance of structural or non-structural elements.

4 Basic variables and uncertainty modelling

The uncertainties of the mechanical models and their parameters as used in the
process of making decisions are represented in terms of concepts from the mathe-
matical probability theory.

Among the parameters of relevance some are presented as being basic variables in
the sense that they are assumed to carry the entire input information to the mechan-
ical model.

Typically the basic variables are material parameters, external action parameters, and geometric
parameters. All other parameters are functions of these basic variables. The functions are defined
by the geometric properties of the structure, the action model and the mechanical model. Typi-
cally they are cross-section resistances, member buckling resistances, load effects, areas, volumes,
safety margins, event margins, etc.

In the simplest case of modeling the basic variables may be joined into a finite-dimensional
vector. Then the uncertainties of the problem is modeled by letting this vector, or a subvector of it,
be a vector of random variables.
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The concept of basic variables should not be confused with the probabilistic concept of mutual
independent random variables. The basic variables are defined as the free input variables in the
mechanical model before the probabilistic properties are defined. (In the standard mathematical
analysis these variables are called the independent variables while a function of the independent
variables is called the dependent variable).

The imposed probabilistic properties may imply that there is mutual stochastic dependence
between the basic variables after these have been declared to be random variables. An example of
a pair of basic variables is the compressive strength and the modulus of elasticity at zero stress both
measured on the same concrete test cylinder. Usually these two basic variables, when considered
to be random variables, are modeled as being mutually dependent.

Within given classes of structural design problems the joint distribution types of
the basic random variables are standardized in the code. These standardizations are
defined in subsequent sections either directly in distributional terms or in terms of
one-to-one transformations into Gaussian random variables.

Basic variables may more generally be functions in time and space. The action history within a
given time interval is an example of a basic variable. Also such functions may be uncertain. The
corresponding probabilistic concept is that of a random process or a random field.

If the mechanical model contains input variables which represent outputs from other
mechanical models the joint distribution type of these input variables must be con-
sistent with the standardized distribution types of the code after these have been
transformed by the latter models.

If some input variables represent information from prototype testing the joint dis-
tributional type of these variables must follow from a mechanical model of the pro-
totype test. This model relates the test results to the relevant basic variables for
which the code gives distribution type specifications. Statistical uncertainty should
be taken into account in this deduction (see below).

Uncertainties from all essential sources must be evaluated and integrated into the re-
liability model. Types of uncertainty to be taken into account are physical (intrinsic)
uncertainty, statistical uncertainty, and model uncertainty.

Physical uncertainty is the ubiquitous background randomness the level of which may or may not
be controlled by active means. Statistical uncertainty is due to limited information as it is provided
by a sample of finite size. Model uncertainty is due to the necessary idealizations on which the
physical model formulation and the distributional model formulation are based. The corresponding
errors are more or less unknown. This type of uncertainty may for each adverse event be described
as uncertainty of the corresponding adverse state surface.
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Statistical uncertainty. If the design decisions are based on a small sample of ob-
servations of a basic variable (or a function of basic variables such as for prototype
testing), statistical uncertainty must be quantified in the decision model as follows.
By use of a well-documented natural conjugate prior distribution to the standardized
distribution type of the actual random variable or, if a natural conjugate distribution
does not exist, by use of a prior of mathematical form as the posterior, or by use
of a non-informative prior, a predictive posterior distribution is calculated. This
distribution must be applied in the reliability analysis.

The prior distribution is a probabilistic model of the knowledge about the parameters of the dis-
tribution of the considered random variable (or vector) X before some new independent data are
available (usually in the form of an outcome of the vector (X1, . . . , Xn) with all Xi mutually in-
dependent and distributed like X ). The posterior distribution is a conditional distribution of the
parameters given the prior information and the sample data. The predictive posterior distribution
is the conditional distribution of X given the prior information and the sample of data.

The posterior density is obtained as being proportional to the product of the likelihood function
and the prior density (according to Bayes’ formula). The prior density is said to be non-informative
(or diffuse) if the posterior density and the likelihood function are proportional (or almost propor-
tional within the domain of non-zero posterior density). The likelihood function is defined by the
joint distribution of X1, . . . , Xn considered as a function of the parameters.

Corresponding to any fixed choice of a diffuse prior the family of posterior densities is closed
under multiplication by the likelihood function. Thus any density from this family used as a
prior density leads to a a posterior density within the family. Under certain conditions on the
type of distribution of X (the distribution must belong to the exponential family), the sample size
parameter n in the general expression for the posterior density can be extended from the positive
integers to the positive real numbers. This extension leads to a larger family of densities which
is also closed under multiplication by the likelihood function. This extended family is called the
family of natural conjugate densities to the type of distribution of X . The definition reflects that
the probabilistic model of uncertain knowledge formulated by the choice of the prior density needs
not be restricted by the fact that sample sizes are integers.

Model uncertainty. The reliability model must be formulated such that it contains
elements which are able to reflect model uncertainty at least in a crude way. This
may be done for each given adverse state surface (or each given part of a adverse
state surface) by associating a judgemental random vector J = (J1, . . . , Jn) to
the basic random vector X = (X1, . . . , Xn). Assuming that there is a one to one
transformation by which the standardized joint distribution of X is mapped into a
Gaussian vector T (X) the judgment random vector J is added to T (X). Next the
sum is back-transformed into Y = T −1[T (X) + J]. The distribution of Y is de-
termined by formally assuming that the joint distribution of (T (X), J) is Gaussian.
Finally, the random vector Y replaces X in the reliability calculation.

Constants in the model can also be chosen to carry model uncertainty. In that case
the constants are interpreted as additional basic random variables.
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Models given in current codes of practice are often strongly biased to the conservative side. In
order to make a rational reliability analysis by use of such a code-specified model, the bias should
be investigated in order to remove it by assigning a proper non-zero mean vector to the judgemental
random vector J.

Some detailed recommendations about model uncertainty are referred in Appendix 3 to this
document.

5 Concept of event margin

An event margin corresponding to a specified event is defined as a function of the
basic variables with the property that it takes a negative value if and only if the event
occurs.

Event margins related to adverse states are denoted safety margins.

Information becoming available after the design of a structure can be formulated
in the framework of event margins. This additional information can be utilized in
reliability updating.

During fabrication and service of a structure additional information of the performance becomes
available. Actions, material parameters and geometric parameters are realized physically and the
design analysis can therefore be updated. Important additional information may arise from mate-
rial compliance control, proof loading, prototype testing, vibration measurements, action measure-
ments, etc. A part of this information is related to design parameters directly, but some information
is related to a functional relation between design parameters and possibly also other parameters
such as measurement and inspection errors.

6 Reliability requirements

Decision theoretical principles can be applied in order to obtain optimal reliability
levels. It is required, however, that the intangible part of the cost of failure is chosen
such that it is comparable in value to the population of failure costs associated with
present code based engineering practice when declaring this practice to be optimal.
The population of failure costs must correspond to a population of structures with
similar failure consequences as for the considered structure.

Optimal reliability levels depend on the reference period. Under stationary conditions and under
due consideration of the time sequence of failure occurrences and the capitalization of costs to
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present value, the optimal reliability level for the entire reference period decreases with the length
of the reference period.

Required minimal reliability levels make sense only together with a specification
of a reference period. The reference period should generally equal the anticipated
lifetime of the structure (e.g. 100 years). For the reliability measure defined herein
the required levels are obtained by calibration to structural dimensions following
from present code based engineering practice.

Transient structures are present during construction or remodeling of the structure.

For transient structural situations shorter reference periods with corresponding spe-
cial reliability requirements can be relevant.

The principle of calibration to existing practice should be kept in operation in a reasonably long
transition period during which there will be a backward correcting influence on current practice
justified by the experience following from the use of this probabilistic code. After this transition
period the reliability requirements (or, alternatively, the requirements on the intangible failure costs
including possible risk aversion costs) associated with this code (and gradually established during
the transition period) will represent superior practice. There are structural reliability problems in
which some few of the relevant basic variables are very difficult to assess by value. This shows up
in the form of uncertainty distributions that are considerably more dispersed than the distributions
of the other basic variables. In such cases it can be useful to report intermediate reliability analysis
results in the form of fragility functions. A fragility function is a conditional probability of failure
given the values of one or more basic variables and considered as a function of these values. The
fragility function gives information about the sensitivity of the reliability with respect to variation
of the conditioning basic variables. Robustness is indicated by slow variation while sensitivity is
indicated by steep variation. By this the fragility function indicates where to put the efforts to
narrow down the uncertainty distribution of the conditioning variables.

Direct requirements to the fragility functions of continuously varying basic vari-
ables are not given. In particular cases where a requirement to a fragility function
seems to be needed, it will be indirect through a specification of a mandatory joint
distribution of the conditioning basic variables.

Another type of fragility function is obtained by conditioning on different damage states of the
structure. This concept is relevant in connection with accidental events, that is, events of strong ac-
tions but occurring with such rareness that it is not economically optimal to design the structure to
resist these actions without being damaged. In a discretized model each of these accidental events
can be defined formally by formulating a structural model by removing one or more elements or
parts of the undamaged structure. The failure probability of each of these damaged structures
under the relevant actions occurring in a specified time period after the occurrence of the acciden-
tal event (evacuation period or repair period) is a fragility function over the set {A, B, C, . . . } of
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models of damaged structures. The probability distribution over the set {A, B, C, . . . } may be so
difficult to assess in practice that code requirements to the formulation of the damaged structures
(i.e. to the definitions of A, B, C, . . . ) and the corresponding fragility function may be needed.
The purpose is to ensure structural robustness against progressive collapse, that is, to prevent that
the consequences of an accidental event are out of proportion with the extend of the accidental
event itself.

Reliability levels to be used in progressive collapse investigations can be based
on decision theoretical principles under the same conditions as stated in the first
paragraph in this section.

Models with non-stationarity properties are relevant when foreseeing gradual changes in environ-
mental conditions, action history trends, creep phenomena, material deterioration or aging, soil
consolidation etc.

In case of non-stationarity modeling of resistance and action properties the ref-
erence period should be the anticipated lifetime of the structure. Alternatively a
sequence of consecutive shorter than lifetime reference periods can be considered.
After each reference period inspection and suitable testing of the structure should
be made together with investigations about the actual actions. Upon a reliability up-
dating analysis it can be decided if the structure can be used without changes in the
next reference period or whether change of use, strengthening or even demolition
should be undertaken. Decisions theoretical principles can be used under the same
conditions as stated in the first paragraph in this section.

The same inspection and reliability updating decision strategy should be used when
considering existing structures which suffer from damage or for which changes of
use and environmental conditions are planned or anticipated.

Also the information obtained from regular damage monitoring inspections can be
used as the basis for decisions about reliability preserving measures applied to the
existing structure.

The occurrence of a serious adverse event sometimes raises a public (political) demand to the
engineering profession of using increased reliability requirements with respect to this type of event.
Such public reactions are reasonably taken into account in the long run revision of the code with
respect to proper updating of the intangible costs related to the experienced adverse events.

Decision theoretical principles should be applied to reevaluate the codified reliabil-
ity levels in case of experienced adverse events causing severe public reactions.



332 Chapter 18. Appendix 3: PROPOSAL FOR A CODE FOR THE DIRECT USE OF
RELIABILITY METHODS IN STRUCTURAL DESIGN

7 Action modelling

The action models set up for structural reliability analysis must be given sufficiently
detailed structure to allow reasonable treatment of action effects caused by the ran-
dom variation of the actions across the structure and in time. Furthermore the mod-
els should allow the study of combined action effects due to several simultaneous
actions.

For the macro scale variation in time of an action the basic variable model element
is a pulse which is characterized by at least three parameters: a level parameter
(intensity), a duration parameter, and an occurrence parameter. Micro scale varia-
tions are described by random processes defined by their covariance properties or,
equivalently, by their spectral properties.

Such processes are generally derived from the family of Gaussian processes.

There are several applicable stochastic action models based on the concept of an action pulse.
The Ferry Borges-Castanheta model (FBC action model) is one of the simplest and most opera-
tional of these models: The design life time is for a given action type divided into time intervals of
equal length. Within each interval the action has a constant intensity level (possibly vectorial). This
intensity level is an outcome of a random variable (vector). The intensities in different intervals
can be mutually dependent. Such a sequence of action pulses is called an FBC action history. Any
pair of FBC action histories describing two different actions are related to each other at least in the
way that the number of intervals in the one action history is an integral multiple of the number of
intervals of the other action history.

The problem of combining the action effects of n different FBC action histories is called an
FBC n-combination problem.

The FBC action model can be applied in the reliability analysis of the supporting
structures of buildings.

Appendix 2 to this document gives an example of a table of prescribed values that specifically
define the FBC action models suited for building design.

Other models for action variation in time than the FBC action model can be applied
in the reliability analysis of the supporting structures of buildings. Any other such
model must be calibrated to model the essential properties of the FBC action model
specified in this code, that is, to have the same distribution type for the pulse ampli-
tude, approximately the same mean durations of the pulse, and approximately the
same occurrence parameter.
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There are several practicable alternatives to the FBC action model. Here only one alternative will
be mentioned. It is the Poisson pulse model for action histories with short duration pulses that are
separated in time. If the pulse durations are short as compared to the mean time distance between
consecutive time points for pulse starts and several such action processes with nonnegative pulse
amplitudes are considered for linear combination with nonnegative influence coefficients, the load
effect coincidence model of Wen is applicable for determining the distribution of the maximal load
effect within a given time period.

The model of Wen assumes that the combined load effect process is a Poisson pulse process de-
fined as the sum of several mutually independent Poisson pulse processes. Each of these processes
have pulses with amplitudes that either correspond to pulses that are not overlapping in time with
any other pulses, or to an overlapping of two pulses from two selected different load processes, or
to overlapping of three pulses from three selected different load processes, etc. With n being the
number of processes for combination there are as many processes with their pulses made up of i
overlapping pulses as the number of ways i processes can be selected out of n processes (that is,(n

i

)
ways).

The probability assignments in the Wen coincidence model is made in such a way that the
model leads to a slightly conservative evaluation (that is, overestimations of the maximal combined
load effect).

Asymptotic extreme value distributions can only be applied as approximations to
the exact distribution of the maximal load effect if special documentation of the
validity is given. As documentation the asymptotic argument is not sufficient.

The convergence of the exact extreme value distribution for increasing sample size depends
strongly on the generating distribution. Often the convergence is extremely slow giving gross
upper tail deviations between the exact extreme value distribution corresponding to a relevant
sample size and the corresponding asymptotic distribution.

For any type of structure the reliability analysis must be based on a complete set
of action models that together approximately reproduce the essential probabilistic
properties of all the different types of relevant action effects that can be expected to
come from the future environments and uses of the structure.

For a given structure simple demonstrations or general experience can often be suf-
ficient to justify the exclusion of some of these models with corresponding analyses.

The necessary detailing of the actions models depends on the sensitivity of the considered ac-
tion effect, that is, on the filtering and the amplification properties as well as the material properties
of the structure. Thus different types of action models should be applied dependent on the relevant
phenomenon such as long time creep effects, immediate static effects, action effects of concern
in fatigue life estimation, dynamic effects that can be amplified by resonance phenomena or self-
induced vibrations, impact effects, etc. Also the analysis of progressive collapse phenomena may
require its own special action modeling.
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For most reliability investigations it is not essential that the action models reproduce the indi-
vidual action effect histories in their details. The approximate reproduction of the basic probabilis-
tic properties of the action effect histories is often sufficient.

Standardized distributions and process types to be used in action models for spe-
cific reliability investigations can be given in an action code to be used in parallel
with this code on reliability methods. In such cases the action load model stan-
dardizations given in this code are secondary to the standardiza- tions of the action
code.

8 Structural resistance modelling

The reliability requirements of this code are for specific failure modes of structural
elements such as bars, beams, columns, plates, walls etc. The reliability analysis of
larger structural subsystems or the entire structural system must be made in order
to investigate whether there are significant system effects on the reliability, and in
particular whether such effects are to the side of serious decrease of the reliability.
This code allows the use of decision analytical principles to obtain reasonable sys-
tem reliability levels provided an assessment of the intangible costs of failure has
been made as required in Section 6.

Standardized distributions of material properties to be used in structural resistance
models can be given in material oriented codes to be used in parallel with this code
on reliability methods. Standardized distributions given in such material codes are
superior to the standardizations given in this code. It is required that a standardized
distribution of a material property assigns zero probability to any set in which no
value is possible due to the physical definition of the considered material property.

The requirement of zero probability on physically impossible sets is formulated for guidance of
material code writers. It ensures against having for example negative strengths helping the re-
liability. However, this requirement does not prevent that calculational easier distributions that
are not obeying the requirement be used as approximations provided it can be justified that the
inconsistency with the physical possibilities contributes insignificantly to the calculated reliability.

Reliability analyses should always be made for each of the structural elements but also to a
certain extend for the entire structural system. The structural elements can be defined as smaller or
larger subsystems of the entire structural system. Required reliability levels obtained in accordance
with the principles in Section 6 will depend on the element definition and will be different for the
elements and for the entire system. The required system reliability should be dependent on whether
the system failure is of local nature (it can be an element failure) or whether it is global implying
much more severe consequences.
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The fact that overestimation of the system reliability follows from the use of discretized struc-
tural models in the system reliability analyses points at the need for making sensitively analysis
with respect to the fineness of the discretization.

Reliability comparisons of different structural systems must be made on the same
level of fineness of discretization of the structural system. When comparing the ob-
tained system reliability with the element reliabilities the effect of the discretization
on the system level must be taken into account.

The present state-of-the-art of the methods of structural system reliability analysis does not yet
permit formulation of very specific code requirements concerning system reliability levels.

A difficult problem is the dependency of the structural resistance on the action history to which
the structure is subjected.

System reliability analyses referred to in this code are those for which the system
resistance is obtained under fixed in time but random load configurations with the
load level increasing proportional with a scalar parameter starting from the self
weight load situation and ending at the final random load level situation.

The rigid ideal-plastic theory plays a particular role in the theory of structural system reliability
due to the independence of the system resistance of the load history, that is, due to the existence
of a load history independent adverse state of collapse. The reliability corresponding to a given
reference period is then determined by the probability that the load path does not cross out through
the fixed adverse state surface during the reference period.

Other difficult problems are related to the modeling of the constitutive behavior of the potential
failure elements in the discretized structural system. In particular problems show up in the model-
ing of the post failure behavior including problems of post failure interaction between the internal
generalized force components. Also here the rigid ideal-plastic theory shows substantial simplifi-
cations by adopting the associated flow rule (that is, the condition that the generalized strain vector
is orthogonal to the yield condition surface).

Rigid ideal-plastic theory can be used as the basis for system reliability analyses
given that the structural system shows ductile collapse behavior. Dependent on
the implied degree of idealization of the ”real” constitutive behavior more or less
biased and dispersed model uncertainty random variables (effectivity factors) must
be introduced in the mechanical model. The evaluation of these factors must be
justified by proper example studies that include the possibility of having elastic-
plastic stability failures.

For discretized systems with brittle failure elements the linear elastic-ideal brittle systems play a
role as a practicable study object given that the actions grow in a fixed configuration proportionally
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from zero to a final random level. In the linear elastic-ideal brittle system each failure element is
removed upon failure.

For brittle systems this code conservatively defines failure of the system as occur-
ring when the first failure of a single failure element occurs. The idealization to
a linear elastic-ideal brittle system with suitable model uncertainty variables can
be used for analysis of the conservativeness of this definition. Relaxation of the
required reliability must be properly justified.

Difficulties of taking the influence of the action history into account have motivated introduction
of intuitive definitions of adverse states for structural systems. These definitions are characterized
by lack of explicit concern about how the final load on the structure has been established. The
system reliability analysis is made solely within a universe of a finite number of random variables
describing final actions and resistances. Such adverse state definitions formulated on the basis of
engineering judgment and intuition will herein be termed as “jury definitions”.

The effect of structural redundancy can be comparatively studied by use of intelli-
gently chosen jury definitions of the adverse state. Extreme care should be taken
when drawing conclusions about the reliability of the real structural system on the
basis of such analysis.

9 Reliability models

All decreasing functions of the probability pf of some adverse event are equivalent
measures of safety. They all define the same reliability ordering with respect to
adverse events in the space of basic variables (Section 2).

A standard reliability measure may be chosen to be the generalized reliability index.
It is defined as

β = −�(pf)

Another equivalent reliability measure is the probability of the complement of the
adverse event (the safe event)

ps = 1 − pf

The probability pf is calculated on the basis of the standardized joint distribution
type of the basic variables and the standardized distributional formalism of dealing
with both model uncertainty and statistical uncertainty (Section 4).
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The standardized distribution type related to the basic variables of the action models
are defined in the action code (Section 7) while the standardized distribution types
related to the basic variables of the resistance models are defined in the specific
material related codes (Section 8).

If no specific distribution type is given as standard in the action and material codes
this code for the purpose of reliability evaluations standardizes the clipped (or, al-
ternatively, the zero-truncated) normal distribution type for basic load pulse ampli-
tudes. Furthermore, the logarithmic normal distribution type is standardized for the
basic strength variables.

Deviations from specific geometric measures of physical dimensions as length are
standardized to have normal distributions if they act at the adverse state in the same
way as load variables (increase of value implies decrease of reliability) and to have
logarithmic normal distribution if they contribute to the adverse state in the same
way as resistance variables (decrease of value implies decrease of reliability).

The standardization of the logarithmic normal distribution type implies that all the corresponding
basic variables of the Gaussian formulation space are obtained by logarithmic transformation of
the corresponding basic variables of the original physical formulation space. For the determination
of the second moment representation of the basic variables of the Gaussian formulation space the
following formulas are valid:

E[log X ] = log[X ] − 1

2
log(1 + V 2

X )

Var[log X ] = log(1 + V 2
X )

Cov[log X, log Y ] = log

(
1 + Cov[X, Y ]

E[X ]E[Y ]

)
in which the pair (log X, log Y ) is bivariate Gaussian, and

Cov[log X, Y ] = Cov[X, Y ]

E[X ]

in which the pair (log X, Y ) is bivariate Gaussian. In these formulas “log” is the natural logarithm.

In special situations other than the code standardized distribution types can be rel-
evant for the reliability evaluation. Such code deviating assumptions must be well
documented on the basis of a plausible model that by its elements generates the
claimed probability distribution type. Asymptotic distributions generated from the
model are allowed to be applied only if it can be shown that they by application on
a suitable representative example structure lead to approximately the same general-
ized reliability indices as obtained by application of the exact distribution generated
by the model.
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Experimental verification without any other type of verification of a distributional
assumption that deviates strongly from the standard is only sufficient if very large
representative samples of data are available.

Distributional assumptions that deviate from those of the code must in any case be
tested on a suitable representative example structure. By calibration against results
obtained on the basis of the standardizations of the code it must be guaranteed
that the real (the absolute) safety level is not changed significantly relative to the
requirements of the code.

The reliability model of this code is a formalistic set of rules that allows engineering decision mak-
ing on the basis of a mathematically rational processing of available well documented information.
It is sufficient for the engineering decision making that the set of rules defines an ordering relation
with respect to safety. However, such an ordering relation is not necessarily considered to be suffi-
cient for political decision making. Even though the political decision making problem is outside
the scope of this code, some comments are relevant.

Among political decision makers it is often taken for granted that the result of a probabilistic
evaluation made by experts has an absolute meaning in the sense of predicting a relative frequency
of the considered adverse event. In what sense it is interpretable as a relative frequency is rarely
made clear. (Whether this interpretation of the concept of probability is necessary in political de-
cision making is subject to discussions of great controversy among philosophers concerned with
the scientific basis of statistics and decision making). Within the topic of structural reliability the-
ory the practicing of this philosophy implies far reaching restrictions imposed on the probabilistic
statements that can be given. These restrictions take the form of conditioning statements concern-
ing all those uncertainty sources that are not of direct relative frequency nature. That means, for
example, that the uncertainty originating from the lack of precise information about the relevant
distribution types cannot be coped with except by giving a “worst case” statement. These are of
types as Chebycheff bounds. A reliability measure based on such bounds can be defined. How-
ever, it is questionable as a tool for design decision making, first, because it is difficult to calculate
except for some idealized particular examples, second, because it, as a worst case state- ment, in
principle increases with more information, be it good or bad information.

Alternatively, if the worst case philosophy is not followed the decision maker is given a set
of conditional probability statements which honestly can be claimed to predict the relative fre-
quency of occurrence of the adverse event given the truth of the conditioning statements. In a
structural reliability context the conditioning statement is in general a conjunction of many condi-
tioning statements of widely different nature. In order that the decision maker can utilize the given
probabilistic information he or she must weigh the different conditioning statements against each
other. This means that he or she is forced into the problem of combining the conditional proba-
bilities according to the rule of total probability using weighting probabilities that have no direct
relative frequency interpretation. These probabilities are called Bayesian probabilities (or subjec-
tive probabilities). The mental process of judgment obviously calls for aiding standardizations of
distribution types implying that only the values of some few parameters have to be assessed by
professional judgment.
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Design by maximization of utility (minimization of total cost) can be made within
the framework of this code. However, the cost consequence of some adverse event
like loss of human life must be calculated on the basis of the postulate that current
design practice as it is approved by the authorities is optimal.

The target values of the generalized reliability index specified in this code (Appendix 1) have been
derived by calibration to current design practice. The corresponding value of the formal failure
probability pf is substituted into the cost equation for the considered structure and the failure cost
c is determined such that pf is the optimal failure probability.

Application of optimization design methods is relevant in the case of designing strengthen-
ing systems for an existing structure about which updated information is available. By using the
failure cost c obtained by calibration to current design practice of a similar new structure (no up-
dated information available for this, naturally) it is possible to make rational decisions about the
dimensions of the strengthening system including the two extreme possibilities of either making
no strengthening or complete renewal of the structure.

10 Reliability calculation methods

The numerical value of the reliability measure is obtained by a reliability calculation method. Due
to the computational complexity a method giving an approximation to the exact result is generally
applied.

Two fundamental accuracy requirements are:

• Overestimation of the reliability due to use of an approximative calculation method be within
limits generally accepted for the specific type of structure.

• The overestimation of the generalized reliability index must not exceed 5%.

The accuracy of the reliability calculation method is linked to the sensitivity with respect to struc-
tural dimensions and material properties in the resulting design. General design practice has inher-
ent rules of acceptable errors since dimensions and material properties are often only available in
discrete classes. An error larger that 5% is rarely accepted.

When the modeling of the basic random variables is in terms of a random vector the first-
order reliability method (FORM) in general results in a sufficiently accurate approximation to the
reliability measure. The FORM analysis is based on a transformation of the basic variables X into
standardized normal variables U by the transformation

Ui = �−1(Fi (Xi | X1, . . . , Xi−1))

The distribution of Xi conditioned upon the value of (X1, . . . , Xi−1) is thus used. The transforma-
tion simplifies when the basic random variables are mutually independent. After the transformation
the adverse state surface in the normal space is approximated by one or more tangent hyperplanes
at the locally most central points. The probability content in the approximation to the failure set is
used as an approximation to the failure probability.
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If no prior experience with the specific type of adverse state is available, the FORM result
should be checked. This can be done locally around the locally most central points by an asymp-
totic second-order reliability method (SORM), where the adverse state surface is approximated by
a second-order surface at the locally most central points, or by an importance sampling around
the locally most central points. Globally it should be checked that the most central point has been
identified. This can be done by a Monte Carlo simulation, e.g., using directional sampling.

Besides computing the reliability measure it is recommended to check the sensitivity of this
reliability measure to all input parameters, i.e., the deterministic basic variables and distribution
parameters for the random basic variables. The asymptotic results for the sensitivity of the gener-
alized reliability index are in general sufficiently accurate for this task.

11 List of symbols

Cov[ , ] covariance

D[ ] standard deviation

E[ ] mean value

F( ) distribution function

I judgemental random factor

J judgemental random variable

n number of shifts per year

pf failure probability

ps survival probability

qc characteristic value of velocity pressure

sc characteristic value of ground snow load

T transformation of random vector into a Gaussian vector

U standardized normal variable

VX coefficient of variation of X

X random variable

Y random variable

β reliability index

µ distributional location parameter

� standard normal distribution function

ρ[ , ] correlation coefficient

σ distribution dispersion parameter



341

Biblography

Books on Reliability Methods

(update per August 1990 of the list in the JCSS document of November 1989)

[1] Ang,A.H.-S. and Tang, W.H. (1984) Probability Concepts in Engineering Planning and Design, Vol.I &
II, Wiley, New York.

[2] Augusti, G., Baratta, A. and Casciati; F. (1984) Probabilistic Methods in Structural Engineering, Chap-
man and Hall, London.

[3] Benjamin, J.R. and Cornell, C.A. (1970) Reliability, Statistics and Decision for Civil Engineers, McGraw
Hill, New York.

[4] Bolotin; V.V. (1981) Wahrscheinlichkeitsmethoden zur Berechnung von Konstruktionen, VEB Verlag für
Bauwesen.

[5] Borges, J.F. and Castanheta, M. (1971) Structural Safety Laboratorio Nacional de Engenharia Civil,
Lisbon, Portugal.

[6] Ditlevsen, O. (1981) Uncertainty Modeling with Applications to Multidimensional Civil Engineering
Systems, McGraw Hill, New York.

[7] 1 Ditlevsen, O. and Madsen, H.O. (1996) Structural Reliability Methods, Wiley, Chichester, (trans-
lation and extension of SBI-rapport 211: Bærende Konstruktioners Sikkerhed, 1990). (Second edition
September 2002 (edition 2.1) published as an internet publication for free download from the address:
http://www.mek.dtu.dk/staff/od/papers.htm).

[8] Madsen, H.O., Krenk, S. and Lind, N.C. (1986) Methods of Structural Safety, Prentice-Hall, New York.

[9] Melchers, R.E.(1987) Structural Reliability and Predictions Ellis Horwood/Wiley, Chichester.
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Appendix 1 Example of reliability requirements

Table 1 gives an example of required values of the generalized reliability index (Section 9). The
values are obtained by calibration to Danish practice of design of buildings and similar structures
(source: The Nordic Committee on Building Regulations, Ref. 20).

The table shows a dependence of the required values of both the reliability class and the type
of failure. Both classifications refer to the consequences of failure and reflect a calibration in ac-
cordance with decision theoretical principles. The reliability class solely refers to the use of the
structure and the nature of the nearest surroundings of the structure (densely populated surround-
ings or rural surroundings). The type of failure classification refers to possible warnings of failure
and less dramatic development of the failure.

Table 1
Example of reliability index requirements

type of failure
(reference period ductile ductile brittle
1 year) with reserves without reserves
safety class low 3.1 3.7 4.2

normal 3.7 4.2 4.7
high 4.2 4.7 5.2

Moreover, the table column marked “ductile with reserves” refers to substantial carrying ca-
pacity reserves not utilized in the mathematical model of the adverse state.

Required reliability index values for other reference periods than the 1 year period must be
determined by use of a suitable action model as for example the FBC action model specifically
defined by Table 2.
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Appendix 2 Example of action model parameters

Table 2 with scalar data is an example of prescribed values (up to revision) suited for design in
Denmark. The numbers may be different in different geographical regions. (Alternatively, such
kinds of tables are placed in an action code.)

The table contains prescribed values for building design. For loads on different floors a suitable
model formulation should include the possibility of having correlation between intensities. This
correlation is particularly important for multistorey car parks.

Drift of snow must be considered in the roof load model. This model contributes to a part
of the mathematical definition of the actual adverse state in the physical formulation space. The
model is formulated by use of form factors defined in the action code under due consideration of
the topography of the building and its landscape surroundings. In principle it may contain both
the random snow load variable max{0, Xsnow}, the random wind load variable max{0, Xwind}, and
the random wind direction. The wind direction is discretely or continuously distributed over 8
sectors with a probability distribution derived from the wind rosette for the actual locality. Within
the same pulse interval of the wind load the wind direction is kept constant. Snow load, wind
load, and wind direction may be considered stochastically independent of the loads on the floors.
For the wind load the values of µ and σ in the table correspond to an equivalent uniform velocity
pressure (constant influence function = 1) over a square of side length 50 m. It is emphasized that

Table 2
Example of action model parameters.

Data for the Ferry Borges-Castanheta load model for buildings valid for a 1 year time period
(calibrated crudely to Danish codes).

Load intensity = max{0, X} (clipped Gaussian), X Gaussian, E[X ] = µ, D[X ] = σ .
No. of shifts µ (kN/m2) σ (kN/m2)
per year n

self weight 1/100
floor loads:

residences long term 1/20 0.5 0.15
short term 400 -0.75 0.42

offices and schools long term 1/20 0.60 0.20
short term 400 -2.00 1.00

hotels long term 1/40 0.30 0.12
short term 200 -1.50 0.86

multistorey car parks 400 -3.50 1.80
natural loads:

snow load (ground)* 5 0.20sk 0.45sk

wind load (ground)** 400 -0.32qc 0.34qc

* sk is the characteristic value of the ground snow load given in the action code.
Snow load is only occurring in the half year of winter.

** qc is the characteristic value of the velocity pressure given in the action code.
NOTE: values are up for revision.

µ and σ are not the mean value and the standard deviation, respectively, of the load intensity. The
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parameters µ, σ and n are determined by requiring (a) that

�

(
x − µ

σ

)n

= 0.98

in which x is the 98% fractile in the distribution of the annual extreme for the considered load
corresponding to a return period of 50 years, (b) that �(µ/σ) is the average fraction of the season
period with the considered action type acting, and (c) that n�[(µ − x0)/σ ] is the average number
of periods per year in the season period with the load intensity larger than x0.

For the wind load, x0 is put to that fraction of the characteristic velocity pressure qc that cor-
responds to a mean number of exceedances of 20 per year. For other types of actions, x0 is put to
zero.

The conditions are fulfilled with the degree of approximation which is enforced by the restric-
tions in the FBC-model about the interval divisions.

Appendix 3 Example of model uncertainty specifications

Since a basic strength variable according to this code is transformed logarithmically, an additive
model uncertainty judgemental random variable J in the transformed space (Section 4) corre-
sponds to a judgemental random factor I on the basic strength variable X itself. The expectation
and the coefficient of variation of X I can be determined from the formulas

E[X I ] = E[X ]E[I ](1 + ρ[X, I ]VX VI )

1 + V 2
X I = (1 + V 2

X )(1 + V 2
I )(1 + ρ[X, I ]VX VI )

2

On the basis of calibrations it is recommended to split the judgemental factor I into three mutually
independent lognormally distributed factors I1,I2,I3 for which Table 3 is given (source: The Nordic
Committee on Building Regulations, Ref. 21).

Table 3
Example of judgemental factor statistics

j = 1 good normal bad
j = 2 small medium large
j = 3 strict normal gentle
VI j 0.04 0.06 0.09
ρ[X, I j ] -0.3 0.0 0.3

The classifications in the table are as follows:

j = 1: degree of realism in the prediction of failure by idealized failure criterion.

j = 1: uncertainty concerning the relation between the strength parameter in the structure and
the specified substitute of the parameter defined in the description of the structure.
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j = 3: extent of control on site of the identity of materials and of building process.

These values of VI j and ρ[X, I j ] (open to revision) are used in the formulas

E[I ] = E[I1]E[I2]E[I3]

1 + V 2
I = (1 + V 2

I1
)(1 + V 2

I2
)(1 + V 2

I3
)

1 + ρ[X, I ]VX VI =
3∏

j=1

(1 + ρ[X, I j ]VX VI j )

For the load amplitudes in the FBC action model a model uncertainty correction of the form
max{0, Xi + Ji + J } can be applied. The index i refers to the i th pulse in a given action history and
J is common to the entire action history. The random variables J, J1, . . . , X1, . . . can be assumed
to be mutually independent unless there are strong reasons to assume otherwise. Calibration studies
indicate that the standard deviations of all the judgemental random variables can reasonably be put
to (up to revision)

0.15[µ + σ�−1(0.981/n)]

in which n, µ, σ are the values given in Table 2 that defines the FBC action model.
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Index

T -duration envelope to FBC process, 182
χ2-density, 199
χ2-distribution, 89
D-truncated standard Gaussian distribution, 172

absolutely continuous distribution, 115
action

fixed, 26
free, 26

almost plane limit-state surface, 87, 105
antisymmetric ordering, 88, 225
asymptotic reliability index, 101
aversion against risk, 230, 236, 237, 247
axioms for preference ordering, 220

Bayes’ formula, 38
Bayesian statistics, 197, 210
Behren’s distribution, 206
Belayev’s formula, 296
Bernoulli sequence, 181
bounds on the reliability index, 94

calibration of mathematical models, 207
capital investment, 229
Cauchy’s density, 200
central safety factor, 18
characteristic value, 22
chi-square (χ2) density, 199
clipped random variables, 185
code

calibration, 303
format, 304
format optimization, 307
optimization, 304

codes, 23, 25, 26, 48, 54, 57, 114, 220, 222, 230,
308

coefficient of variation, 19
collapse limit state, 15
composite lottery, 224
conditional

mean value vector, 66
covariance matrix, 66
reliability index, 71, 97, 100, 253

consequence-calculation principle, 9, 92, 273
convex

limit-state problem, 21
polyhedral safe set, 94

correlation coefficient, 62
multiple, 68

covariance, 58, 59
function, 290

covariance matrix
residual, 64

curvature, 105
cut set, 276, 278

minimal, 276

decision
criteria, 269
maker, 220, 236
problem, 219
rule, 227

density
posterior, 38
prior, 38

design value, 22, 309
design-value format, 308
diagonalization of covariance matrix, 79
diffuse density, 198
dimension homogeneity, 138
directional simulation

uniform, 167
distribution

χ2, 89
D-truncated standard Gaussian, 172
Behren’s, 206
Cauchy, 200
chi-square (χ2), 199
diffuse, 198
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exponential, 124
gamma, 120
half-space truncated standard Gaussian, 172
Nataf, 115, 317
natural conjugate prior, 197
non-informative prior, 197
normal, 66
Poisson, 254
posterior, 198
predictive, 200
prior, 196
Rayleigh, 202
Fréchet, 317
gamma, 317
Gumbel, 317
lognormal, 112, 317
lower-truncated normal, 253
normal, 317
shifted exponential, 317
shifted Rayleigh, 317
simulation, 164
Student’s t , 121, 200, 211
uniform, 317
Weibull, 317

effectivity factor, 138
equicorrelated random variables, 97
equivalent

consequences, 225
reliability index, 113

errors
radical, 240, 272

estimator, 36
existing structures, 251
expectation, 58
experimental determination of model errors, 207
exponential

family, 196
distribution, 124

failure
set, 14
cost, 232, 233
probability, 19
surface, 15

failure probability bounds for
ideal-brittle systems, 286

load combinations, 300
processes, 291
series systems, 96

falsification, 44
FBC

n-combination process, 182
process, 181

Ferry Borges-Castanheta load model, 181
fixed action, 26
FORM

multi-point, 106
single-point, 105
single-point multiple, 107

formulation invariance, 16, 76, 216
Fréchet distribution, 317
free

action, 26
physical formulation space, 115
variables, 13

gain
function, 228
uncertain, 232, 233

gamma distribution, 120, 317
generalized reliability index, 89
geometric reliability index, 77
globally most central limit-state point, 78
Gumbel distribution, 317

half-space truncated standard Gaussian distribu-
tion, 172

Hermite polynomials, 117
hidden safety, 273
human errors, 240

ideal brittle, 278
ideal-brittle systems, 283
ideal-plastic systems, 283
indeterminacy, 35
intermittent loads, 183

judgemental variables, 42
jury definition, 280

of safe set, 281, 283
jury hypothesis, 284

likelihood function, 38, 196
limit state
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regular, 14
serviceability, 14
ultimate, 14

limit-state point, locally most central, 78
limit-state surface, 15

almost plane, 101
linear

model, 209
regression, 64
safety margin, 60

load
reduction factor ψ , 30
combination, 27, 181
models of Poisson type, 298
path dependency, 279, 281
reduction factor ψ , 191

locally most central limit-state point, 78
determination by linear regression, 79
determination by normal tail-approximation

principle, 127
lognormal

distribution, 317
distribution, 112
transformation, 112

lottery, 223
realizable, 227

lower-truncated normal distribution, 186, 253

marginal transformation, 115
mean value, 58

function, 289
measuring uncertainty, 33, 65
missing prior information, 38, 197
mistakes, 251, 272

with hidden effects, 272
model

uncertainty, 41, 207, 214
uncertainty vector field, 49

model-correction-factor method, 139
monetary value, 228
Monte Carlo methods, 163
multi-criteria decision-making, 238
multiple correlation coefficient, 68

Nataf
distribution, 115
transformation, 115

Nataf’s distribution, 317
natural conjugate prior densities, 197
non-informative prior density, 38, 197
non-negative definite function, 290
normal

tail-approximation principle, 127
normal distribution, 66, 317

lower-truncated, 186
multidimensional formulas for, 135
lower-truncated, 253
multidimensional, 71

normalized space, 61

omission sensitivity factor, 148
optimal

reliability, 229, 269
reliability index, 221

optimality postulate, 10, 230, 234
ordering

antisymmetric, 225
transitive, 225

outcrossing intensity for
Gaussian process, 295
scalar process, 294
vector process, 296

parallel system, 155, 275
parameter sensitivity, 151
partial

covariance matrix, 64
safety factor, 15, 309

penalty function, 306
personal preferences, 220
physical

formulation space, free, 115
fluctuations, 33

Poisson
square-wave process, 293
distribution, 254
filtered square-wave process, 298
process, 254, 290
load models, 298

political intervention, 247, 248
polyhedral

approximation, 106
safe set, 94

posterior density, 38, 198
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power product model, 209
pragmatic falsification test, 55
predictive density, 200
preference ordering, 220
prior density, 38, 196
probabilities conditioned on zero-probability events,

257
process

Gaussian, 289
Poisson, 254
thinned Poisson, 254
FBC, 181

proof loading, 251, 252

Rackwitz-Fiessler algorithm, 183
radical errors, 240
random

field, 289
process, 289

Rayleigh density, 202
regression

linear, 64
regular limit state, 14
relation information, 251, 255, 256
reliability index

asymptotic, 101
conditional, 97, 100, 253
equivalent, 113
generalized, 89
geometric, 77
optimal, 221
simple, 61
conditional, 71
updating of, 269

replacement vector, 310
residual

covariance matrix, 64
vector, 64

response surface, 137
revision in the long run, 44
RF algorithm, 183
Rice’s formula, 295
risk aversion, 236, 237, 247
Rosenblatt transformation, 123

safe set, 14
safety

factor, 16
margin, 60
margin, nonlinear, 75

sample information, 201
sensitivity

of the partial safety factors, 316
of replacement vector, 315

sensitivity analysis, 147
for a series system, 160
for parallel system, 155
w.r.t. omission of uncertainty, 148
w.r.t. parameter, 151

sequential stable-configuration set, 281
series system, 160, 275
serviceability limit state, 14, 15
shifted

exponential distribution, 317
Rayleigh distribution, 317

simple reliability index, 61
simulation

distribution, 164
of normal variables, 168
variable, 165

single-point
FORM, SORM, 105
multiple FORM, SORM, 107

singular points, 107
socio-economic

evaluations, 246
cost, 220
scale, 239
units, 228
utility value, 233

SORM
multi-point, 106
single-point, 105
single-point multiple, 107

stable-configuration set, 281
standard deviation, 60
standardized normal density, 71
star-shaped set, 138
statistical uncertainty, 35, 195
structure class, 304
Student’s t-distribution, 121, 200, 211
subjectivity, 53
sufficient statistics, 196
systematic error, 35
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tail-approximation principle, normal, 127, 133
tail-sensitivity problem, 113
tie set, 277

minimal, 277
time development of load and strength, 279
tolerance, 3
transformation, 111

lognormal, 112
Nataf, 115
Rosenblatt, 123

transitive ordering, 88, 225

ultimate limit state, 14, 220
uniform

directional simulation, 167
distribution, 317

updating of reliability index, 251, 269
by revision of limit state, 272
by system formulation, 256

utility
function, 225
uncertain, 232, 233

variance, 58
verification, 43
von Neumann and Morgenstern decision axioms,

223

W-polynomial, 120
Weibull distribution, 317
Wen’s load-coincidence model, 301
Winterstein approximation, 119
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