
1 Static analysis 

 
 

 
 
The vertical end deflection under the load is then given by 
 

 
 
Assume L=1 and that the load F and the bending stiffness EI are random variables with mean 
values of 1 and standard deviations of 0.1. What are the mean value and the standard deviation of 
w? 
 
One can attempt to compute the mean value of w by inserting the mean values of F and EI into 
the above equation.  
 
This results in  = 1/3 
 
Alternately, we might try to solve the problem by Monte-Carlo simulation, i.e. by generating 
random numbers representing samples for F and EI, compute the deflection for each sample and 
estimate the statistics of w from those values. 
 
1 M=1000000; 
2 F=1+.1*randn(M,1); 
3 EI=1+.1*randn(M,1); 
4 w=F./EI/3.; 
5 wm=mean(w) 
6 ws=std(w) 
7 cov=ws/wm 
 
Running this script three times, we obtain 
 
1 wm=0.33676 
2 ws=0.048502 



3 cov=0.14403 
4 
5 wm=0.33673 
6 ws=0.048488 
7 cov=0.14399 
8 
9 wm=0.33679 
10 ws=0.048569 
11 cov=0.14421 
 
 
In these results,  
 
wm denotes the mean value,  
ws the standard deviation, and  
cov the coefficient of variation (the standard deviation divided by the mean).  
 
It can be seen that the mean value is somewhat larger than 1/3 .  
 
Also, the coefficient of variation of the deflection is considerably larger than the coefficient of 
variation of either F or EI. 
 
 
Exercise 1 
Consider a cantilever beam as discussed in the example above, but now with a varying bending 
stiffness;  
 

. 
 
a) for deterministic values of F, L and EI0 
 
b) for random values of F, L and EI0. Assume that these variables have a mean value of 1 and a 

standard deviation of 0.05. Compute the mean value and the standard deviation of the end 
deflection using Monte Carlo simulation. 

 
Solution:  
The deterministic end deflection is  
 

.  
 
A Monte Carlo simulation with 1000000 samples yields a mean value of wm=0.421 and a 
standard deviation of ws=0.070. 
 
 
 



2 Buckling analysis 
 

 
 

 
 
The magnitude of the corresponding deflection remains undetermined.  
 
Now assume that L = 1 and the load N is a Gaussian random variable with a mean value of 2 and 
standard deviation of 0.2, and the bending stiffness EI is a Gaussian random variable with a 
mean value of 1 and standard deviation of 0.1.  
 
What is the probability that the actual load N is larger than the critical load Ncr? 
 
1 M=1000000; 
2 N3=2+.2*randn(M,1); 
3 EI=1+.1*randn(M,1); 
4 Ncr=piˆ2*EI/4.; 
5 indicator = N>Ncr; 
6 pf=mean(indicator) 
 
 
1 pf = 0.070543 
2 pf = 0.070638 
3 pf = 0.070834 
 
In these results, pf denotes the mean value of the estimated probability.  
This problem has an exact solution which can be computed analytically: pf=0.0705673. 
 
Exercise 2 
Consider the same stability problem as above, but now assume that the random variables 
involved are N, L and EI0.  
 
Presume that these variables have a mean value of 1 and a standard deviation of 0.05.  
 
Compute the mean value and the standard deviation of the critical load applying Monte Carlo 
simulation using one million samples. Compute the probability that the critical load is less 
than 2. 
 



Solution: Monte Carlo simulation results in mn=2.4675, sn=0.12324 and pf=9.3000e-05.  
 
The last result is not very stable, i.e. it varies quite considerably in different runs. 
 
 
3 Dynamic analysis 
 

 
 
Now, we consider the same simple cantilever under a dynamic loading F(t). 
 
For this beam with constant density ρ, cross sectional area A and bending stiffness EI under 
distributed transverse loading p(x, t), the dynamic equation of motion is 
 

 
 
We would like to compute the probability that the load as given is close to a resonance situation, 
i.e. the ratio of the excitation frequency ω and the first natural frequency ω1 of the system is 
close to 1. 
 

 
 
The fundamental natural circular frequency ω1 is 
 

 
 
Now we assume that the excitation frequency ω is a random variable with a mean value of 0.3 
and a standard deviation of 0.03.  
 
The bending stiffness is a random variable with mean value 0.1 and standard deviation 0.01, the 
cross sectional area is random with a mean value of 1 and a standard deviation of 0.05.  
 



The density is deterministic ρ=1, so is the length L=1. 
 
We want to compute the probability that the ratio ω/ω1 lies between 0.99 and 1.01. 
 
1 M=1000000; 
2 om=1+0.1*randn(M,1); 
3 EI=0.1+0.01*randn(M,1); 
4 A=1+0.05*randn(M,1); 
5 om1=sqrt(EI./A*12.362); 
6 ind1 = om./om1>0.99; 
7 ind2 = om./om1<1.01; 
8 indicator = ind1.*ind2; 
9 pr=mean(indicator) 
 
 
Running 
1 pr = 0.046719 
2 pr = 0.046946 
3 pr = 0.046766 
 
In these results, pr denotes the mean value of the estimated probability. 
 
 
Exercise 3 (Dynamic deflection) 
 
Now assume that the random variables involved in the above example are A, L and EI.  
 
Let these variables have a mean value of 1 and a standard deviation of 0.05.  
 
Compute the mean value and the standard deviation of the fundamental natural circular 
frequency ω1 using Monte Carlo simulation with one million samples.  
 
Compute the probability that ω1 is between 2 and 2.5. 
 
Solution:  
Monte Carlo simulation results in the mean value mo=3.55, the standard deviation so=0.38 and 
the probability is of the order of pf=2.8e-4. 
 
 
4  Structural analysis 
 
A four-story stucture is subjected to four static loads Fi, i = 1, 2, 3, 4. The floor slabs are 
assumed to be rigid and the columns have identical length H =4m and different bending 
stiffnesses EIk, k=1 . . . 8.  
 



Loads and stiffnesses are random variables. The loads are normally distributed with a mean 
value of 20kN and a COV of 0.4, the stiffnesses are normally distributed with a mean value of 
10MNm2 and a COV of 0.2.  
 
All variables are pairwise independent. 
 

 
 
compute 

 the mean value and standard deviation as well as the coefficient of variation of the 
horizontal displacement u of the top story, 

 the probability pF that u exceeds a value of 0.1 m. 
 
The analysis is to be based on linear elastic behavior of the structure excluding effects of gravity. 
 
The top story deflection can be calculated by adding the interstory relative displacements 
 

 



 
1 Fbar=20; 
2 sigmaF = Fbar*0.4; 
3 EIbar=10000; 
4 sigmaEI = EIbar*0.2; 
5 
6 NSIM=1000000; 
7 ULIM=0.1; 
8 UU=zeros(NSIM,1); 
9 
10 F1=Fbar + sigmaF*randn(NSIM,1); 
11 F2=Fbar + sigmaF*randn(NSIM,1); 
12 F3=Fbar + sigmaF*randn(NSIM,1); 
13 F4=Fbar + sigmaF*randn(NSIM,1); 
14 
15 EI1 = EIbar + sigmaEI*randn(NSIM,1); 
16 EI2 = EIbar + sigmaEI*randn(NSIM,1); 
17 EI3 = EIbar + sigmaEI*randn(NSIM,1); 
18 EI4 = EIbar + sigmaEI*randn(NSIM,1); 
19 EI5 = EIbar + sigmaEI*randn(NSIM,1); 
20 EI6 = EIbar + sigmaEI*randn(NSIM,1); 
21 EI7 = EIbar + sigmaEI*randn(NSIM,1); 
22 EI8 = EIbar + sigmaEI*randn(NSIM,1); 
23 
24 H=4; 
25 
26 u4=F4./(EI7+EI8)/12*Hˆ3; 
27 u3=(F3+F4)./(EI5+EI6)/12*Hˆ3; 
28 u2=(F2+F3+F4)./(EI3+EI4)/12*Hˆ3; 
29 u1=(F1+F2+F3+F4)./(EI1+EI2)/12*Hˆ3; 
30 u=u1+u2+u3+u4; 
31 
32 UM=mean(u) 
33 US=std(u) 
34 COV=US/UM 
35 indic=u>ULIM; 
36 PF=mean(indic) 
 
1 UM = 0.054483 
2 US = 0.012792 
3 COV = 0.23478 
4 PF = 7.1500e-04 
 
 
 
 
 



5 Monte Carlo simulation 
 
This is a frequently used method to deal with the effect of random uncertainties. Typically its 
application aims at integrations such as the computation of expected values (e.g. mean or 
standard deviation). 
 

 
 
In order to illustrate the close relationship between the computation of probabilities and 
integration, consider the determination of the area of a quarter circle of unit radius.  
 
As we know, the area is π/4 , which can be computed using analytical integration.  
 
Using the Monte Carlo Method we can obtain approximations to this result based on elementary 
function evaluations.  
 
When we use 1000 uniformly distributed random numbers x and y, and count the number Nc of 
pairs (x, y) for which x2 +y2 <1, we get an estimate π/4 ≈ Nc/1000 = 791/1000 =0.791.  
 
This differs from the exact result π/4 =0.7854 by about 1%. 
 
 
1 M=1000 
2 x=rand(M,1); 
3 y=rand(M,1); 
4 r2=x.ˆ2+y.ˆ2; 
5 indic = r2<1; 
6 NC=sum(indic) 



7 area=NC/M 
8 fid=fopen('circle.txt','w'); 
9 for i=1:size(x) 
10 fprintf(fid, '%g %g\n', x(i), y(i)); 
11 end 
12 fclose(fid); 
 

 
 
6 Latin Hypercube sampling 
 
In order to reduce the statistical uncertainty associated with Monte Carlo estimation of expected 
values, alternative methods have been developed. One such strategy is the Latin Hypercube 
sampling method (Imam and Conover 1982).  
 

 
 
The coefficient of correlation in the left figure is ρ=0.272, whereas the coefficient of correlation 
in the right figure is only ρ=−0.008, i.e., it is virtually zero. 
 


