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Foreword 

 
The lectures on Structural Reliability and Risk Analysis at the Technical University of Civil 
Engineering of Bucharest commenced in early 1970’s as an elective course taught by late 
Professor Dan Ghiocel and by Professor Dan Lungu in the Buildings Department. After 1990 
the course became a compulsory one in the Reinforced Concrete Department and it is taught 
both in the Faculty of Civil, Industrial and Agricultural Buildings and in the Faculty of 
Engineering in Foreign Languages of Technical University of Civil Engineering of Bucharest. 
The course is envisaged as to provide the background knowledge for the understanding and 
implementation of the new generation of Romanian structural codes that follow the structural 
Eurocodes concepts and formats. Also, the lectures on Structural Reliability and Risk 
Analysis provide the required information to understand and apply the concepts and 
approaches of the performance based design of buildings and structures. 
 
Uncertainties are omnipresent in structural engineering. Civil engineering structures are to be 
designed for loads due to environmental actions like earthquakes, snow and wind. These 
actions are exceptionally uncertain in their manifestations and their occurrence and magnitude 
cannot be treated deterministically. Materials used in civil engineering constructions also 
display wide scatter in their mechanical properties. Structural engineering activities, on one 
hand, lead to increase in societal wealth, and, on the other hand, these activities also make 
society vulnerable to risks. A structural engineer is accountable for the decisions that he takes. 
A hallmark of professionalism is to quantify the risks and benefits involved. The subject of 
structural reliability offers a rational framework to quantify uncertainties mathematically. The 
subject combines statistics, theory of probability, random variables and random processes 
with principles of structural mechanics and forms the basis on which modern structural design 
codes are developed. 
 
Structural reliability has become a discipline of international interest, as it is shown by the 
significant number of books and journals, seminars, symposiums and conferences addressing 
solely this issue. The present lecture notes textbook provides an insight into the concepts, 
methods and procedures of structural reliability and risk analysis considering the presence of 
random uncertainties. The course is addressed to undergraduate students from Faculty of 
Engineering in Foreign Languages instructed in English language as well as postgraduate 
students in structural engineering. The objectives of the courses are: 

- to provide a review of mathematical tools for quantifying uncertainties using theories 
of probability, random variables and random processes 

- to develop the theory of methods of structural reliability based on concept of reliability 
indices. This includes discussions on First Order Reliability Methods 

- to explain the basics of code calibration 
- to evaluate actions on buildings and structures due to natural hazards 
- to provide the basics of risk analysis 
- to provide the necessary background to carry out reliability based design and risk-

based decision making and to apply the concepts and methods of performance-based 
engineering 

- to prepare the ground for students to undertake research in this field. 
 
The content of the Structural Reliability and Risk Analysis textbook is: 

- Introduction to probability and random variables; distributions of probability 
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- Formulation of reliability concepts for structural components; exact solutions, first-
order reliability methods; reliability indices; basis for probabilistic design codes 

- Seismic hazard analysis 
- Seismic vulnerability and seismic risk analysis 
- Introduction to the topic of time-variant reliability and random processes; properties of 

random processes 
- Dynamic stochastic response of single degree of freedom systems – applications to 

wind and earthquake engineering. 
 
The developments and the results of the Structural Reliability and Risk Analysis Group of the 
Reinforced Concrete Department at the Technical University of Civil Engineering of 
Bucharest are included in important national structural codes, such as: 

- P100-1/2006 - Cod de proiectare seismică - Partea I - Prevederi de proiectare pentru 
clădiri, 2007 (Code for Earthquake Resistant Design of New Buildings) 

- CR0-2005 - Cod de proiectare. Bazele proiectarii structurilor in constructii, 2005 
(Design Code. Basis of Structural Design) 

- CR1-1-3-2005 - Cod de proiectare. Evaluarea actiunii zapezii asupra constructiilor, 
2005 (Design Code. Snow Loads on Buildings and Structures) 

- NP 082-04 - Cod de proiectare. Bazele proiectării şi acţiuni asupra construcţiilor. 
Acţiunea vântului, 2005 (Design Code. Basis of Design and Loads on Buildings and 
Structures. Wind Loads) 

 
The UTCB Structural Reliability and Risk Analysis Group embarked in the national efforts 
towards seismic risk mitigation through the implementation of national and international 
projects in this field as well as through the organization of international conferences devoted 
to this aim. 
 

 

  
First International Workshop on Vrancea 
Earthquakes, Bucharest, Nov. 1-4, 1997 

JICA International Seminar, Bucharest,  
Nov. 23-24, 2000 
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International Conference on Earthquake Loss 

Estimation and Risk Reduction,  
Bucharest, Oct. 24-26, 2002 

International Symposium on Seismic Risk 
Reduction – The JICA Technical Cooperation 

Project, Bucharest, April 26-27, 2007 
 
The international conferences above mentioned consisted in milestones in the development 
and implementation of the international projects for seismic risk reduction in which Structural 
Reliability and Risk Analysis Group of the Technical University of Civil Engineering of 
Bucharest was involved: 

- Collaborative Research Center SFB 461 - Strong Earthquakes: A Challenge for 
Geosciences and Civil Engineering, Karlsruhe University, Germany - 1996-2007 

- RISK-UE An advanced approach to earthquake risk scenarios with applications to 
different European towns, EVK4-CT-2000-00014, European Commission, 5th 
Framework - 2001-2004 

- IAEA CRP on Safety Significance of Near Field Earthquake, International Atomic 
Energy Agency (IAEA) - 2002-2005 

- Numerical simulations and engineering methods for the evaluation of expected seismic 
performance, European Commission, Directorate General JRC Joint Research Centre, 
Institute for the Protection and the Security of the Citizen, Italy, C. 20303 F1 EI ISP 
RO - 2002-2005 

- NEMISREF New Methods of Mitigation of Seismic Risk on Existing Foundations -
GIRD-CT-2002-00702, European Commission, 5th Framework - 2002-2005 

- JICA (Japan International Cooperation Agency) Technical Cooperation Project for 
Seismic Risk Reduction of Buildings and Structures in Romania - 2002-2008 

- PROHITECH - Earthquake Protection of Historical Buildings by Reversible Mixed 
Technologies, 6th Framework – 2004-2007. 

 

Assoc. Prof., Ph.D. Radu Văcăreanu 

Assoc. Prof., Ph.D. Alexandru Aldea 

Prof., Ph.D. Dan Lungu 
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1. INTRODUCTION TO RANDOM VARIABLES THEORY 

1.1. Nature and purpose of mathematical statistics 
 
In engineering statistics one is concerned with methods for designing and evaluating 
experiments to obtain information about practical problems, for example, the inspection of 
quality of materials and products. The reason for the differences in the quality of products is 
the variation due to numerous factors (in the material, workmanship) whose influence cannot 
be predicted, so that the variation must be regarded as a random variation.  
In most cases the inspection of each item of the production is prohibitively expensive and 
time-consuming. Hence instead of inspecting all the items just a few of them (a sample) are 
inspected and from this inspection conclusions can be drawn about the totality (the 
population). 
The steps leading from the formulation of the statistical problem to the solution of the 
problem are as follows (Kreyszig, 1979): 

1.Formulation of the problem. It is important to formulate the problem in a precise 
fashion and to limit the investigation. This step must also include the creation of a 
mathematical model based on clear concepts.  

2.Design of experiment. This step includes the choice of the statistical methods to be 
used in the last step, the sample size n and the physical methods and techniques to be used in 
the experiment. 

3.Experimentation and collection of data. This step should adhere to strict rules.  
4.Tabulation. The experimental data are arranged in a clear and simple tabular form and 

are represented graphically by bar charts. 
5.Statistical inference. One uses the sample and applies a suitable statistical method for 

drawing conclusions about the unknown properties of the population.  

1.2. Tabular and graphical representation of samples 
 
In the course of a statistical experiment one usually obtain a sequence of observations that are 
written down in the order they occur. A typical example is shown in Table 1.1. These data 
were obtained by making standard tests for concrete compressive strength. We thus have a 
sample consisting of 30 sample values, so that the size of the sample is n=30. 

Table 1.1. Sample of 30 values of the compressive strength of concrete, daN/cm2 

320 380 340 
350 340 350 
370 390 370 
320 350 360 
380 360 350 
420 400 350 
360 330 360 
360 370 350 
370 400 360 
340 360 390 

 
To see what information is contained in Table 1.1, one shall order the data. One writes the 
values in Table 1.2 (320,330 and so on). The number of occurring numbers from Table 1.1 is 
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listed in the second column of Table 1.2. It indicates how often the corresponding value x 
occurs in the sample and is called absolute frequency of that value x in the sample. Dividing it 
by the size n of the sample one obtains the relative frequency in the third column of Table 1.2.  
If for a certain x one sums all the absolute frequencies corresponding to corresponding to the 
sample values which are smaller than or equal to that x, one obtains the cumulative frequency 
corresponding to that x. This yields column 4 in Table 1.2. Division by the size n of the 
sample yields the cumulative relative frequency in column 5.  

Table 1.2. Frequencies of values of random variable 

Compressive 
strength 

Absolute 
frequency 

Relative 
frequency 

Cumulative 
frequency

Cumulative 
relative 

frequency
320 2 0.067 2 0.067 
330 1 0.033 3 0.100 
340 3 0.100 6 0.200 
350 6 0.200 12 0.400 
360 7 0.233 19 0.633 
370 4 0.133 23 0.767 
380 2 0.067 25 0.833 
390 2 0.067 27 0.900 
400 2 0.067 29 0.967 
410 0 0.000 29 0.967 
420 1 0.033 30 1.000 

 
The graphical representation of the samples is given by histograms of relative frequencies 
and/or cumulative relative frequencies (Figure 1.1 and Figure 1.2). 
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Figure 1.1. Histogram of relative frequencies 
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Figure 1.2. Histogram of cumulative relative frequencies 

 
If a certain numerical value does not occur in the sample, its frequency is 0. If all the n values 
of the sample are numerically equal, then this number has the frequency n and the relative 
frequency is 1. Since these are the two extreme possible cases, one has: 
Theorem 1. The relative frequency is at least equal to 0 and at most equal to 1.  
Theorem 2. The sum of all relative frequencies in a sample equals 1. 
One may introduce the frequency function of the sample that determines the frequency 
distribution of the sample: 

⎪⎩

⎪
⎨
⎧

≠

==
j

jj

xx

xxfxf
,0

,)(
~

~
         (1.1) 

The cumulative frequency function of the sample is )(
~

xF = sum of the relative frequencies of 
all the values that are smaller than or equal to x.  

The relation between )(
~

xf and )(
~

xF is: 

∑
≤

=
xt

tfxF
~~

)()(  

If a sample consists of too many numerically different sample values, the process of grouping 
may simplify the tabular and graphical representations, as follows.  
A sample being given, one chooses an interval I that contains all the sample values. One 
subdivides I into subintervals, which are called class intervals. The midpoints of these 
intervals are called class midpoints. The sample values in each such interval are said to form a 
class. Their number is called the corresponding class frequency. Division by the sample size n 
gives the relative class frequency. This frequency is called the frequency function of the 
grouped sample, and the corresponding cumulative relative class frequency is called the 
distribution function of the grouped sample. 
The fewer classes one chooses, the simpler the distribution of the grouped sample becomes 
but the more information we loose, because the original sample values no longer appear 
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explicitly. Grouping should be done so that only unessential data are eliminated. Unnecessary 
complications in the later use of a grouped sample are avoided by obeying the following rules: 

1.All the class intervals should have the same length. 
2.The class intervals should be chosen so that the class midpoints correspond to simple 

numbers. 
3.If a sample value xj coincides with the common point of two class intervals, one takes 

it into the class interval that extends from xj to the right. 

1.3. Sample mean and sample variance 
 
For the frequency function one may compute measures for certain properties of the sample, 
such as the average size of the sample values, the spread, etc.  

The mean value of a sample x1, x2, …,xn or, briefly, sample mean, is denoted by 
_
x and is 

defined by the formula 

∑
=

=
n

j
jx

n
x

1

_ 1           (1.2) 

It is the sum of all the sample values divided by the size n of the ample. Obviously, it 
measures the average size of the sample values, and sometimes the term average is used for 
_
x . 
The variance of a sample x1, x2, …,xn or, briefly, sample variance, is denoted by s2 and is 
defined by the formula  

∑
=

−
−

=
n

j
j xx

n
s

1

2
_

2 )(
1

1         (1.3) 

It is the sum of the squares of the deviations of the sample values from the mean 
_
x , divide by 

n-1. It measures the spread or dispersion of the sample values and is positive. The positive 
square root of the sample variance s2 is called the standard deviation of the sample and is 
denoted by s.  
The coefficient of variation of a sample x1, x2, …,xn is denoted by COV and is defined as the 
ratio of the standard deviation of the sample to the sample mean 

_
x

sV =             

           (1.4) 

1.4. Random Experiments, Outcomes, Events 
 
A random experiment or random observation, briefly experiment or observation, is a process 
that has the following properties, (Kreyszig, 1979): 

1.It is performed according to a set of rules that determines the performance completely. 
2.It can be repeated arbitrarily often. 
3.The result of each performance depends on “chance” (that is, on influences which we 

cannot control) and can therefore not be uniquely predicted. 
The result of a single performance of the experiment is called the outcome of that trial. 
The set of all possible outcomes of an experiment is called the sample space of the 
experiment and will be denoted by S. Each outcome is called an element or point of S. 
In most practical problems one is not so much interested in the individual outcomes but in 
whether an outcome belongs (or does not belong) to a certain set of outcomes. Clearly, each 
such set A is a subset of the sample set S. It is called an event. 
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Since an outcome is a subset of S, it is an event, but a rather special one, sometimes called an 
elementary event. Similarly, the entire space S is another special event.  
A sample space S and the events of an experiment can be represented graphically by a Venn 
diagram, as follows. Suppose that the set of points inside the rectangle in Fig. 1.3 represents 
S. Then the interior of a closed curve inside the rectangle represents an event denoted by E. 
The set of all the elements (outcomes) not in E is called the complement of E in S and is 
denoted by Ec. 

E

EC

 
 

Figure 1.3. Venn diagram representing a sample space S and the events E and Ec 
 
An event containing no element is called the impossible event and is denoted by Φ. 
Let A and B be any two events in an experiment. Then the event consisting of all the elements 
of the sample space S contained in A or B, or both, is called the union of A and B and is 
denoted by A ∪ B. 
The event consisting of all the elements in S contained in both A and B is called the 
intersection of A and B and is denoted by A ∩ B. 
Figure 1.4 illustrates how to represent these two events by a Venn diagram. If A and B have 
no element in common, then A ∩ B = Φ, and A and B are called mutually exclusive events. 

  Union A ∪ B     Intersection A ∩ B 
Figure 1.4. Venn diagrams representing the union (shaded) and intersection (shaded) of two 

events A and B in a sample space S 
 
If all elements of an event A are also contained in an event B, then A is called a subevent of B, 
and we write  
A ⊂ B       or        B ⊃ A. 
Suppose that one performs a random experiment n times and one obtains a sample consisting 

of n values. Let A and B be events whose relative frequencies in those n trials are )A(f
~

 and 

)B(f
~

, respectively. Then the event A ∪ B has the relative frequency  

E

EC

E

EC
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)BA(f)B(f)A(f)BA(f
~~~~

∩−+=∪       (1.5) 

If A and B are mutually exclusive, then 0)BA(f
~

=∩ , and 

)B(f)A(f)BA(f
~~~

+=∪         (1.6) 
These formulas are rather obvious from the Venn diagram in Fig. 1.4. 

1.5. Probability 
 
Experience shows that most random experiments exhibit statistical regularity or stability of 
relative frequencies; that is, in several long sequences of such an experiment the 
corresponding relative frequencies of an event are almost equal. Since most random 
experiments exhibit statistical regularity, one may assert that for any event E in such an 
experiment there is a number P(E) such that the relative frequency of E in a great number of 
performances of the experiment is approximately equal to P(E).  
For this reason one postulates the existence of a number P(E) which is called probability of an 
event E in that random experiment. Note that this number is not an absolute property of E but 
refers to a certain sample space S, that is, to a certain random experiment. 
The probability thus introduced is the counterpart of the empirical relative frequency. It is 
therefore natural to require that it should have certain properties which the relative frequency 
has. These properties may be formulated as so-called axioms of mathematical probability, 
(Kreyszig, 1979). 
 
Axiom 1. If E is any event in a sample space S, then 
   0 ≤ P(E) ≤ 1.       (1.7) 
Axiom 2. To the entire sample space S there corresponds 
   P(S) = 1.       (1.8) 
Axiom 3. If A and B are mutually exclusive events, then 
   P(A∪B) = P(A) + P(B).     (1.9) 
If the sample space is infinite, one must replace Axiom 3 by 
Axiom 3*. If E1, E2, … are mutually exclusive events, then  
   P(E1 ∪ E2 ∪ …) = P(E1) + P(E2) + …   (1.10) 
From axiom 3 one obtains by induction the following 
 
Theorem 1 – Addition rule for mutually exclusive events 
If E1, E2,, … Em are mutually exclusive events, then  
   P(E1 ∪ E2 ∪ …∪ Em) = P(E1) + P(E2) + …+ P(Em)  (1.11) 
 
Theorem 2 – Addition rule for arbitrary events 
If A and B are any events in a sample space S, then 
   P(A ∪ B) = P(A) + P(B) – P(A ∩ B).    (1.12) 
Furthermore, an event E and its complement Ec are mutually exclusive, and E ∪ Ec = S. 
Using Axioms 3 and 2, one thus has 
   P(E ∪ Ec) = P(E) + P(Ec) = 1.    (1.13) 
This yields 
Theorem 3 – Complementation rule 
The probabilities of an event E and its complement Ec in a sample space S are related by the 
formula  
   P(E) = 1 - P(Ec)      (1.14) 
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Often it is required to find the probability of an event B if it is known that an event A has 
occurred. This probability is called the conditional probability of B given A and it is denoted 
by P(B | A). In this case A serves as a new (reduced) sample space, and that probability is the 
fraction of P(A) which corresponds to A ∩ B. Thus  

)A(P
)BA(P)A|B(P ∩

=         (1.15) 

Similarly, the conditional probability of A given B is 

)B(P
)BA(P)B|A(P ∩

=         (1.16) 

Solving equations (1.15) and (1.16) for P(A ∩ B), one obtains 
 
Theorem 4 – Multiplication rule 
If A and B are events in a sample space S and P(A) ≠ 0, P(B) ≠ 0, then 

P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B).   (1.17) 
If the events A and B are such that  

P(A ∩ B) = P(A)P(B),      (1.17’) 
they are called independent events. Assuming P(A) ≠ 0, P(B) ≠ 0, one notices from (1.15)-
(1.17) that in this case 
   P(A|B) = P(A),  P(B|A) = P(B),   (1.18) 
which means that the probability of A does not depend on the occurrence or nonoccurrence of 
B, and conversely. 
Similarly, m events A1, …, Am, are said to be independent if for any k events Aj1, Aj2, …, Ajk 
(where 1≤ j1 < j2 <…<jk ≤ m and k= 2, 3, …, m) 
   P(Aj1 ∩ Aj2 ∩…∩ Ajk) = P(Aj1) P(Aj2)… P(Ajk).  (1.19) 
For a set of events B1, B2,…, Bm, which are mutually exclusive (BI ∩ Bj) = Φ for all i≠j but 
collectively exhaustive (B1 ∪ B2 ∪ … ∪ Bm = S), like that shown in the Venn diagram of Fig. 
1.5, the probability of another event A can be expressed as 
   P(A) = P(A ∩ B1) + P(A ∩ B2) +…+ P(A ∩ Bm)  (1.20) 
Using Theorem 4 (Multiplication rule) yields the 
 
Theorem 5 – Total probability theorem 
   P(A) = P(A | B1)P(B1) + P(A | B2)P(B2)) +…+ P(A | Bm)P(Bm) = 

   ∑
=

m

1i
ii )B(P)B|A(P       (1.21) 

 

B1 
B2 B3 B4 

B5 
B6 

A 

 
 

Figure 1.5. Intersection of event A with mutually exclusive  
but collectively exhaustive events BI 
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1.6. Random variables. Discrete and continuos distributions 
 
Roughly speaking, a random variable X (also called stochastic variable or variate) is a 
function whose values are real numbers and depend on chance; more precisely, it is a function 
X which has the following properties, (Kreyszig, 1979):  

1.X is defined on the sample space S of the experiment, and its values are real numbers. 
2.Let a be any real number, and let I be any interval. Then the set of all outcomes in S 

for which X=a has a well defined probability, and the same is true for the set of all outcomes 
in S for which the values of X are in I. These probabilities are in agreement with the axioms in 
Section 1.5.  
If one performs a random experiment and the event corresponding to a number a occurs, then 
we say that in this trial the random variable X corresponding to that experiment has assumed 
the value a. Instead of “the event corresponding to a number a”, one says, more briefly, “the 
event X=a”. The corresponding probability is denoted by P(X=a). Similarly, the probability 
of the event  
  X assumes any value in the interval a<X<b 
is denoted by P(a<X<b). The probability of the event 
  X≤c (X assumes any value smaller than c or equal to c) 
is denoted by P(X≤c), and the probability of the event  
  X>c (X assumes any value greater than c) 
is denoted by P(X>c). 
The last two events are mutually exclusive. From Axiom 3 in Section 5 one obtains 
  P(X≤c) + P(X>c) = P(-∞ < X < ∞).     (1.22) 
From Axiom 2 one notices that the right hand side equals 1, because -∞ < X < ∞ corresponds 
to the whole sample space. This yields the important formula  
  P(X>c) = 1 - P(X≤c).       (1.23) 
In most practical cases the random variables are either discrete or continuos.  
A random variable X and the corresponding distribution are said to be discrete, if X has the 
following properties: 

1.The number of values for which X has a probability different from 0 is finite or at 
most countably infinite. 

2.If a interval a < X ≤ b does not contain such a value, then P(a < X ≤ b) = 0. 
Let 
   x1, x2, x3, … 
be the values for which X has a positive probability, and let  
   p1, p2, p3, … 
be the corresponding probabilities. Then P(X=x1)=p1, etc. One introduces the function: 

  
⎩
⎨
⎧ ==

=
otherwise0

...),2,1j(xxwhenp
)x(f jj     (1.24) 

f(x) is called the probability density function of X, PDF. 
Since P(S) = 1 (cf. Axiom 2 in Section 1.5), one must has 

  ∑ =
∞

=1j
j 1)x(f         (1.25) 

If one knows the probability function of a discrete random variable X, then one may readily 
compute the probability P(a < X ≤ b) corresponding to any interval a < X ≤ b. In fact, 
  ∑∑ ==≤<

≤<≤< bxa
j

bxa
j

jj

p)x(f)bXa(P     (1.26) 

The probability function determines the probability distribution of the random variable X in a 
unique fashion. 
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If X is any random variable, not necessarily discrete, then for any real number x there exists 
the probability P(X ≤ x) corresponding to 
  X ≤ x (X assumes any value smaller than x or equal to x) 
is a function of x, which is called the cumulative distribution function of X, CDF and is 
denoted by F(x). Thus 
  F(x) = P(X ≤ x).       (1.27) 
Since for any a and b > a one has 
  P(a < X ≤ b) = P( X ≤ b) - P(X ≤ a)     (1.28) 
it follows that 
  P(a < X ≤ b) = F(b) – F(a).      (1.29) 
Suppose that X is a discrete random variable. Than one may represent the distribution 
function F(x) in terms of probability function f(x) by inserting a = -∞ and b = x 
  ∑=

≤xx
j

j

)x(f)x(F        (1.30) 

where the right-hand side is the sum of all those f(xj) for which xj ≤ x.  
F(x) is a step function (piecewise constant function) which has an upward jump of magnitude 
pj = P(X = xj) at x = xj and is constant between two subsequent possible values. Figure 1.6 is 
an illustrative example. 
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Figure 1.6. Probability function f(x) and distribution function F(x) of the random variable X 
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One shall now define and consider continuos random variables. A random variable X and the 
corresponding distribution are said to be of continuos type or, briefly, continuos if the 
corresponding distribution function F(x) = P(X ≤ x) can be represented by an integral in the 
form 

  ∫=
∞−

x
du)u(f)x(F        (1.31) 

where the integrand is continuos and is nonnegative. The integrand f is called the probability 
density or, briefly, the density of the distribution. Differentiating one notices that 
  F’(x) = f(x)        (1.32) 
In this sense the density is the derivative of the distribution function. 
From Axiom 2, Section 1.6, one also has 

  1du)u(f =∫
∞

∞−
        (1.33) 

Furthermore, one obtains the formula 

  ∫=−=≤<
b

a
du)u(f)a(F)b(F)bXa(P     (1.34) 

Hence this probability equals the area under the curve of the density f(x) between x=a and 
x=b, as shown in Figure 1.7. 

-4 -3 -2 -1 0 1 2 3 4
x

f(x)

ba

P(a<X<b)

 
Figure 1.7. Example of probability computation 

1.7. Mean and variance of a distribution 
 
The mean value or mean of a distribution is denoted by μ and is defined by 
  ∑=

j
jj )x(fxμ  (discrete distribution)    (1.35a) 
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  ∫=
∞

∞−
dx)x(xfμ  (continuous distribution)   (1.35b) 

where f(xj) is the probability function of discrete random variable X and f(x) is the density of 
continuos random variable X. The mean is also known as the mathematical expectation of X 
and is sometimes denoted by E(X). 
A distribution is said to be symmetric with respect to a number x = c if for every real x, 
  f(c+x) = f(c-x).       (1.36) 
 
Theorem 1 – Mean of a symmetric distribution 
If a distribution is symmetric with respect to x = c and has a mean μ, then μ = c. 
The variance of a distribution is denoted by σ2 and is defined by the formula 
  ∑ −=

j
j

2
j

2 )x(f)x( μσ  (discrete distribution)   (1.37a) 

  ∫ −=
∞

∞−
dx)x(f)x( 22 μσ  (continuous distribution).  (1.37b) 

The positive square root of the variance is called the standard deviation and is denoted by σ. 
Roughly speaking, the variance is a measure of the spread or dispersion of the values which 
the corresponding random variable X can assume. 
The coefficient of variation of a distribution is denoted by V and is defined by the formula 

μ
σ

=V          (1.38) 

 
Theorem 2 – Linear transformation 
If a random variable X has mean μ and variance σ2, the random variable X*=c1 X + c2 has 
the mean 
  μ* = c1 μ + c2        (1.39) 
and the variance 
  σ*2 = c1

2 σ2        (1.40) 
 
Theorem 3 – Standardized variable 
If a random variable X has mean μ and variance σ2, then the corresponding variable  
Z = (X - μ)/σ has the mean 0 and the variance 1. 
Z is called the standardized variable corresponding to X. 
If X is any random variable and g(X) is any continuos function defined for all real X, then the 
number 
  ∑=

j
jj )x(f)x(g))X(g(E  (X discrete)    (1.41a) 

  ∫=
∞

∞−
dx)x(f)x(g))X(g(E  (X continuous)    (1.41b) 

is called the mathematical expectation of g(X). Here f is the probability function or the 
density, respectively.  
Taking g(X) = Xk (k = 1, 2, …), one obtains 

 ∑=
j

j
k
j

k )x(fx)X(E   and  ∫=
∞

∞−
dx)x(fx)X(E kk ,  (1.42) 

respectively. E(Xk) is called the kth moment of X. Taking g(X) = (X-μ)k, one has 

 ∑ −=−
j

j
k

j
k )x(f)x())X((E μμ  ; ∫ −=−

∞

∞−
dx)x(f)x())X((E kk μμ , (1.43) 

respectively. This expression is called the kth central moment of X. One can show that 
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  E(1) = 1        (1.44) 
  μ = E(X)        (1.45) 
  σ2 = E((X - μ)2).       (1.46) 
Note: 
The mode of the distribution is the value of the random variable that corresponds to the peak 
of the distribution (the most likely value). 
The median of the distribution is the value of the random variable that have 50% chances of 
smaller values and, respectively 50% chances of larger values. 
The fractile xp is defined as the value of the random variable X with p non-exceedance 
probability (P(X ≤ xp) = p). 
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2. DISTRIBUTIONS OF PROBABILITY 
 

2.1. Binomial and Poisson distributions 
 
One shall now consider special discrete distributions which are particularly important in 
statistics. One starts with the binomial distribution, which is obtained if one is interested in 
the number of times an event A occurs in n independent performances of an experiment, 
assuming that A has probability P(A) = p in a single trial. Then q = 1 – p is the probability 
that in a single trial the event A does not occur. One assumes that the experiment is performed 
n times and considers the random variable  
  X = number of times A occurs. 
Then X can assume the values 0, 1, .., n, and one wants to determine the corresponding 
probabilities. For this purpose one considers any of these values, say, X = x, which means that 
in x of the n trials A occurs and in n – x trials it does not occur. 
The probability P(X = x) corresponding to  X = x equals 
  xnxx

n qpC)x(f −=  (x = 0, 1, …, n).    (2.1) 
This is the probability that in n independent trials an event A occurs precisely x times where p 
is the probability of A in a single trial and q = 1 – p. The distribution determined is called the 
binomial distribution or Bernoulli distribution. The occurrence of A is called success, and the 
nonoccurrence is called failure. p is called the probability of success in a single trial. Figure 
2.1 shows illustrative examples of binomial distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. Probability function of the binomial distribution for n = 5 and various values of p 

 
The binomial distribution has the mean 
  μ = np         (2.2) 
and the variance 
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  σ2 = npq.        (2.3) 
Note that when p = 0.5, the distribution is symmetric with respect to μ. 
The distribution with the probability function 

  μμ −= e
!x

)x(f
x

 (x = 0, 1, …)     (2.4) 

is called the Poisson distribution. Figure 2.2 shows the Poisson probability function for some 
values of μ. 

 
 

Figure 2.2. Probability function of the Poisson distribution for various values of μ 
 
It can be proved that Poisson distribution may be obtained as a limiting case of the binomial 
distribution, if one let p → 0 and n → ∞ so that the mean μ = np approaches a finite value. 
The Poisson distribution has the mean μ and the variance 
  σ2 = μ.         (2.5) 

 

2.2. Normal distribution 
 
The continuos distribution having the probability density function, PDF 

  e
2
1)x(f

2x
2
1

⎟
⎠
⎞

⎜
⎝
⎛ −

−= σ
μ

σπ
      (2.6) 
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is called the normal distribution or Gauss distribution. A random variable having this 
distribution is said to be normal or normally distributed. This distribution is very important, 
because many random variables of practical interest are normal or approximately normal or 
can be transformed into normal random variables. Furthermore, the normal distribution is a 
useful approximation of more complicated distributions. 
In Equation 2.6, μ is the mean and σ is the standard deviation of the distribution. The curve of 
f(x) is called the bell-shaped curve. It is symmetric with respect to μ. Figure 2.3 shows f(x) for 
same μ and various values of σ (and various values of coefficient of variation V). 

Normal distribution
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Figure 2.3. Density (2.6) of the normal distribution for various values of V 

 
The smaller σ (and V) is, the higher is the peak at x = μ and the steeper are the descents on 
both sides. This agrees with the meaning of variance.  
From (2.6) one notices that the normal distribution has the cumulative distribution function, 
CDF  

  dve
2
1)x(F

x 2v
2
1

∫=
∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

−
σ

μ

σπ
      (2.7) 

Figure 2.4 shows F(x) for same μ and various values of σ (and various values of coefficient of 
variation V). 
From (2.7) one obtains 

  dve
2
1)a(F)b(F)bXa(P

b

a

2v
2
1

∫=−=≤< ⎟
⎠
⎞

⎜
⎝
⎛ −

−
σ

μ

σπ
   (2.8) 

The integral in (2.7) cannot be evaluated by elementary methods, but can be represented in 
terms of the integral 

  due
2
1)z(

z
2

u2

∫=
∞−

−

π
Φ       (2.9) 
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which is the distribution function of the normal distribution with mean 0 and variance 1 and 
has been tabulated. In fact, if one sets (v - μ)/σ = u, then du/dv = 1/σ, and one has to integrate 
from -∞ to z = (x - μ)/σ.  
The density function and the distribution function of the normal distribution with mean 0 and 
variance 1 are presented in Figure 2.5. 

Normal distribution
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Figure 2.4. Distribution function (2.7) of the normal distribution for various values of V 
 
From (2.7) one obtains 

  due
2
1)x(F

/)x(
2

u 2

σ
σπ

σμ

∫=
−

∞−

−  

σ drops out, and the expression on the right equals (4) where z = (x - μ)/σ , that is, 

  ⎟
⎠
⎞

⎜
⎝
⎛ −

=
σ

μΦ x)x(F        (2.10) 

From this important formula and (2.8) one gets 

  ⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=−=≤<
σ

μΦ
σ

μΦ ab)a(F)b(F)bXa(P   (2.11) 

In particular, when a = μ − σ  and b = μ + σ , the right-hand side equals Φ(1) - Φ(-1); to a = 
μ − 2σ  and b = μ + 2σ there corresponds the value Φ(2) - Φ(-2), etc. Using tabulated values 
of Φ function one thus finds 

(a) P(μ -σ < X ≤ μ +σ) ≅ 68% 
  (b) P(μ -2σ < X ≤ μ +2σ) ≅ 95.5%     (2.12) 
  (c) P(μ -3σ < X ≤ μ +3σ) ≅ 99.7% 
Hence one may expect that a large number of observed values of a normal random variable X 

will be distributed as follows: 
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(a) About 2/3 of the values will lie between μ -σ and μ +σ 
  (b) About 95% of the values will lie between μ -2σ and μ +2σ 
  (c) About 99¾ % of the values will lie between μ -3σ and μ +3σ. 
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Figure 2.5. Density function and distribution function of the normal distribution 

with mean 0 and variance 1 
 
This may be expressed as follows. 
A value that deviates more than σ from μ will occur about once in 3 trials. A value that 
deviates more than 2σ or 3σ from μ will occur about once in 20 or 400 trials, respectively. 
Practically speaking, this means that all the values will lie between μ -3σ and μ +3σ ; these 
two numbers are called three-sigma limits. 
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The fractile xp that is defined as the value of the random variable X with p non-exceedance 
probability (P(X ≤ xp) = p) is computed as follows: 
  xp = μ + kp⋅σ        (2.13) 
The meaning of kp becomes clear if one refers to the reduced standard variable z = (x - μ)/σ. 
Thus, x = μ + z⋅σ and kp represents the value of the reduced standard variable for which Φ(z) 
= p. 
The most common values of kp are given in Table 2.1. 

Table 2.1. Values of kp for different non-exceedance probabilities p 

p 0.01 0.02 0.05 0.95 0.98 0.99 
kp -2.326 -2.054 -1.645 1.645 2.054 2.326 

 

2.3. Log-normal distribution 
 
The log-normal distribution (Hahn & Shapiro, 1967) is defined by its following property: if 
the random variable lnX is normally distributed with mean μlnX and standard deviation σlnX, 
then the random variable X is log-normally distributed. Thus, the cumulative distribution 
function CDF of random variable lnX is of normal type: 

dv
v
1e1

2
1)v(lnde1

2
1)x(lnF

x
vln

2
1
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⋅∫⋅⋅=∫⋅⋅=
∞−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

∞−

⎟⎟
⎠

⎞
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⎛ −
−

σ
μ

σ
μ
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 (2.14) 

Since: 

  ∫=
∞−

x
dv)v(f)x(lnF        (2.15) 

the probability density function PDF results from (2.14) and (2.15): 
2

Xln

Xlnxln
2
1

Xln

e
x
11

2
1)x(f

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

⋅⋅⋅= σ
μ

σπ
     (2.16) 

The lognormal distribution is asymmetric with positive asymmetry, i.e. the distribution is 
shifted to the left. The skewness coefficient for lognormal distribution is: 

3
XX1 VV3 +=β         (2.17) 

where VX is the coefficient of variation of random variable X. Higher the variability, higher 
the shift of the lognormal distribution. 
The mean and the standard deviation of the random variable lnX are related to the mean and 
the standard deviation of the random variable X as follows: 

  
2

X

X
Xln

V1

mlnm
+

=        (2.18) 

  )V1ln( 2
XXln +=σ        (2.19) 

If VX is small enough (VX ≤ 0.1), then:  

XXln mlnm ≅         (2.20) 

XXln V≅σ         (2.21) 

The PDF and the CDF of the random variable X are presented in Figure 2.6 for different 
coefficients of variation. 
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Log-normal distribution
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Figure 2.6. Probability density function, f(x) and cumulative distribution function, F(x) 

of the log-normal distribution for various values of V 
 
If one uses the reduced variable (lnv - μ)/σ = u, then du/dv = 1/(vσ), and one has to integrate 
from -∞ to z = (lnx - μ)/σ. From (2.14) one obtains: 

  due
2
1vdu

v
1e

2
1)z(

z
2

u/)x(ln
2

u 22

∫=⋅∫=
∞−

−−

∞−

−

π
σ

σπ
Φ

σμ
  (2.22) 

The fractile xp that is defined as the value of the random variable X with p non-exceedance 
probability (P(X ≤ xp) = p) is computed as follows, given lnX normally distributed: 

  ln(xp) = μlnX + kp⋅σlnX       (2.23) 
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From (2.23) one gets: 

  XlnpXln k
p ex σμ ⋅+=        (2.24) 

 
where kp represents the value of the reduced standard variable for which Φ(z) = p. 
 

2.4. Distribution of extreme values 
 
The distribution of extreme values was first considered by Emil Gumbel in his famous book 
“Statistics of extremes” published in 1958 at Columbia University Press. The extreme values 
distribution is of interest especially when one deals with natural hazards like snow, wind, 
temperature, floods, etc. In all the previously mentioned cases one is not interested in the 
distribution of all values but in the distribution of extreme values which might be the 
minimum or the maximum values. In Figure 2.7 it is represented the distribution of all values 
of the random variable X as well as the distribution of minima and maxima of X. 
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Figure 2.7. Distribution of all values, of minima and of maxima of random variable X 
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2.4.1. Gumbel distribution for maxima in 1 year 
 
The Gumbel distribution for maxima is defined by its cumulative distribution function, CDF: 

 
)ux(ee)x(F

−−−=
α

        (2.25) 

where: 
u = μx – 0.45⋅σx – mode of the distribution (Figure 2.10) 
α = 1.282 / σx – dispersion coefficient. 
The skewness coefficient of Gumbel distribution is positive constant ( 139.11 =β ), i.e. the 
distribution is shifted to the left. In Figure 2.8 it is represented the CDF of Gumbel 
distribution for maxima for the random variable X with the same mean μx and different 
coefficients of variation Vx.  
The probability distribution function, PDF is obtained straightforward from (2.25): 

)ux(e)ux( ee
dx

)x(dF)x(f
−−−−− ⋅⋅==

ααα       (2.26) 

The PDF of Gumbel distribution for maxima for the random variable X with the same mean 
μx and different coefficients of variation Vx is represented in Figure 2.9. 
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Figure 2.8. CDF of Gumbel distribution for maxima for the random variable X  
with the same mean μx and different coefficients of variation Vx. 
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Gumbel distribution
for maxima in 1 year
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Figure 2.9. PDF of Gumbel distribution for maxima for the random variable X  

with the same mean μx and different coefficients of variation Vx. 
 

One can notice in Figure 2.9 that higher the variability of the random variable, higher the shift 
to the left of the PDF.  

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

100 200 300 400 500 600 700

x

f(x)

0.45σ x

u μ x

 
Figure 2.10. Significance of mode parameter u in Gumbel distribution for maxima 

 
The fractile xp that is defined as the value of the random variable X with p non-exceedance 
probability (P(X ≤ xp) = p) is computed as follows, given X follows Gumbel distribution for 
maxima: 
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From Equation 2.27 it follows: 
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where: 
 )plnln(78.045.0k G

p −⋅−−=       (2.29) 
The values of kp

G for different non-exceedance probabilities are given in Table 2.2. 

Table 2.2. Values of kp
G for different non-exceedance probabilities p 

p 0.50 0.90 0.95 0.98 
kp

G -0.164 1.305 1.866 2.593 
 
2.4.2. Gumbel distribution for maxima in N years 
 
All the preceding developments are valid for the distribution of maxima in 1 year. If one 
considers the probability distribution in N (N>1) years, the following relation holds true (if 
one considers that the occurrences of maxima are independent events): 
 
 F(x)N years = P(X ≤ x) in N years = [P(X ≤ x) in 1 year]N = [F(x)1 year]N (2.30) 
 
where: 
F(x)N years – CDF of random variable X in N years 
F(x)1 year – CDF of random variable X in 1 year. 
The Gumbel distribution for maxima has a very important property – the reproducibility of 
Gumbel distribution - i.e., if the annual maxima in 1 year follow a Gumbel distribution for 
maxima then the annual maxima in N years will also follow a Gumbel distribution for 
maxima: 
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+−− −−− ===
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α
α

     (2.31) 
 

where: 
u1 – mode of the distribution in 1 year 
α1 – dispersion coefficient in 1 year 
uN = u1 + lnN / α1 – mode of the distribution in N years 
αΝ = α1 – dispersion coefficient in N years 
The PDF of Gumbel distribution for maxima in N years is translated to the right with the 
amount lnN / α1 with respect to the PDF of Gumbel distribution for maxima in 1 year, Figure 
2.11. 
Also, the CDF of Gumbel distribution for maxima in N years is translated to the right with the 
amount lnN / α1  with respect to the CDF of Gumbel distribution for maxima in 1 year, Figure 
2.12. 
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Figure 2.11. PDF of Gumbel distribution for maxima in 1 year and in N years 
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Figure 2.12. CDF of Gumbel distribution for maxima in 1 year and in N years 

 
Important notice: The superior fractile xp (p >> 0.5) calculated with Gumbel distribution for 
maxima in 1 year becomes a frequent value (sometimes even an inferior fractile if N is large, 
N ≥ 50) if Gumbel distribution for maxima in N years is employed, Figure 2.13. 
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Figure 2.13. Superior fractile xp in 1 year and its significance in N year 

 
 

2.5. Mean recurrence interval 
 
The loads due to natural hazards such as earthquakes, winds, waves, floods were recognized 
as having a randomness in time as well as in space. The randomness in time was considered in 
terms of the return period or recurrence interval. The recurrence interval also known as a 
return period is defined as the average (or expected) time between two successive statistically 
independent events and it is an estimate of the likelihood of events like an earthquake, flood 
or river discharge flow of a certain intensity or size. It is a statistical measurement denoting 
the average recurrence interval over an extended period of time, and is usually required for 
risk analysis (i.e. whether a project should be allowed to go forward in a zone of a certain 
risk) and also to dimension structures so that they are capable of withstanding an event of a 
certain return period (with its associated intensity). The actual time T between events is a 
random variable. In most engineering applications an event denoted the exceedance of a 
certain threshold associated with loading.  
 
The mean recurrence interval, MRI of a value x of the random variable X may be defined as 
follows: 
 

 ( ) ( )xFpxXP
xXMRI

xyear −
=

−
=

>
=>

1
1

1
11)(

1

    (2.32) 

 
where: 
p is the annual probability of the event (X≤x) 
FX(x) is the cumulative distribution function of X. 
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Thus the mean recurrence interval of a value x is equal to the reciprocal of the annual 
probability of exceedance of the value x. The mean recurrence interval or return period has an 
inverse relationship with the probability that the event will be exceeded in any one year. For 
example, a 10-year flood has a 0.1 or 10% chance of being exceeded in any one year and a 
50-year flood has a 0.02 (2%) chance of being exceeded in any one year. It is commonly 
assumed that a 10-year earthquake will occur, on average, once every 10 years and that a 100-
year earthquake is so large that we expect it only to occur every 100 years. While this may be 
statistically true over thousands of years, it is incorrect to think of the return period in this 
way. The term return period is actually misleading. It does not necessarily mean that the 
design earthquake of a 10 year return period will return every 10 years. It could, in fact, never 
occur, or occur twice. It is still a 10 year earthquake, however. This is why the term return 
period is gradually replaced by the term recurrence interval. The US researchers proposed to 
use the term return period in relation with the effects and to use the term recurrence interval in 
relation with the causes. 
 
The mean recurrence interval is often related with the exceedance probability in N years. The 
relation among MRI, N and the exceedance probability in N years, Pexc,N  is: 
 

 MRI
N

Nexc eP
−

−≅ 1,         (2.33) 
 
Usually the number of years, N is considered equal to the lifetime of ordinary buildings, i.e. 
50 years. Table 2.3 shows the results of relation (2.33) for some particular cases considering 
N=50 years.  
 
Table 2.3 Correspondence amongst MRI, Pexc,1 year and Pexc,50 years 

Mean recurrence 
interval, years 

MRI 

Probability of 
exceedance in 1 year 

Pexc,1 year 

Probability of 
exceedance in 50 years

Pexc,50 years 
10 0.10 0.99 
30 0.03 0.81 
50 0.02 0.63 
100 0.01 0.39 
225 0.004 0.20 
475 0.002 0.10 
975 0.001 0.05 
2475 0.0004 0.02 

 
The modern earthquake resistant design codes consider the definition of the seismic hazard 
level based on the probability of exceedance in 50 years. The seismic hazard due to ground 
shaking is defined as horizontal peak ground acceleration, elastic acceleration response 
spectra or acceleration time-histories. The level of seismic hazard is expressed by the mean 
recurrence interval (mean return period) of the design horizontal peak ground acceleration or, 
alternatively by the probability of exceedance of the design horizontal peak ground 
acceleration in 50 years. Four levels of seismic hazard are considered in FEMA 356 – 
Prestandard and Commentary for the Seismic Rehabilitation of Buildings, as given in Table 
2.4. The correspondence between the mean recurrence interval and the probability of 
exceedance in 50 years, based on Poisson assumption, is also given in Table 2.4. 
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Table 2.4. Correspondence between mean recurrence interval and probability of exceedance 
in 50 years of design horizontal peak ground acceleration as in FEMA 356 

Seismic Hazard 
Level 

Mean recurrence interval 
(years) 

Probability of 
exceedance 

SHL1 
SHL2 
SHL3 
SHL4 

72 
225 
475 
2475 

50% in 50 years 
20 % in 50 years 
10 % in 50 years 
2 % in 50 years 

 

2.6. Second order moment models 
 
Let us consider a simply supported beam, Figure 2.14: 

l

q

 
Figure 2.14. Simple supported beam 

 
The design condition (ultimate limit state condition) is: 

capMM =max  

Wql
y ⋅= σ

8

2

    

Considering that: 
yq σ,  are described probabilistically   & 

l, W, are described deterministically 
and considering 

S – sectional effect of load 
R – sectional resistance 

it follows that: 

8

2qlS = ; WR y ⋅= σ  

The following question rises: 
If q and yσ are described probabilistically, how can one describes S and R probabilistically? 
To answer the question, two cases are considered in the following: 
1. The relation between q and S ( yσ and R) is linear 
2. The relation is non linear. 
 
Case 1: Linear relation between random variables, X, Y 
 

bXaYX +⋅=→  
For the random variable X one knows: the probability density function, PDF, the cumulative 
distribution function, CDF, the mean, m and the standard deviation,σ . The unknowns are the 
PDF, CDF, m and σ  for the random variable Y. 
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If one applies the equal probability formula, Figure 2.15: 
 

)()()()( dyyYyPdxxXxPdyyfdxxf YX +<≤=+<≤⇔=   (2.34) 
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Distribution of Y ≡ Distribution of X 
  

Developing further the linear relation it follows that: 
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Figure 2.15. Linear relation between random variables X and Y 

 
Observations: 
1. Let the random variable nXXXXY ++++= K321 . If the random variables Xi are 
normally distributed then Y is also normally distributed 
2. Let the random variable XXXXY ⋅⋅⋅⋅= K321 . If the random variables Xi are log-
normally distributed then Y is also log-normally distributed 
 
Case 2: Non-linear relation between random variables, X, Y 
 
Let the random variables Xi with known means and standard deviations: 
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Let the random variable ),,,,( 21 ni XXXXYY KK= , the relation being non-linear. The mean 
and the standard deviation of the new random variable Y, YYm σ, can be approximated by: 
 
1. ( )

nXXXY mmmYm ,,,
21
K=        (2.37) 

2. ∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

≅
n

i
iX

i
nX

n
XXY x

y
x
y

x
y

x
y

1

2
2

2
2

2
2

2

2

2
1

2

1

2 σσσσσ K  (2.38) 

Relations 2.37 and 2.38 are the basis for the so-called First Order Second Moment Models, 
FOSM. 
 
Few examples of FOSM are provided in the following: 
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3. STRUCTURAL RELIABILITY ANALYSIS 

3.1. The basic reliability problem 
 
The basic structural reliability problem considers only one load effect S resisted by one 
resistance R. Each is described by a known probability density function, fS ( ) and fR( ) 
respectively. It is important that R and S are expressed in the same units. 
For convenience, but without loss of generality, only the safety of a structural element will be 
considered here and as usual, that structural element will be considered to have failed if its 
resistance R is less than the stress resultant S acting on it. The probability pf of failure of the 
structural element can be stated in any of the following ways, (Melchers, 1999): 
 pf = P(R≤S)         (3.1a) 
     =P(R-S≤0)         (3.1b) 
     =P(R/S≤1)         (3.1c) 
     =P(ln R-ln S≤0)        (3.1d) 
or, in general 
    =P(G(R , S)≤0)        (3.1e) 
where G( ) is termed the limit state function and the probability of failure is identical with the 
probability of limit state violation.  
Quite general density functions fR and fS for R and S respectively are shown in Figure 3.1 
together with the joint (bivariate) density function fRS(r,s). For any infinitesimal element 
(ΔrΔs) the latter represents the probability that R takes on a value between r and r+Δr and S a 
value between s and s+Δs as Δr and Δs each approach zero. In Figure 3.1, the Equations (3.1) 
are represented by the hatched failure domain D, so that the probability of failure becomes: 
 
 ( ) ( ) dsdrs,rf0SRPp

D
RSf ∫ ∫=≤−=       (3.2) 

 
Figure 3.1. Joint density function fRS(r,s), marginal density functions  fR(r) and fS(s)  

and failure domain D, (Melchers, 1999) 
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When R and S are independent, fRS(r,s)=fR(r)fS(s) and (3.2) becomes: 
 

 ( ) ( ) ( ) ( ) ( )∫=∫ ∫=≤−=
∞

∞−

∞

∞−

≥

∞−
dxxfxFdsdrsfrf0SRPp SR

rs

SRf    (3.3) 

This is also known as a convolution integral with meaning easily explained by reference to 
Figure 3.2. FR(x) is the probability that R≤x or the probability that the actual resistance R of 
the member is less than some value x. Let this represent failure. The term fs(x) represents the 
probability that the load effect S acting in the member has a value between x and x+Δx in the 
limit as Δx →0. By considering all possible values of x, i.e. by taking the integral over all x, 
the total probability of failure is obtained. This is also seen in Figure 3.3 where the density 
functions fR(r) and fS(s) have been drawn along the same axis. 
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Figure 3.2. Basic R-S problem: FR( ) fS( ) representation 

 
An alternative to expression (3.3) is: 
 

 [ ]∫ −=
∞

∞−
dx)x(f)x(F1p RSf        (3.4) 

 
which is simply the sum of the failure probabilities over all cases of resistance for which the 
load exceeds the resistance. 
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Figure 3.3. Basic R-S problem: fR( ) fS( ) representation 

 

3.2. Special case: normal random variables 
 
For a few distributions of R and S it is possible to integrate the convolution integral (3.3) 
analytically. One notable example is when both are normal random variables with means μR 
and μS and variances σR

2 and σS
2 respectively. The safety margin Z=R-S then has a mean and 

variance given by well-known rules for addition of normal random variables: 
 μZ = μR - μS         (3.5a) 
 σZ

2 = σR
2 + σS

2        (3.5b) 
 
Equation (3.1b) then becomes 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=≤=≤−=

Z

Z
f

0
0ZP0SRPp

σ
μ

Φ      (3.6) 

where Φ( ) is the standard normal distribution function (zero mean and unit variance). The 
random variable Z = R-S is shown in Figure 3.4, in which the failure region Z ≤ 0 is shown 
shaded. Using (3.5) and (3.6) it follows that (Cornell, 1969) 
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= 2/12

S
2
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SR
fp       (3.7) 

 
where β = μz /σz is defined as reliability (safety) index. 
If either of the standard deviations σR and σS or both are increased, the term in square brackets 
in (3.7) will become smaller and hence pf will increase. Similarly, if the difference between 
the mean of the load effect and the mean of the resistance is reduced, pf increases. These 
observations may be deduced also from Figure 3.3, taking the amount of overlap of fR( ) and 
fS() as a rough indicator of pf. 
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Figure 3.4. Distribution of safety margin Z = R – S 

 

3.3. Special case: log-normal random variables 
 
The log-normal model for structural reliability analysis was proposed by Esteva and 
Rosenblueth in early 70’s. Both parameters of the model are considered normal random 
variables with means μR and μS and variances σR

2 and σS
2 respectively. The safety margin 

Z=
S
Rln then has a mean and a standard deviation given by: 

 
S

R

S
RZ μ

μ
μμ ln

ln
≅=         (3.8a) 

 22

ln SR
S
R

S
RZ VVV +=== σσ        (3.8b) 

 
Equation (3.1d) then becomes 
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where Φ( ) is the standard normal distribution function (zero mean and unit variance). The 

random variable Z=
S
Rln  is shown in Figure 3.5, in which the failure region Z ≤ 0 is shown 

shaded. Using (3.8) and (3.9) it follows that 
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where β = μz /σz is defined as reliability (safety) index,  
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Lindt proposed the following: ( )RSRS VVVV +≅+ α22  with 75,07,0 K=α  for 3
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Given Lindt’s linearization it follows that: 
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3.4. Partial safety coefficients (PSC) 
 
The calibration of partial safety coefficients used in semi-probabilistic design codes is 
accomplished using the log-normal model using SOMM. 
From Equation 3.11 one has: 

( )
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RVV
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ee
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αβαβαβ

α
β

ln
SR V

S
V

R emem ⋅⋅− ⋅=⋅ αβαβ (3.13) 

 
where RVe ⋅−αβ  and SVe ⋅αβ are called safety coefficients, SC with respect to the mean. But one 
needs the SC with respect to the characteristic values of the loads and resistances, the so-
called partial safety coefficients, PSC. To this aim, one defines the limit state function used in 
the design process: 
 
 

4342143421
designdesign R

R
S

S 05.005.098.098.0 φγ ⋅=⋅         (3.14) 

 
where 98.0γ and 05.0φ  are called partial safety coefficients, PSC. 
Assuming that S and R are log-normally distributed, one has: 
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αβαβ SVRV eSeR −+− ⋅=⋅        (3.18) 

RVe )645.1(
05.0

+−= αβφ          (3.19) 
SVe )054.2(

98.0
−= αβγ          (3.20) 

 
The partial safety coefficients 05.0φ and 98.0γ  as defined by Equations 3.19 and 3.20 are depend 
on the reliability index β and the coefficients of variation for resistances and loads, 
respectively. If the reliability index β  is increased, the partial safety coefficient for loads 

98.0γ  increases while the partial safety coefficient for resistance 05.0φ decreases. The theory of 
partial safety coefficients based on lognormal model is incorporated in the Romanian Code 
CR0-2005 named „Cod de proiectare. Bazele proiectarii structurilor in constructii” (Design 
Code. Basis of Structural Design). 
 

3.5. Generalized reliability problem 
 
For many problems the simple formulations (3.1a)-(3.1e) are not entirely adequate, since it 
may not be possible to reduce the structural reliability problem to a simple R versus S 
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formulation with R and S independent random variables. A more general formulation is 
required. 
Let the vector X represent all the basic variables involved in the problem. Then the resistance 
R can be expressed as R = GR(X) and the loading or load effect as S = GS(X). The limit state 
function G(R,S) in (1e) can be generalized. When the functions GR(X) and GS(X) are used in 
G(R,S), the resulting limit state function can be written simply as G(X), where X is the vector 
of all relevant basic variables and G( ) is some function expressing the relationship between 
the limit state and the basic variables. The limit state equation G(x) = 0 now defines the 
boundary between the safe domain G >0 and the unsafe domain G ≤0 in n-dimensional basic 
variable space. Usually, the limit state equation is derived from the physics of the problem. 
(Note that X=x defines a particular point x in the basic variable space). 
With the limit state function expressed as G(X), the generalization of (3.2) becomes, 
(Melchers, 1999): 
 ( )[ ] ( )∫ ∫=≤=

≤0)X(G
xf dxxf...0XGPp       (3.21) 

Here fx(x) is the joint probability density function for the n-dimensional vector X of the basic 
variables. If the basic variables themselves are independent, the formulation (3.21) is 
simplified, as then: 

 ( ) ( )∏=
=

n

1i
ixx xfxf

i
        (3.22) 

with fxi(xi) the marginal probability density function for the basic variable Xi. 
The region of integration G(X) ≤ 0 in (3.21) denotes the space of limit state violation an is 
directly analogous to the failure domain D shown in Figure 3.1. Except for some special 
cases, the integration of (3.21) over the failure domain G(X) ≤ 0 cannot be performed 
analytically. However, the solution of (3.21) can be made more tractable by simplification or 
numerical treatment (or both) of (i) the integration process, (ii) the integrand fx( ) and (iii) the 
definition of the failure domain. Each approach has been explored in the literature. Two 
dominant approaches have emerged: 
(a) using numerical approximations such as simulation to perform the multidimensional 

integration required in (3.21) – the so-called Monte Carlo methods; 
(b) sidestepping the integration process completely by transforming fx(x) in (3.21) to a multi-

normal probability density function and using some remarkable properties which may 
then be used to determine, approximately, the probability of failure – the so-called First 
Order Second Moment methods. 

 

3.6. First-Order Second-Moment Reliability Theory 
 
3.6.1. Introduction 
 
In order to perform the integration required in the reliability integral (8), the probability 
density function fx( ) in the integrand can be simplified. The special case of reliability 
estimation in which each variable is represented only by its first two moments (mean and 
standard deviation) will be considered hereinafter. This is known as the second-moment level 
of representation. A convenient way in which the second-moment representation might be 
interpreted is that each random variable is represented by the normal distribution.  
Because of their inherent simplicity, the so-called second-moment methods have become very 
popular. Early works by Mayer (1926), Freudenthal (1956), Rzhanitzyn (1957) contained 
second-moment concepts. Not until the late 1960s, however, was the time ripe for the ideas to 
gain a measure of acceptance, prompted by the work of Cornell (1969). 
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3.6.2. Second-moment concepts 
 
It was shown that when the resistance R and load effect S are each normal random variables, 
the limit state equation is the safety margin Z=R-S and the probability of failure pf is: 

( )
Z

Z
fp

σ
μ

ββΦ =−=      (3.23) 

where β is the reliability index and Φ( ) the standard normal distribution function. 
Obviously, equation (3.23) yields the exact probability of failure when both R and S are 
normally distributed. The same is valid when both R and S are log-normally distributed and 
the limit state equation is (3.1d). However, pf defined in this way is only a nominal failure 
probability when R and S have distributions other than normal and log-normal. Conceptually 
it is probably better in this case not to refer to probabilities at all, but simply to β, the 
reliability index.  
As shown in Figure 3.4, β is a measure (in standard deviation σZ units) of the distance that the 
mean, μZ is away from the origin Z=0. This point marks the boundary of the failure region. 
Hence β is a direct measure of the safety of the structural element. 
For convenience and for clarity in what follows the notation pfN will be used to refer to the 
nominal probability estimate, i.e. that calculated using second moment approximations.  
The above ideas are readily extended in the case where the limit state function is a random 
function consisting of more than two basic random variables: 
 
 G(X) = Z(X) = a0 + a1X1 + a2X2 + … +anXn     (3.24) 
then G(X) = Z(X) is normally distributed and the mean, μZ and standard deviation, σZ from 
which β and pfN can be evaluated using (3.23) are: 
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iZ a σσ         (3.25b) 

 
In general, however, the limit state function G(X)=0 is not linear. In this case, the most 
suitable approach is to linearize G(X)=0 by expanding G(X)=0 as a first-order Taylor series 
expansion about some point x*. Approximations which linearize G(X)=0 will be denoted 
first-order methods.  
The first-order Taylor series expansion which linearizes G(X)=0 at x* might be denoted 
GL(X)=0 (Figure 3.6). Expansions about the means, μX is common in probability theory, but 
there is no rationale for doing so; it will be shown later that there is indeed a better choice 
which is the point of maximum likelihood on the limit state function. At this stage, it is 
sufficient to note that the choice of expansion point directly affects the estimate of β . This is 
demonstrated in the following example, (Melchers, 1999). 
 
Example 1. The first two moments of Z linearized about x* rather than μX are given by 

μZ≈G(x*)          (3.26a) 
and  

2
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respectively. 
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Now, if G(X)=X1X2-X3 with the random variables Xi being independent and with 
σX1=σX2=σX3=σX, then ∂G/∂X1=X2, ∂G/∂X2=X1 and ∂G/∂X3= -1. Then, (3.26a) and (3.26b) 
evaluated at the means μXi become 
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However, if the expansion point is taken as x1
*=μX1/2, x2

*=μX2, x3
*=μX3 then the 

corresponding terms become 
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It follows readily using (3.23) that: 
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These are clearly not equivalent, this demonstrating the dependence of β on the selection of 
the expansion point. 
 

 
Figure 3.6. Limit state surface G(x) = 0 and its linearized version GL(x) = 0 

in the space of the basic variables, (Melchers, 1999) 
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3.6.3. The Hasofer-Lind transformation 
 
The first useful (but not essential) step is to transform all variables to their standardized form 
N(0, 1) (normal distribution with zero mean and unit variance) using well-known 
transformation: 

 
Xi

Xii
i

X
Y

σ
μ−

=          (3.27) 

 
where Yi has μYi=0 and σYi=1. As a result of applying this transformation to each basic 
variable Xi, the unit of measurement in any direction in the y space will be σYi=1 in any 
direction. In this space, the joint probability density function fY(y) is the standardized 
multivariate normal (Hasofer and Lind, 1974). Of course, the limit state function also must be 
transformed and is given by g(y)=0. 
The transformation (3.27) can be performed without complication if the normal random 
variables Xi are all uncorrelated (i.e. linearly independent) random variables. If this is not the 
case, an intermediate step is required to find a random variable set X’ which is uncorrelated, 
and this new set can be transformed according to (3.27). The procedure for finding the 
uncorrelated set X’ (including means and variances) from the correlated set X is essentially 
that of finding the eigen-values and eigen-vectors. 
 
3.6.4. Linear limit state function 
 
For simplicity of illustration consider now the important special case in which the limit state 
function is linear, i.e. G(X) = X1-X2, shown as GL(x)=0 in Figure 3.6. The transformation 
(3.27) changes the joint probability density function fX(x) shown in Figure 3.6 to fY(y) shown 
in Figure 3.7 in the transformed y=(y1, y2) space. The joint probability density function fY(y) is 
now a bivariate normal distribution Φ2(y), symmetrical about the origin. The probability of 
failure is given by the integral of Φ2(y) over the transformed failure region g(y)<0, shown part 
shaded. This can be obtained by integrating in the direction ν (-∞<ν< ∞) shown in Figure 3.7, 
to obtain the marginal distribution (Figure 3.8). 
 

 
Figure 3.7. Probability density function contours and original (non-linear) 

and linearized limit state surfaces in the standard normal space, (Melchers, 1999) 
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By the properties of the bivariate normal distribution the marginal distribution is also normal, 
and hence the shaded area in Figure 3.8 represents the failure probability ( )βΦ −=fp , where 
β is as shown (note that σ =1 in the β direction since the normalized y space is being used).  
The distance β shown in Figure 3.7 is perpendicular to the ν axis and hence is perpendicular 
to g(y)=0. It clearly corresponds to the shortest distance from the origin in the y space to the 
limit state surface g(y)=0.  
More generally, there will be many basic random variables X={Xi, i=1, 2, … n} describing the 
structural reliability problem. However, the concepts described above carry over directly to an 
n-dimensional standardized normal space y with a (hyper)plane limit state. In this case the 
shortest distance and hence the reliability index is given by, (Melchers, 1999): 
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subject to g(y) = 0, where the yi represent the coordinates of any point on the limit state 
surface. 
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Figure 3.8. Marginal distribution in the space of the standardized normal variables 

 
The particular point for which (3.28) is satisfied, i.e. the point on the limit state surface 
perpendicular to β, in n-dimensional space, is called the checking or design point y*. 
Obviously, this point is the projection of the origin on the limit state surface. It is obvious 
from Figures 3.7 and 3.8 that the greatest contribution to the total probability content in the 
failure region is made by the closest zone to y*. In fact, y* represents the point of greatest 
probability density or the point of maximum likelihood for the failure domain.  
A direct relationship between the checking point y* and β can be established as follows. From 
the geometry of surfaces (e.g. Sokolnikoff and Redheffer, 1958) the outward normal vector to 
a hyperplane given by g(y)=0, has the components given by: 
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where λ is an arbitrary constant. The total length of the outward normal is  
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icl          (3.29b) 

 
and the direction cosines αi of the unit outward normal are then 

 
l
ci

i =α          (3.29c) 

 
With αi known, it follows that the coordinates of the checking point are 
 βα iii yy −==*         (3.30) 
 
where the negative sign arises because the αi are components of the outward normal as 
defined in conventional mathematical notation (i.e. positive with increasing g( )). Figure 3.7 
shows the geometry for the two-dimensional case y = (y1, y2). 
For a linear limit state function (i.e. a hyperplane in y space) the direction cosines αi do not 
change with position along the limit state function, so that it is easy to find a set of 
coordinates y* satisfying both Equation (3.28) and equation (3.30).  
The equation for the hyperplane g(y) = 0 can be written as, (Melchers, 1999) 
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The validity of (3.31) can be verified by applying (3.30). 
 
The linear function in X space corresponding to (3.31) is obtained by applying (3.27) 
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which is again a linear function.  
 
Also, β can be determined directly from the checking point coordinates y* using (3.31): 
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4. SEISMIC HAZARD ANALYSIS 

4.1. Deterministic seismic hazard analysis (DSHA) 
 
The deterministic seismic hazard analysis involves the development of a particular seismic 
scenario, i.e. the postulated occurrence of an earthquake of a specified size at a specific 
location. The DSHA is developed in four steps (Reiter, 1990): 

1. Identification and characterization of all earthquake sources – geometry and position 
of the sources and the maximum magnitude for all sources, M; 

2. Selection of source-to-site distance parameters, R (epicentral, hypocentral, etc.) for 
each source zone; 

3. Selection of controlling earthquake (expected to produce the strongest shaking at the 
site); use attenuation relations for computing ground motion parameters produced at 
the site by earthquakes of magnitudes given in step 1 occurring at each source zone; 

4. Define the seismic hazard at the site in terms of peak ground acceleration PGA, 
spectral acceleration SA, peak ground velocity PGV, etc (Y – parameter). 

The steps are represented in Figure 4.1.  
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Figure 4.1. Steps in DSHA, (Kramer, 1996) 
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4.2. Probabilistic seismic hazard analysis (PSHA) 
 
The PSHA (Cornell, 1968, Algermissen et. al., 1982) is developed in four steps (Reiter, 1990): 

1. Identification and characterization of earthquake sources. Besides the information 
required in step 1 of DSHA, it is necessary to obtain the probability distribution of 
potential rupture location within the source and the probability distribution of source–
to-site distance; 

2. Definition of seismicity, i.e. the temporal distribution of earthquake recurrence 
(average rate at which an earthquake of some size will be exceeded); 

3. Use predictive (attenuation) relations for computing ground motion parameters 
produced at the site by earthquakes of any possible size occurring at any possible point 
in each source zone; uncertainty in attenuation relations is considered in PSHA; 

4. Uncertainties in earthquake location, size and ground motion prediction are combined 
and the outcome is the probability that ground motion parameter will be exceeded 
during a particular time period.  

 The steps are represented in Figure 4.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
  
    
 
 
 
 
 
 

 
 
 
 
 

Figure 4.2. Steps in PSHA, (Kramer, 1996) 
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4.3. Earthquake source characterization 
 
The seismic sources can be modeled as: 

• point sources 
• line sources 
• area sources 
• volumetric sources. 

The spatial uncertainty of earthquake location is taken into account in PSHA. The earthquakes 
are usually assumed to be uniformly distributed within a particular source. The uniform 
distribution in the source zone does not often translate into a uniform distribution of source-
to-site distance.  
Another important source of uncertainties is given by the size of the earthquake and by the 
temporal occurrence of earthquakes. The recurrence law gives the distribution of earthquake 
sizes in a given period of time. Gutenberg & Richter (1944) organized the seismic data in 
California according to the number of earthquakes that exceeded different magnitudes during 
a time period. The key parameter in Gutenberg & Richter’s work was the mean annual rate of 
exceedance, λM of an earthquake of magnitude M which is equal to the number of 
exceedances of magnitude M divided by the length of the period of time. The Gutenberg & 
Richter law is (Figure 4.3): 
 

lg λM = a - b M        (4.1) 
where  λM - mean annual rate of exceedance of an earthquake of magnitude M, 
 M - magnitude, 
 a and b – numerical coefficients depending on the data set. 
 The physical meaning of a and b coefficients can be explained as follows: 

10a – mean yearly number of earthquakes of magnitude greater than or equal to 0. 
b – describes the relative likelihood of large to small earthquakes. If b increases the 

number of larger magnitude earthquakes decreses compared to those of smaller earthquakes 
(b is the slope of the recurrence plot). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. The Gutenberg-Richter law 
 
The a and b coefficients are obtained through regression on a database of seismicity form the 
source zone of interest. Record of seismicity contains dependent events (foreshocks, 
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aftershocks) that must be removed form the seismicity database because PSHA is intended to 
evaluate the hazard form discrete, independent releases of seismic energy.  
The original Gutenberg & Richter law (4.1) is unbounded in magnitude terms. This leads to 
unreliable results especially at the higher end of the magnitude scale. In order to avoid this 
inconsistency, the bounded recurrence law is used. The bounded law is obtained and defined 
hereinafter.  
The Gutenberg & Richter law may be reshaped as follows: 

 

lg λM = 
10ln

ln Mλ = a - b M       (4.2) 

  
ln λM = a ln10 - b ln10 M = α - β M      (4.3) 
 
λM = Me βα −          (4.4) 
 
where α = a ln10 = 2.303 a and β = b ln10 = 2.303 b. 
 

The form (4.4) of Gutenberg & Richter law shows that the magnitudes follow an exponential 
distribution.  
If the earthquakes smaller than a lower threshold magnitude Mmin are eliminated, one gets 
(McGuire and Arabasz, 1990): 
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λMmin is the mean annual rate of earthquakes of magnitude M larger or equal than Mmin. 
If both a lower threshold magnitude Mmin and a higher threshold magnitude Mmax are taken 
into account, the probabilistic distribution of magnitudes can be obtained as follows (McGuire 
and Arabasz, 1990). 
The cumulative distribution function must have the unity value for M = Mmax. This yields: 
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The mean annual rate of exceedance of an earthquake of magnitude M is: 
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where 

minMλ = minMe βα −  is the mean annual rate of earthquakes of magnitude M larger or 
equal than Mmin. 
Finally one gets (McGuire and Arabasz, 1990): 
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4.4. Predictive relationships (attenuation relations) 
 
The predictive relationships usually take the form Y = f(M, R, Pi), where Y is a ground motion 
parameter, M is the magnitude of the earthquake, R is the source-to-site distance and Pi are 
other parameters taking into account the earthquake source, wave propagation path and site 
conditions. The predictive relationships are used to determine the value of a ground motion 
parameter for a site given the occurrence of an earthquake of certain magnitude at a given 
distance. The coefficients of the predictive relationships are obtained through multi-variate 
regression on a particular set of strong motion parameter data for a given seismic source. This 
is the reason for carefully extrapolating the results of the regression analysis to another 
seismic source. The uncertainty in evaluation of the ground motion parameters is incorporated 
in predictive relationships through the standard deviation of the logarithm of the predicted 
parameter. Finally, one can compute the probability that ground motion parameter Y exceeds a 
certain value, y* for an earthquake of magnitude, m at a given distance r (Figure 4.4): 
 
 ( ) ( ) ( )*1,|*1,|* yFrmyYPrmyYP Y−=≤−=>     (4.11) 
where F is the CDF of ground motion parameter, usually assumed lognormal.  

 Y 

R

y* 

P(Y>y*|m,r)

r 

fY(y|m,r)

 

Figure 4.4. Incorporation of uncertainties in the predictive relationships 
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4.5. Temporal uncertainty 
 
The distribution of earthquake occurrence with respect to time is considered to have a random 
character. The temporal occurrence of earthquakes is considered to follow, in most cases, a 
Poisson model, the values of the random variable of interest describing the number of 
occurrences of a particular event during a given time interval. 
The properties of Poisson process are: 

1. The number of occurrences in one time interval is independent of the number of 
occurrences in any other time interval. 

2. The probability of occurrence during a very short time interval is proportional to the 
length of the time interval. 

3. The probability of more than one occurrence during a very short time interval is 
negligible. 

If N is the number of occurrences of a particular event during a given time interval, the 
probability of having n occurrences in that time interval is: 

 [ ]
!n
enNP

n μμ −⋅
==         (4.12) 

where μ is the average number of occurrences of the event in that time interval. 
 

4.6. Probability computations 
 
The results of the PSHA are given as seismic hazard curves quantifying the annual probability 
of exceedance of different values of selected ground motion parameter.  
The probability of exceedance a particular value, y* of a ground motion parameter Y is 
calculated for one possible earthquake at one possible source location and then multiplied by 
the probability that that particular magnitude earthquake would occur at that particular 
location. The process is then repeated for all possible magnitudes and locations with the 
probability of each summed, (Kramer, 1996): 
 ( ) ( ) ( ) ( ) ( )∫ ⋅>=⋅>=> dxxfXyYPXPXyYPyYP X|*|**   (4.13) 
where X is a vector of random variables that influence Y (usually magnitude, M and source-to-
site distance, R). Assuming M and R independent, for a given earthquake recurrence, the 
probability of exceeding a particular value, y*, is calculated using the total probability 
theorem (Cornell, 1968, Kramer, 1996): 
 ∫ ∫ ⋅⋅>=> dmdrrfmfrmyYPyYP RM )()(),|*(*)(     (4.14) 
where: 
- P(Y>y*|m,r) – probability of exceedance of y* given the occurrence of an earthquake of 
magnitude m at source to site distance r. 
- fM(m) – probability density function for magnitude; 
- fR(r) – probability density function for source to site distance. 
 

4.7. Probabilistic seismic hazard assessment for Bucharest from Vrancea seismic source  
 
The Vrancea region, located when the Carpathians Mountains Arch bents, is the source of 
subcrustal (60-170km) seismic activity, which affects more than 2/3 of the territory of 
Romania and an important part of the territories of Republic of Moldova, Bulgaria and 
Ukraine. According to the 20th century seismicity, the epicentral Vrancea area is confined to a 
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rectangle of 40x80km2 having the long axis oriented N45E and being centered at about 45.6o 
Lat.N 26.6o and Long. E. 
Two catalogues of earthquakes occurred on the territory of Romania were compiled, more or 
less independently, by Radu (1974, 1980, 1995) and by Constantinescu and Marza (1980, 
1995) Table 4.1. The Radu’s catalogues are more complete, even the majority of significant 
events are also included in the Constantinescu and Marza catalogue. The magnitude in Radu 
catalogue is the Gutenberg-Richter (1936) magnitude, MGR. The magnitude in Constantinescu 
& Marza catalogue was the surface magnitude, MS. Tacitly, that magnitude was later 
assimilated as Gutenberg-Richter magnitude (Marza, 1995). The Romplus catalogue of INFP 
is a combination of Radu’s and Marza’s catalogues using moment magnitude, Mw. 
 
Table 4.1. Catalogue of subcrustal Vrancea earthquakes (Mw ≥ 6.3 ) occurred  during the 20th century 
 
 
 

RADU Catalogue, 
1994 

MARZA 
Catalogue,  

1980 

www.infp.ro
Catalogue, 

1998 

Date 
 

Time 
(GMT) 
h:m:s 

Lat. N° 
 
 

Long. 
E° 
 
 h, km I0 MGR Mw I0 Ms Mw 

1903 13 Sept 08:02:7 45.7 26.6 >60 7 6.3 - 6.5 5.7 6.3 
1904 6 Feb 02:49:00 45.7 26.6 75 6 5.7 - 6 6.3 6.6 
1908 6 Oct 21:39:8 45.7 26.5 150 8 6.8 - 8 6.8 7.1
1912 25 May 18:01:7 45.7 27.2 80 7 6.0 - 7 6.4 6.7 
1934 29 March 20:06:51 45.8 26.5 90 7 6.3 - 8 6.3 6.6 
1939 5 Sept 06:02:00 45.9 26.7 120 6 5.3 - 6 6.1 6.2 
1940 22 Oct 06:37:00 45.8 26.4 122 7 / 8 6.5 - 7 6.2 6.5 
1940 10 Nov 01:39:07 45.8 26.7 1501) 9 7.4 - 9 7.4 7.7 
1945 7 Sept 15:48:26 45.9 26.5 75 7 / 8 6.5 - 7.5 6.5 6.8 
1945 9 Dec 06:08:45 45.7 26.8 80 7 6.0 - 7 6.2 6.5 
1948 29 May 04:48:55 45.8 26.5 130 6 / 7 5.8 - 6.5 6.0 6.3 
1977 4 March 2) 19:22:15 45.34 26.30 109 8 / 9 7.2 7.5 9 7.2 7.4 
1986 30 Aug 21:28:37 45.53 26.47 133 8 7.0 7.2 - - 7.1 
1990 30 May 10:40:06 45.82 26.90 91 8 6.7 7.0 - - 6.9 
1990 31 May 00:17:49 45.83 26.89 79 7 6.1 6.4 - - 6.4 

1) Demetrescu’s original (1941) estimation of 150km is generally accepted today; Radu’s initial 
estimation (1974) was 133 km  

2) Main shock 
 
As a systematization requirement for seismic hazard assessment, usually it is recommended 
the use of the moment magnitude, Mw. For Vrancea subcrustal events the relation between 
two magnitudes can be simply obtained from recent events data given in Table 1, (Lungu et al, 
1998): 

Mw ≅ MGR+ 0.3     6.0 < MGR < 7.7    (4.15) 
 

Even the available catalogues of Vrancea events were prepared using the Gutenberg-Richter 
magnitude MGR, the recurrence-magnitude relationship was herein newly determined using the 
moment magnitude Mw. The relationship is determined from Radu’s 20th century catalogue of 
subcrustal magnitudes with threshold lower magnitude Mw=6.3.  
The average number per year of Vrancea subcrustal earthquakes with magnitude equal to and 
greater than Mw, as resulting also from Figure 4.5, is (Lungu et al, 1998): 

log n(≥Mw) = 3.76 - 0.73 Mw                                           (4.16) 

http://www.infp.ro/�
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Figure 4.5. Magnitude recurrence relation for the subcrustal Vrancea source (Mw≥6.3) 
 

The values of surface rupture area (SRA) and surface rupture length (SRL) from Wells and 
Coppersmith (1994) equations for "strike slip" rupture were used to estimate maximum 
credible Vrancea magnitude. According to Romanian geologists Sandulescu & Dinu, in 
Vrancea subduction zone: SRL ≤ 150÷200 km, SRA<8000 km2. Based on this estimation, from 
Table 4.2 one gets: 

 
Mw,max= 8.1.         (4.17) 

Table 4.2. Application of Wells and Coppersmith equations to the Vrancea source (mean values) 

M Mw Event Experienced Wells & Coppersmith equations 
   SRA, km2 logSRA=-3.42+0.90Mw logSRL=-3.55+0.74Mw
    SRA, km2 SRL, km 

6.7 7.0 May 30,1990 11001) 759 43 
7.0 7.2 Aug. 30,1986 14001) 1148 60 
7.2 7.5 March 4, 1977 63 x 37=23312) 2138 100 

 8.1 Max. credible - 7413 278 

1)As cited in Tavera (1991)         2) Enescu et al. (1982) 

 
If the source magnitude is limited by an upper bound magnitude Mw,max, the recurrence 
relationship can be modified in order to satisfy the property of a probability distribution, 
Equation 4.10: 
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and, in the case of Vrancea source (Lungu et al., 1999): 
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In Eq.(4.18), the threshold lower magnitude is Mw0=6.3, the maximum credible magnitude of 
the source is Mw,max=8.1, and α = 3.76 ln10 = 8.654, β = 0.73 ln10 =1.687. 
The maximum credible magnitude of the source governs the prediction of source magnitudes in 
the range of large recurrence intervals, where classical relationship (4.16) does not apply, Table 
4.3. 

Table 4.3. Mean recurrence interval (MRI) of Vrancea magnitudes, (≥Mw)=1/n(≥Mw) 

Date Gutenberg-
Richter 

Moment 
magnitude, 

MRI from Eq. 
(4.18), 

MRI from Eq. 
(4.16), 

  magnitude, MGR Mw years years 
 
 

  8.1  
8.0 
7.9         

- 
778 
356 

150 
127 
107 

 
10 Nov. 1940   

 
7.4  

7.8 
7.7         
7.6         

217 
148 
108 

91 
76 
65 

4 March 1977 
 

30 Aug. 1986 

7.2  
 
 

7.0 

7.5 
7.4 
7.3 
7.2 

82 
63 
50 
40 

55 
46 
37 
33 

30 May 1990 6.7 7.0 26 23 
 

The depth of the Vrancea foci has a great influence on the observed seismic intensity. The 
damage intensity of the Vrancea strong earthquakes is the combined result of both magnitude 
and location of the focus inside the earth.  

The relationship between the magnitude of a destructive Vrancea earthquake (Mw≥6.3) and the 
corresponding focal depth shows that higher the magnitude, deeper the focus (Lungu et al., 
1999): 

ln h = - 0.866 + 2.846 lnMw - 0.18 P     (4.20) 
where P is a binary variable: P=0 for the mean relationship and P=1.0 for mean minus one 
standard deviation relationship.  
The following model was selected for the analysis of attenuation (Mollas & Yamazaki, 1995): 

ln PGA = c0 + c1 Mw + c2 lnR +c3R +c4 h + ε     (4.21) 
where: PGA is peak ground acceleration at the site, Mw- moment magnitude, R - hypocentral 
distance to the site, h - focal depth, c0, c1, c2, c3, c4 - data dependent coefficients and ε - random 
variable with zero mean and standard deviation σε = σln PGA. The values of the coefficients are 
given in Table 4.4 based on the data from all regions. Details are given elsewhere (Lungu et.al., 
1999, Lungu et.al., 2000, Lungu et. al., 2001).  

475

100

50
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Table 4.4. Regression coefficients inferred for horizontal components of peak ground 
acceleration during Vrancea subcrustal earthquakes, Equation (4.21) 

c0 c1 c2 c3 c4 σlnPGA 
3.098 1.053 -1.000 -0.0005 -0.006 0.502 

 
The application of the attenuation relation 4.21 for the Vrancea subcrustal earthquakes of 
March 4, 1977, August 30, 1986 and May 30, 1990 is represented in Figures 4.6, 4.7 and 4.8. 
 

Attenuation relation - March 4, 1977; Mw =7.5, h =109km
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Figure 4.6. Attenuation relation applied for March 4, 1977 Vrancea subcrustal source 

 

Attenuation relation - August 30 1986; Mw =7.2,  h =133km
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Figure 4.7. Attenuation relation applied for August 30, 1986 Vrancea subcrustal source 
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Attenuation relation - May 30, 1990; Mw =7.0,  h =91km
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Figure 4.8. Attenuation relation applied for May 30, 1990 Vrancea subcrustal source 

 
For a given earthquake recurrence, the mean annual rate of exceedance of a particular value of 
peak ground acceleration, PGA*, is calculated using the total probability theorem (Cornell, 
1968, Kramer, 1996): 

∫ ∫ ⋅⋅>=> dmdrrfmfrmPGAPGAPPGAPGA RMM )()(),|*(*)( minλλ  (4.22)  

where: 
− λ(PGA>PGA*) – mean annual rate of exceedance of PGA* ; 
- λMmin is the mean annual rate of earthquakes of magnitude M larger or equal than Mmin; 
- P(PGA>PGA*|m,r) – probability of exceedance of PGA* given the occurrence of an 
earthquake of magnitude m at source to site distance r. This probability is obtained from 
attenuation relationship (4.21) assuming log-normal distribution for PGA; 
- fM(m) – probability density function for magnitude; 
- fR(r) – probability density function for source to site distance. 
 
The probability density function for magnitude is obtained from Eq. (4.8) (Kramer, 1996). 
The probability density function for source to site distance is considered, for the sake of 
simplicity, uniform over the rectangle of 40x80km2 having the long axis oriented N45E and 
being centered at about 45.6o Lat.N and 26.6o Long. E. 
 
The mean annual rate of exceedance of PGA – the hazard curve - for Bucharest site and 
Vrancea seismic source is represented in Figure 4.9. The hazard curve can be approximated 
by the form k

go akH −⋅= , where ag is peak ground acceleration, and ko and k are constants 
depending on the site (in this case ko=1.176E-05, k=3.0865). 
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Figure 4.9. Hazard curve for Bucharest from Vrancea seismic source 
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4.8. Seismic Action in the Romanian Earthquake Resistant Design Code P100-1-2006 
 
The results of the seismic hazard analysis for Romania are incorporated within the new P100-
1-2006 earthquake resistant design code that was enforced from January 1st, 2007. Approved 
by the Minister of Transport, Constructions and Tourism order no.1711 from 19.09.2006, the 
code was published in the Official Gazette of Romania No. 803 from 25.09.2006. In the 
followings excerpts translated in English of the definition of seismic action in the P100-1-
2006 earthquake-resistant design code (seismic action is defined in P1001-2006-Chapter 3 
and Annex A) are presented. 
 
For the seismic design of buildings, the territory of Romania is divided into seismic hazard 
zones. The seismic hazard level within each zone is considered to be constant. For important 
urban centers and for the buildings of special importance it is recommended to evaluate the 
seismic hazard using instrumental earthquake data and site specific studies. Seismic hazard 
level indicated in present code is a minimum required level for design. Seismic hazard for 
design is described by the horizontal peak ground acceleration ag determined for a reference 
mean recurrence interval (MRI) corresponding to the ultimate limit state. Peak ground 
acceleration ag is called in the following "Design Ground Acceleration". The Design Ground 
Acceleration ag within each seismic hazard zone, corresponds to a 100 years reference mean 
recurrence interval. The zonation of the Design Ground Acceleration ag in Romania is 
indicated in Figure 4.10 for seismic events having a magnitude mean recurrence interval MRI 
= 100 years, and it is considered for the ultimate limit state design of buildings. 

 
Figure 4.10 P100-1-2006 Zonation map of Romania in terms of design ground acceleration ag 

for seismic events with the magnitude mean recurrence interval MRI = 100 years 
 
Earthquake ground motion at a free field site is described by the absolute acceleration elastic 
response spectrum. Earthquake horizontal ground motion is described by two orthogonal 
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components considered as independent; in design, the elastic absolute acceleration response 
spectrum is considered to be the same for both horizontal components of ground motion. The 
normalized acceleration elastic response spectra are obtained by dividing the elastic 
acceleration response spectra to the design ground acceleration ag. 
 
The local ground conditions are described by the control (corner) period of the elastic 
response spectra, TC, at the considered site. The value of TC synthetically characterizes the 
frequency content of earthquake ground motions. The corner period of the elastic response 
spectra, TC, represents the limit between the spectrum acceleration sensitive region and the 
spectrum velocity sensitive region. TC is measured in seconds. For Romanian seismic and 
ground conditions and for earthquakes having MRI = 100 years, the design zonation map in 
terms of control (corner) period, TC, is presented in Figure 4.11. The map was obtained using 
the existing instrumental data from the horizontal components of earthquake ground motions. 
 

 
Figure 4.11 P100-1-2006 Zonation map of Romania in terms of  

the control (corner) period of response spectra, TC 

 
The shapes of the normalized elastic absolute acceleration response spectra of the horizontal 
components of ground motion, β(T), for a damping ratio ξ =0.05 are given by the following 
relations, as a function of the control periods TB, TC and TD: 

 

0≤T≤ TB  
( )

T 
T

1
 1(T)  

B

0 −
+=

β
β                (4.23) 

 
TB<T≤ TC    β (Τ) = β0                     (4.24) 
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TC<T≤ TD  T
TC

0(T)  ββ =           (4.25) 

 

T> TD   20(T)  
T

TT DCββ =           (4.26) 

 
where: 
 
β(T) represents the normalized elastic acceleration response spectrum 
β0 represents the structure’s maximum dynamic amplification factor for the horizontal 
component of ground motion acceleration 
T represents the vibration period of a SDOF elastic structure. 
 
The control (corner) period TB can be expressed in a simplified manner as a function of TC: 
TB=0.1TC. The control (corner) period TD of the elastic response spectrum represents the 
limits between the spectrum constant velocity region and the spectrum constant displacement 
region. TB and TC represent the limits of the periods range for the simplified constant 
acceleration spectral region. The values of TB, TC and TD are indicated in Table 4.5. 
 
Table 4.5 Response spectrum control periods TB, TC, TD for the horizontal components of 
earthquake ground motion 

Mean recurrence interval of earthquake 
magnitude 

Control Period Values 

TB, s 0,07 0,10 0,16 

TC, s 0,7 1,0 1,6 MRI = 100 years, 

for Ultimate Limit State TD, s 3 3 2 

 
The normalized acceleration elastic response spectra (for ξ=0.05) for Romanian seismic and 
ground conditions are shown in Figure 4.12 as a function of TB, TC and TD (as given in Table 
4.5). 
 
For the Banat area for sites characterized by a design ground acceleration ag=0.20g and 
ag=0.16g, the normalized acceleration elastic response spectrum presented in Figure 4.13 is 
considered. For the Banat area sites where ag=0.12g and ag=0.08g, the normalized spectrum 
presented in Figure 4.12 for TC ≤ 0.7s is considered. 
 
The acceleration elastic response spectrum Se(T) (in m/s2) is defined as: 

 

( )TaTS ge β=)(                (4.27) 

 
where ag is in m/s2. 
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Figure 4.12 P100-1-2006: The normalized acceleration elastic response spectra (for ξ=0.05) 
for horizontal components of earthquake ground motion, for zones characterized by the 

control periods: TC = 0.7, TC = 1.0 and TC = 1.6s 

0,7s<TC ≤ 1,0s 
ξ =0,05 

1,0s<TC ≤ 1,6s 
ξ =0,05 

TC ≤ 0,7s
ξ =0,05 

TC = 0.7s 

TC = 1.6s 

TC = 1.0s 
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Figure 4.13 P100-1-2006; Crustal seismic sources in Banat area: normalized acceleration 
elastic response spectra for horizontal components of earthquake ground motion for areas 

with seismic hazard characterized by ag = 0.20g and ag = 0.16g 
 

For the Bucharest area, for moderate and large magnitude Vrancea earthquakes (Gutenberg- 
Richter magnitude M ≥ 7.0; moment magnitude Mw≥ 7.2) exists the clearly instrumented 
proof of a long predominant period (Tp=1.4÷1.6s) of ground vibrations, Figure 4.14. 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40
Pulsatia ω, rad/s

D
en

si
ta

te
a 

sp
ec

tra
la

 n
or

m
al

iz
at

a      4 Martie 1977, M=7.2, comp.NS
     30 Aug.  1986, M=7.0, comp. NS

ωp =2 π/T p

INCERC Bucuresti

 
Figure 4.14 Normalised Power Spectral Density for March 4, 1977, NS Comp., and August 

30, 1986, NS Comp., recorded at INCERC seismic station in Eastern Bucharest 
 
The displacement elastic response spectrum for horizontal earthquake ground motion 
components SDe(T), expressed in m, is obtained from the acceleration elastic response 
spectrum Se(T) using the following relation: 
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The vertical component of the seismic action is represented by the acceleration elastic 
response spectrum for the vertical ground motion component. The shapes of the normalized 
elastic response spectra of vertical ground motion component βv(T) for a damping ratio ξ 
=0.05, are described by the following relations as a function of control (corner ) periods TBv, 
TCv, TDv of the vertical component spectra: 
 

0≤T≤ TBv  
( )

T 
T

1
 1(T)  

Bv

0v −
+=

β
β v             (4.29) 

TBv<T≤ TCv    βv(Τ) = β0v                        (4.30) 

TCv<T≤ TDv  T
TCv

vv 0(T)  ββ =              (4.31) 

T> TDv   20(T)  
T

TT DvCv
vv ββ =              (4.32) 

 
where βov = 3.0 represents the structure’s maximum dynamic amplification factor for the 
vertical ground motion acceleration, considering a damping ratio ξ=0.05. 
 
The corner periods of the normalized elastic response spectra of the vertical earthquake 
ground motion component, are considered in a simplified manner using the following 
relations: 
 

TBv = 0,1 TCv              (4.33) 
TCv = 0,45 TC                     (4.34) 
TDv = TD.                                    (4.35) 

 
The acceleration elastic response spectrum for the vertical component of ground motion, 
Sve(T), is defined as: 
 

( )TaTS vvgve β=)( .            (4.36) 
 
The design peak ground acceleration value for the vertical component of the earthquake 
ground motion, avg, is evaluated as: 
 

avg = 0,7 ag.             (4.37) 
 
For design situations in which is necessary an elastic response spectrum computed for a 
different than the conventional 5% damping ratio, the use the following conversion relation 
for spectral ordinates is recommended: 
 

( ) ( ) ηξξ ⋅= =≠ %5%5 0
TSTS ee             (4.38) 

 
where: 
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Se(T)ξ0 = 5% - represents the site acceleration elastic response spectrum corresponding to 
a damping ratio, ξ0=5% 
Se(T)ξ≠5% - represents the site acceleration elastic response spectrum corresponding to 
another damping ratio, ξ≠5% 
η – the correction factor determined as follows: 

 

55,0
5

10
≥

+
=

ξ
η            (4.39). 

 
The acceleration design spectrum Sd(T), expressed in m/s2, is an inelastic response spectrum 
obtained using the following relations: 
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T > TB     ( )
q
TaTS gd

)(β
= .         (4.41) 

 

where 
q represents the behavior factor (the elastic to inelastic response modification factor), with 
values depending on the structural system and on the energy dissipation capacity of the 
structure. 
The values of behavior factor q for different types of materials and structural systems are 
indicated in specific chapters of the P100-1-2006 code. 
The design spectrum for the vertical component of the earthquake ground motion is obtained 
in a similar way. In this case, the behavior factor q value is simply considered equal to 1.5 for 
all materials and for all structural types with the exception of special cases for which larger 
values can be justified. 
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4.9. Seismic Fragility/Vulnerability and Seismic Risk Analysis 
 
4.9.1. Background 
 
Human, economic and ecological costs and losses associated with earthquake disasters are 
increasing exponentially and these cost and losses pose a systemic risk to society’s political 
and economic bases. It is correspondingly difficult, in some cases impossible, for local, 
national and global disaster management agencies to cope with the scope, magnitude and 
complexity of these disasters.  
 
Even utilizing the most advanced technology, it is almost impossible, at the present state of 
knowledge, to predict exactly when and where an earthquake will occur and how big it will 
be. An earthquake suddenly hits an area where people are neither prepared nor alerted. Hence, 
the earthquake often causes huge damage to human society. On the other hand, the other 
natural disasters like floods and hurricanes are almost predictable, providing some lead time 
before they hit certain places. People could be alerted with a proper warning system and 
precautionary measures could be taken to protect lives and properties. 
 
It is therefore urgent and crucial to make the physical environment resistant against 
earthquakes, strengthening buildings and infrastructure. Action should be taken for seismic 
risk reductions. Different strategies may be taken to mitigate earthquake disasters, based on 
appropriate risk assessment. 
 
There is a tendency to think that disaster prevention would cost much more than relief 
activities. However, the reality is the reverse. Our society has been spending a lot of resources 
for response activities after disasters; these resources could have been drastically reduced if 
some had been spent for disaster prevention. There is also a tendency to look at disasters 
mainly from a humanitarian angle, bringing us into the position of giving priority to the 
response to disasters. However, relief activities can never save human lives that have already 
been lost. Response activities can never help immediately resume functions of an urban 
infrastructure that has already been destroyed. The bottom line is that buildings should not kill 
people by collapsing and infrastructure should not halt social and economic activities of the 
city for a long time.  
 
The damage caused by an earthquake could be magnified in areas where: 

- People are concentrated;  
- Economic and political functions are concentrated; 
- Buildings and infrastructure have been built to inadequate standards of design. 

 
The larger an urban area is, the greater the damage would be. As the urban areas are growing 
rapidly, the seismic risk in the urban areas is also growing rapidly. Even an intermediate 
earthquake could cause destructive damage to a city. 
 
Fragility/Vulnerability represents the proneness to damage or losses of an exposed built 
system in relation to a single seismic event. It may be expressed in probabilistic terms (for 
prediction purposes) or in statistical terms (for purposes of processing the outcome of post-
earthquake surveys). 
Risk represents the expectancy of damage or losses (expressed in probabilistic terms) in 
relation to the performance of an exposed built system, as a function of the service duration. 
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The risk analysis recognizes basically the impossibility of deterministic prediction of events 
of interest, like future earthquakes, exposure of elements at risk, or chain effects occurring as 
a consequence of the earthquake-induced damage. Since the expectancy of losses represents 
the outcome of a more or less explicit and accurate predictive analysis, a prediction must be 
made somehow in probabilistic terms, by extrapolating or projecting into the future the 
present experience. A probability-based prediction relies on two major premises: 
- the conceptual and methodological framework of the theory of probabilities, of which the 

law of large number must be explicitly emphasized; 
- the assumption that there exists some intrinsic stability and stationarity of objective 

processes determining the input and outcome of phenomena and events dealt with. 
 
The risk is obtained as the convolution product of hazard, vulnerability and exposure. The 
general relation for the determination of the total risk can be expressed as (Whitman & 
Cornell, 1976): 

∑=
j

ii RPRP [][ /Sj]⋅P[Sj]         (4.42) 

in which P[ ] signifies the probability of the event indicated within the brackets, Ri denotes 
the event that the state of system is i,  Sj means that the seismic input experienced is level j, 
and P[Ri/Sj] states the probability that the state of the system will be Ri given that the seismic 
input Sj takes place.  
 
4.9.2. Earthquake Loss Estimation 
 
This chapter describes methods for determining the probability of Slight, Moderate, Extensive 
and Complete damage to general building stock designed to earthquake resistant seismic 
codes or not seismically designed, as given in HAZUS99 Technical Manual – Earthquake 
Loss Estimation Methodology. The scope of this chapter includes development of methods for 
estimation of earthquake damage to buildings given knowledge of the building typology and 
an estimate of the level of seismic hazard.  
 
The description of the damage states considered (Slight, Moderate, Extensive and Complete) 
is presented in the following for two main structural typologies and is based on the 
developments from HAZUS99 Technical Manual. 
 
Reinforced Concrete Moment Resisting Frames 
Slight Structural Damage: Flexural or shear type hairline cracks in some beams and columns 
near joints or within joints. 
Moderate Structural Damage: Most beams and columns exhibit hairline cracks.  In ductile 
frames some of the frame elements have reached yield capacity indicated by larger flexural 
cracks and some concrete spalling.  Nonductile frames may exhibit larger shear cracks and 
spalling. 
Extensive Structural Damage: Some of the frame elements have reached their ultimate 
capacity indicated in ductile frames by large flexural cracks, spalled concrete and buckled 
main reinforcement; nonductile frame elements may have suffered shear failures or bond 
failures at reinforcement splices, or broken ties or buckled main reinforcement in columns 
which may result in partial collapse. 
Complete Structural Damage: Structure is collapsed or in imminent danger of collapse due to 
brittle failure of nonductile frame elements or loss of frame stability.  Approximately 
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20%(low-rise), 15%(mid-rise) or 10%(high-rise) of the total area of C1 buildings with 
Complete damage is expected to be collapsed. 
 
Concrete Shear Walls 
Slight Structural Damage: Diagonal hairline cracks on most concrete shear wall surfaces; 
minor concrete spalling at few locations. 
Moderate Structural Damage: Most shear wall surfaces exhibit diagonal cracks; some shear 
walls have exceeded yield capacity indicated by larger diagonal cracks and concrete spalling 
at wall ends. 
Extensive Structural Damage: Most concrete shear walls have exceeded their yield capacities; 
some walls have exceeded their ultimate capacities indicated by large, through-the-wall 
diagonal cracks, extensive spalling around the cracks and visibly buckled wall reinforcement 
or rotation of narrow walls with inadequate foundations.  Partial collapse may occur due to 
failure of nonductile columns not designed to resist lateral loads. 
Complete Structural Damage: Structure has collapsed or is in imminent danger of collapse 
due to failure of most  of the shear walls and failure of some critical beams or columns.  
Approximately 20%(low-rise), 15%(mid-rise) or 10%(high-rise) of the total area of C2 
buildings with Complete damage is expected to be collapsed. 
 
The distribution of the previously mentioned damage probabilities is called the building 
fragility/vulnerability function (curves). The fragility curves describe the probability of 
reaching or exceeding different states of damage given peak building response. 
The probability of being in or exceeding a given damage state is modeled as a cumulative 
lognormal distribution.  For structural damage, given the spectral displacement, Sd, the 
probability of being in or exceeding a damage state, ds, is modeled as: 
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⎦
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d
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β
 (4.43) 

 
where: dsd,S  is the median value of spectral displacement at which the building 

reaches the threshold of the damage state, ds, 
βds  is the standard deviation of the natural logarithm of spectral  
 displacement of damage state, ds, and 
Φ is the standard normal cumulative distribution function. 

 
Structural damage fragility curves for buildings are described by median values of drift that 
define the thresholds of Slight, Moderate, Extensive and Complete damage states.  In general, 
these estimates of drift are different for each building typology (including height) and seismic 
design level. Structural fragility is characterized in terms of spectral displacement. Median 
values of structural component fragility are based on building drift ratios that describe the 
threshold of damage states.  Damage-state drift ratios are converted to spectral displacement 
using Equation (4.44): 
 

hS SdsRSdsd ⋅⋅= 2,, αδ  (4.44) 
 
where: SdsdS ,  is the median value of spectral displacement, in cm, of structural 

components for damage state, ds 
δR,Sds is the drift ratio at the threshold of structural damage state, ds 
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α2 is the fraction of the building (roof) height at the location of push-over 
mode displacement 

h is the typical roof height, in centimeters, of the building typology of 
interest. 

 
The total variability of each structural damage state, βSds, is modeled by the combination of 
three contributors to structural damage variability, βC, βD and βM(Sds), as described in Equation 
(4.45): 
 

( )2
)(

22
SdsMDCSds ββββ ++=  (4.45) 

 
where: βSds is the lognormal standard deviation that describes the total   

 variability for structural damage state, ds 
βC  is the lognormal standard deviation parameter that describes the 

variability of the capacity curve 
βD is the lognormal standard deviation parameter that describes the 

variability of the demand spectrum 
βM(Sds) is the lognormal standard deviation parameter that describes the 

uncertainty in the estimate of the median value of the threshold 
of structural damage state, ds. 

 
4.9.3. Case Study on the Expected Seismic Losses of Soft and Weak Groundfloor Buildings 
 
The case study building is located in the city of Bucharest, Figure 4.15. The building was 
erected in 1960’s, it has 11 storeys (B+GF+10S) and its main destination is residential in the 
upper floors and commercial in the groundfloor, Figure 4.16. The structural system consists of 
reinforced concrete frames in the groundfloor, Figure 4.17 and RC structural walls in the 
upper floors, Figure 4.18.  The groundfloor is a soft and weak story, with no structural walls. 
The building consists of 3 parts (A, B and C). In what concerns the case study, part A is under 
discussion hereinafter. The A building has a rectangular base of 11.42x32.85 m. A staircase 
connects the buildings “A” and “B”. Amongst all 3 buildings there are seismic joints of 3 cm. 

Figure 4.15. Satellite view of the building site – 90-96 Mihai 
Bravu Blvd., Bucharest (from www.earth.google.com) 

Figure 4.16. Main façade of the 
building A  

http://www.earth.google.com/�
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The ground floor height is 4.80m while the height of the rest of the floors is 2.73m.  
The soil underneath the building is made of layers of sand with gravel fractions in the medium 
compacted state, with a 3 daN/cm2 conventional pressure. The building’s footprint area is 
380.07 m2. 
 
The concrete used is B250 (equivalent to C16/20) and the reinforcing steel used is OB37 
(equivalent to S235).The RC beams sections vary from 15x55 cm up to 37,5x60 cm. The RC 
columns sections vary from 40x55 cm to 80x50 cm; there are also two elongated columns of 
170x50cm transversally placed in the axes 9 and 10. The structural wall thickness varies from 
15 to 20 cm. The slabs are made of reinforced concrete of 8 to 11 cm in thickness. The 
infrastructure system consists of a rigid box in the basement with continuous foundations 
under all the structural elements. 
 

 
Figure 4.17. Groundfloor plan view 

 

 
Figure 4.18. Plan view of current floor 

 
 
The total weight of the building is 5528 t. The building first eigenvalue is 0.68s, the second 
eigenvalue is 0.56s and the third eigenvalue is 0.45s. The first eigenvector is a translation in 
the longitudinal direction; the second eigenvector is a translation in transversal direction 
together with a rigid body rotation around the basement while the third is a rotation around 
the vertical axis, Figure 4.19. 
 



 

Structural Reliability and Risk Analysis – Lecture Notes 
72

 
T1=0.68s T2=0.56s T3=0.45s 

Figure 4.19. Modal shapes and eigenvalues of the building 
 
The seismic evaluation of the existing building was performed using capacity spectrum 
method, CSM (ATC40, 1996) with the alternative approach using strength reduction factors 
proposed by (Chopra&Goel, 1999), as follows: 

1. The demand elastic acceleration-displacement response spectrum, ADRS, is 
represented. A demand constant-ductility spectrum is established by reducing the 
elastic acceleration-displacement spectrum by appropriate ductility-dependent factors 
that depend on T.  

2. The capacity curve is plotted on the same graph. A building capacity curve (also 
known as a push-over curve) is a plot of a building’s lateral load resistance as a 
function of a characteristic lateral displacement (i.e., a force-deflection plot).  It is 
derived from a plot of static-equivalent base shear versus building (e.g., roof) 
displacement.  In order to facilitate direct comparison with earthquake demand (i.e. 
overlaying the capacity curve with a response spectrum), the force (base shear) axis is 
converted to spectral acceleration and the displacement axis is converted to spectral 
displacement. 

3. The yielding branch of the capacity curve intersects the demand spectra for several 
μ values of ductility factor. One of these intersection points, which remains to be 
determined, will provide the expected spectral displacement. At the one relevant 
intersection point, the ductility factor calculated from the capacity curve should match 
the ductility value associated with the intersecting demand spectrum. 

 
Pushover analyses were performed for each direction of the building using ETABSTM 
computer software. The application of the capacity spectrum method for the existing building 
is presented hereinafter. The demand elastic acceleration-displacement response spectrum is 
according to the Romanian Code for Earthquake Resistant Design of Buildings, P100-1/2006, 
considering two levels of seismic hazard with 80% exceedance probability in 50 years and 
40% exceedance probability in 50 years. Nevertheless, for the completeness of the analysis, a 
third level of seismic hazard with 10% exceedance probability in 50 years was considered. 
The design peak ground accelerations in Bucharest for the previously mentioned levels of 
seismic hazard are 0.1g, 0.24g and 0.35g. The corresponding building performance levels are: 
damage limitation, life safety and collapse prevention, respectively. The results obtained from 
capacity spectrum method are presented in Figure 4.20 and Table 4.6.  
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Figure 4.20a. Expected seismic response of 
existing building for PGA=0.1g (top), 0.24g 

(middle), 0.35g (bottom) – X direction 

Figure 4.20b. Expected seismic response of 
existing building for PGA=0.1g (top), 0.24g 

(middle), 0.35g (bottom) – Y direction 
 
Table 4.6. Expected seismic response of existing building 

X direction Y direction 
PGA  ['g] =  PGA ['g] =  

 Expected 
seismic 

response 0.10 0.24 0.35 0.10 0.24 0.35 
SD, cm 4.6 15.5 24.5 3.0 11.3 19.0 
SA, 'g 0.22 0.24 0.24 0.26 0.33 0.33 

Droof, cm 6.3 21.2 33.5 3.8 14.3 24.1 
V, tf 988 1078 1078 994 1224 1224 
μ 1.5 5.1 8.0 1.1 3.9 6.5 
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Note: 
X Direction – Longitudinal 
Y Direction - Transversal 
SD - spectral displacement 
SA - spectral acceleration 
V - base shear force 
W - weight of the building 
Droof - lateral displacement at top of building 
PGA - peak ground acceleration 
μ - displacement ductility 
 
Given the median and standard deviation values of the drift ratios at threshold of damage 
states given in HAZUS99 for the building typology and the modal participation factor and 
actual building height, the parameters of the building fragility curves for structural damage 
states for the case study building are given in Table 4.7: 
 
Table 4.7. Values of building fragility curve parameters for structural damage states 

Slight Moderate Extensive Complete 
dsd,S , cm βds dsd,S , cm βds dsd,S , cm βds dsd,S , cm βds 
5.1 0.70 8.2 0.81 20.4 0.89 51.1 0.98 

 
The values of the building fragility curve parameters from Table 4.7 are used in relation 
(4.43) to get the building fragility curves for structural damage states that are presented in 
Figure 4.21. Given the expected spectral displacements presented in Table 4.6 and the 
building fragility curves presented in Figure 4.21, the probabilities of being in a given 
structural damage state are reported in Table 4.8 . 
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Figure 4.21. Building fragility curves for structural damage states 
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Table 4.8. Probabilities of being in a given structural damage state 
X direction Y direction 
PGA  ['g] =  PGA ['g] =  Damage 

state, ds  
0.10 0.24 0.35 0.10 0.24 0.35 

None 5.64E-01 5.66E-02 1.28E-02 8.36E-01 1.58E-01 4.04E-02 
Slight 2.00E-01 1.59E-01 7.60E-02 8.71E-02 2.29E-01 1.36E-01 

Moderate 1.90E-01 4.07E-01 3.33E-01 6.71E-02 3.92E-01 3.97E-01 
Extensive 3.93E-02 2.66E-01 3.53E-01 8.85E-03 1.70E-01 2.92E-01 
Complete 6.87E-03 1.12E-01 2.25E-01 1.15E-03 5.12E-02 1.35E-01 

 
The cost of damage is expressed as a percentage of the complete damage state.  The assumed 
relationship between damage states and repair/replacement costs, for both structural and non-
structural components, is as follows (HAZUS, 1999):  
Slight damage:   2% of complete 
Moderate damage: 10% of complete 
Extensive damage: 50% of complete 
These values are consistent with and in the range of the damage definitions and corresponding 
damage ratios presented in ATC-13 Earthquake Damage Evaluation Data for California.   
 
Given the repair/replacement costs previously mentioned and the distribution of probabilities 
in Tables 4.8, the expected cost of damage given the incidence of an earthquake can be 
obtained. The expected costs of damage presented in the following are for structural elements 
and are expressed as percentage of the replacement cost obtained as weighted averages. The 
expected costs of damage for the existing building are reported in Table 4.9. 
 
Table 4.9. Expected cost of damage for the existing building (% of replacement cost) 

X direction Y direction 
PGA  ['g] =  PGA ['g] =  

  

0.10 0.24 0.35 0.10 0.24 0.35 

Structural damage 4.95 28.84 43.64 1.40 17.99 32.34 
 
 
4.9.4. Full Probabilistic Risk Assessment of Buildings 
 
4.9.4.1. Introduction 
 
The probabilistic risk assessment is not a straightforward matter and involves a high 
computational effort. The probabilistic risk assessment is aiming at computing the annual 
probability of exceedance of various damage states for a given structural system. The consistent 
probabilistic approach is based on the idea of (Cornell & Krawinkler, 2000) using the total 
probability formula applied in a form that suits the specific needs: 

)()()| PGAdSddf(PGAf(Sd|PGA)Sd)d()dP(
PGA Sd

ss ∫ ∫ ⋅⋅≥Φ=≥   (4.46) 

where: 
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- P(≥ ds) – annual probability of exceedance of damage state ds  
− Φ(≥ ds | Sd) – standard normal cumulative distribution function of damage state ds 

conditional upon spectral displacement Sd 
- f(Sd | PGA) -  probability density function of spectral displacement Sd given the occurrence 

of peak ground acceleration PGA 
- f(PGA) – probability density function of peak ground acceleration PGA 

One can change Eq. (4.46) to solve for the mean annual rate of exceedance of various damage 
states for a given structural system: 

 ∑∑ ⋅⋅≥=≥
PGA Sd

ss (PGA)P(Sd|PGA)|Sd)dP()d( λλ     (4.47) 

where: 

− λ(≥ ds) – mean annual rate of exceedance of damage state ds  
- P(≥ ds | Sd) – probability of exceedance of damage state ds conditional upon spectral 

displacement Sd 
- P(Sd | PGA) -  probability of reaching spectral displacement Sd given the occurrence peak 

ground acceleration PGA 
− λ(PGA) – mean annual rate of occurrence of peak ground acceleration PGA. 
 
Consequently, the probabilistic assessment of seismic risk involves the: 
1. probabilistic seismic hazard assessment, λ(PGA)  
2. probabilistic assessment of seismic structural response, P(Sd | PGA)  
3. probabilistic assessment of seismic structural vulnerability, P(≥ ds | Sd)  
 
Equations (4.46) and (4.47) are disaggregating the seismic risk assessment problem into three 
probabilistic analysis of: hazard, structural response and vulnerability. Then it aggregates the 
risk via summation (or integration) over all levels of the variables of interest.  
 
The probabilistic seismic hazard assessment for Bucharest is discussed in Chapter 4.7. The 
probabilistic assessment of seismic structural response and the probabilistic assessment of 
seismic structural vulnerability is discussed hereinafter based on a case study for a RC 
moment resistant frame building located in Bucharest.  
 
4.9.4.2. Probabilistic assessment of seismic structural response 
 
The building analyzed has a reinforced concrete moment resisting frame structure and it was 
erected in early ‘70’s. It is a thirteen-storey building, the first two storeys being of 3.60 m, all 
the rest of 2.75 m height. The building has two spans of 6.00 m each in the transversal 
direction and five spans of 6.00 m each in the longitudinal direction. The concrete is of class 
Bc 20 and the steel is of quality PC 52. Some details regarding the structural members are 
given in Table 4.10. Further details can be found elsewhere (Vacareanu, 1998). 
 
The seismic motion intensity is quantified by peak ground acceleration (PGA). The seismic 
motions used in the analyses consist of seven classes of random processes comprising ten 
samples each. Elastic acceleration spectra are used to simulate samples. The input seismic 
motions are simulated using a stationary Gaussian model based on elastic acceleration spectra 
(Shingal & Kiremidjian, 1997). The time histories are generated such as to fit the given 
response spectrum. The probability distributions of the dynamic amplification factors are used 
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to obtain an ensemble of response spectra corresponding to a given level of seismic motion 
(Vacareanu, 2000). 
For parametric analysis purpose, the accelerograms are simulated at predefined values of 
PGA, as follows: 0.10g, 0.15g, 0.20g, 0.25g, 0.30g, 0.35g, 0.40g (g – acceleration of gravity).   
 
Table 4.10.Description of the structural members       

Storey # Columns 
(BxD) 

Overall 
reinfor-
cement 

ratio 

Hoop 
bar 

diameter 

Hoop 
bar 

spacing 

Beams 
(BxD) 

Bottom 
reinfor-
cement 

ratio 

Top 
reinfor-
cement 

ratio 

Stirrup 
diameter 

Stirrup 
spacing 

 (mm) (%) (mm) (mm) (mm) (%) (%) (mm) (mm) 

1,2 700 x 
900 1.75 8 150 350 x 

700 0.30 0.70 6 200 

3-5 700 x 
750 1.70 8 200 350 x 

700 0.32 0.75 6 200 

6 – 9 600 x 
750 1.40 6 200 300 x 

700 0.32 0.60 6 250 

10 – 13 600 x 
600 1.00 6 200 300 x 

600 0.30 0.50 6 250 

 
The structural model in the transversal direction consists of six - two spans - reinforced 
concrete moment resisting frames acting together due to the action of horizontal diaphragms 
located at each storey. The computer program IDARC 2D (Valles et. al., 1996) is used for 
performing inelastic dynamic analyses. 
 
To trace the hysteretic response of structural elements, the piece-wise linear three-parameter 
model that included stiffness degradation, strength deterioration and slip is used to model the 
response of reinforced concrete structural elements. The trilinear hysteretic model relies on 
four parameters that scale the main characteristics represented in the model: stiffness deg-
radation, strength deterioration and pinching. For analysis purpose, the default values (HC = 
2.0 ;  HBD = 0.0;  HBE = 0.10 ;   HS = 1.0) are used, these values allowing for nominal 
stiffness degradation and strength deterioration and no pinching effects.  
 
Nonlinear dynamic analyses are performed for 10 simulated ground motions generated at each 
value of PGA. An integration time step of 0.002s is used in the analyses. The accelerograms 
last for 20 s and the total duration of the analysis is 21 s. The damping coefficient is 5 % of 
the critical damping and the structural damping is assumed to be mass proportional. 
 
In damage analysis, the uncertainties associated with seismic demands and structural 
capacities need to be modeled. The Monte-Carlo technique involves the selection of samples 
of the random structural parameters and seismic excitations required for nonlinear analyses, 
the performance of nonlinear analyses and the computation of the structural response. In brief, 
the Monte-Carlo simulation technique implies the following steps: 
• simulation of structural parameters and seismic excitations; 
• random permutations of structural parameters and of excitations; 
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• performing nonlinear analyses using generated samples; 
• sample statistics of results of analyses. 
 
The direct Monte-Carlo technique requires a large number of simulation cycles to achieve an 
acceptable level of confidence in the estimated probabilities. The Latin hypercube technique 
might be used to reduce the number of simulation cycles. Using the Latin hypercube 
technique for selecting values of the input variables, the estimators from the simulation are 
close to the real values of the quantities being estimated. The Latin hypercube technique uses 
stratified sampling of the input variables, which usually results in a significant decrease in the 
variance of the estimators (Rubinstein, 1981).  
 
The compressive strength of concrete and the yield strength of steel are the only parameters 
treated as structural random variables in this case study. Following Galambos et al. (1982), 
normal probability distribution for concrete strength and lognormal probability distribution 
for steel strength are used in this research. Concrete strength has a mean of 25 MPa and a 
coefficient of variation of 15%. Steel strength has a mean of 397 MPa and a coefficient of 
variation of 7%. For simulation purposes 10 values for concrete and reinforcement strengths 
are randomly generated and used for each PGA value considered within the analysis. Latin 
hypercube technique is used for randomly combine the generated strength variables and 
accelerations. 
 
Spectral displacements are calculated using nonlinear dynamic analyses. Data regarding the 
randomness of the seismic response of the structural system are obtained. The statistic 
indicators of the spectral displacement obtained at each PGA value are used to get the 
parameters of a lognormal distribution function for that level of intensity of ground motion. 
The computed mean and standard deviation of the spectral displacements are reported in 
Table 4.11. 
 
Table 4.11 Mean and standard deviation of spectral displacement conditional upon PGA  

PGA, 'g μ Sd|PGA σ Sd|PGA 
0.1 13.1 2.2 
0.15 22.8 3.3 
0.2 30.0 4.0 
0.25 39.5 3.8 
0.3 49.8 5.3 
0.35 59.0 6.4 
0.4 68.7 6.9 

 
Finally, the lognormal probability density function of spectral displacement conditional upon 
PGA is evaluated: 
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Examples of lognormal probability density functions of Sd conditional upon PGA= 0.1g, 0.2g 
and 0.3g are presented in Figure 4.22. Using the density functions one obtains probability of 
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reaching spectral displacement Sd given the occurrence of peak ground acceleration, PGA, 
P(Sd | PGA). 
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Figure 4.22. Mean and standard deviation of the spectral displacement 

 
 
4.9.4.3. Probabilistic assessment of seismic structural vulnerability 
 
The probabilistic assessment of seismic structural vulnerability involves the determination of 
the building vulnerability functions. These functions describe the conditional probability of 
being in, or exceeding, a particular damage state, ds, given the spectral displacement, Sd, and 
is defined as HAZUS1999 : 
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where: 
- Sd,ds is the median value of spectral displacement at which the building reaches the threshold 
of the damage state, ds, 
- βds is the standard deviation of the natural logarithm of spectral displacement for damage 
state ds, and 
− Φ is the standard normal cumulative distribution function. 
 
For the spectral (maximum) displacement, Sd, expected for the demand earthquake, one 
determines the structural damage state probabilities using vulnerability functions (Eq. 4.49). 
HAZUS99 includes the vulnerability function parameters, Sd,ds and βds appropriate for each 
type of building corresponding to USA practice of design and construction. In order to 
calibrate the vulnerability function parameters appropriate for structural systems which are 
different from USA practice, the Monte-Carlo simulation technique can be used. For 
simulation purposes 10 values for concrete and for reinforcement strengths are randomly 
generated and randomly combined for each push-over analysis. 
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The outcome of the pushover analyses is a family of capacity curves, which can be described 
as mean and mean plus/minus one standard deviation capacity curves, Figure 4.23 (Vacareanu 
et. al., 2001). 
For calibration of vulnerability function parameters it is necessary to establish a correlation between 
Park&Ang (1985) damage index and interstory drift ratio at threshold of damage state. The more 
recent slightly modified version of Park&Ang index, in which the recoverable deformation is 
removed from the first term might be used: 

Du
dE

DD
DyDm

DI
y

e
yu F ⋅

⋅+
−
−

= ∫β         (4.50) 

 
where Dm = maximum displacement; Du = ultimate displacement; Dy = yielding 
displacement; βe = strength deterioration parameter; Fy = yielding force  and  E = dissipated 
hysteretic energy.  
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Figure 4.23. Capacity curves from Monte-Carlo simulation 

 
The correlation between Park&Ang damage index and damage state is given in Table 4.12 
(Williams & Sexsmith, 1995): 
 
Table 4.12. Relations between damage index and damage state  

Range of damage index Damage state 
DI ≤ 0.1 None 

0.1 < DI ≤  0.25 Slight 
0.25 < DI ≤  0.40 Moderate 
0.40 < DI ≤  1.00 Extensive 

DI > 1.00 Complete 
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Using the definition of Park&Ang damage index (Eq. 4.50) and the structural behavior 
described by the capacity curve, one can determine the correlation between Park&Ang 
damage index and mean (± 1 standard deviation) interstory drift ratio values, Figure 4.24 
(Vacareanu et. al., 2001). 
Making vertical sections in Figure 4.24 for the threshold values of Park&Ang damage index 
given in Table 4.12 one can identify the mean and standard deviation values of interstory drift 
ratios at threshold of damage state, Table 4.13, Figure 4.25. The median value of spectral 
displacement at which the building reaches the threshold of the damage state, Sd,ds is obtained 
by multiplying the interstory drift ratio by the height of the building and by the fraction of the 
building height at the location of push-over mode displacement, Table 4.14. The standard 
deviation of the natural logarithm of spectral displacement for damage state ds, βds is obtained 
using the standard deviation of the structural displacement. 
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Figure 4.24. Correlation between Park&Ang damage index and interstory drift ratio 
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Figure 4.25. Median capacity curve and thresholds of damage states 
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Table 4.13. Mean interstory drift ratio at threshold of damage state (Monte-Carlo Simulation) 
Slight Moderate Extensive Complete 
0.0028 0.0064 0.0100 0.0244 

 
Table 4.14. Vulnerability function parameters (Monte-Carlo Simulation) 

Slight Moderate Extensive Complete 
Sd,ds, cm βds Sd,ds, cm βds Sd,ds, cm βds Sd,ds, cm βds 

7.82 0.66 17.88 0.66 27.94 0.76 68.16 0.91 
 
Once the parameters of vulnerability function Sd,ds and βds are obtained using Eq. 4.49 one can 
compute and plot the fragility functions, Figure 4.26. 
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Figure 4.26. Vulnerability functions, Monte-Carlo simulation 

 
 
4.9.4.4. Risk analysis 
 
Given the results of the probabilistic seismic hazard assessment, λ(PGA), the probabilistic 
assessment of seismic structural response,   P(Sd | PGA), and the probabilistic assessment of 
seismic structural vulnerability, P(≥ ds | Sd) one can aggregate the risk via summation (or 
integration) over all levels of the variables of interest using Equation 4.46. The results on risk 
are presented as mean annual rate of exceedance of damage state ds, λ(≥ ds), in Table 4.15. 
Also, in Table 4.15 is presented the exceedance probability of various damage states in 1 year, 
50 years and 100 years assuming that the damage states follows a Poisson distribution: 
 

Td
sexc

seTdP ⋅≥−−= )(1),( λ         (4.51) 
 
where: 
 
- Pexc(ds, T) - exceedance probability of damage state ds in time T. 
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Table 4.15. Results of seismic risk analysis 
Exceedance prob., Pexc(ds, T) in: Damage 

state - ds Annual exceedance rate, λ(≥ ds) T=1 year T=50 years T=100 years
Slight 5.1E-02 5.1E-02 9.2E-01 9.9E-01 

Moderate 2.6E-02 2.6E-02 7.3E-01 9.3E-01 
Extensive 1.2E-02 1.2E-02 4.4E-01 6.9E-01 
Complete 4.7E-03 4.7E-03 2.1E-01 3.7E-01 

 
One can notice from Table 4.15 the exceedance probability of complete damage state in 1 
year of 4.7⋅10-3 which is much higher that the commonly accepted probabilities of failure of 
10-4 to 10-5 as in the case of non-seismic loads. The main reason for this high probability 
comes from the design of the building which was accomplished taking into account an 
inferior code for earthquake resistant design (P13-70) combined with the low level of seismic 
hazard considered in the design process. 
 
4.9.5. Risk management 
 
The XXth century witnessed a painful history of devastating earthquakes. Economic losses 
represent an important feature of earthquake-induced phenomena. Sometimes the economic 
burden and pressure induced by the consequences of an earthquake disaster caused irreparable 
economic crisis for poor countries. Table 4.16 presents a combination of human and economic 
losses for major earthquakes in the XXth century (where monetary evaluations were 
available). 

Table 4.16. Human and economic losses produced by earthquakes in XXth century  

No. Date UTC Location Deaths Losses ($bn) Magnitude 

1 1963 July 26 FYROM, Skopje 1,070 0.98 6.2 

2 1972 Dec 23 Nicaragua, Managua 5,000 2 6.2 

3 1976 Feb 4 Guatemala 23,000 1.1 7.5 

4 1976 Jul 27 China, Tangshan 255,000 6 8 

5 1977 Mar 4 Romania, Vrancea 1,500 2.0 7.2 

6 1979 Apr 15 Montenegro 101 4.5 7 

7 1980 Nov 23 Italy, southern Campania 4,680 45 7.2 

8 1985 Sep 19 Mexico, Michoacan 9,500 5 8.1 

9 1986 Oct 10 El Salvador 1,000 1.5 5.5 

10 1988 Dec 7 Turkey-USSR border region Spitak, Armenia 25,000 17 7 

11 1989 Oct 17 Loma Prieta 63 8 6.9 

12 1990 Jun 21 Western Iran, Gilan 40,000 7.2 7.7 

13 1990 Jul 16 Luzon, Philippine Islands 1,621 1.5 7.8 

14 1994 Jan 17 Northridge 57 30 6.8 

15 1995 Jan 16 Japan, Kobe 5,502 82.4 6.9 

16 1999 Jan 25 Colombia 1,185 1.5 6.3 

17 1999 Aug 17 Turkey 17,118 20 7.6 

18 1999 Sep 20 Taiwan 2,297 0.8 7.6 
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Human losses in Table 4.16 are represented as a function of magnitude in Figure 4.27. In 
Figure 4.28 human losses are represented versus economic losses, also based on data in Table 
4.16. Based on the data given in Table 4.16, the number of deaths from an earthquake can be 
related to the magnitude of the earthquake by the following relations: 
 

valuebounduppereD

valuemedianeD
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M

M

M

−⋅=

−⋅=

−⋅=

5.1

5.1

5.1

4.0

06.0

002.0

      (4.52) 

where  
D is the number of deaths, and 
M is the magnitude of the earthquake. 
 
The economic losses can be related to the number of deaths from an earthquake by the 
following relations: 
 

valueboundupperDL
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valueboundlowerDL

−+=

−+=

−+−=

lg2.09.0lg

lg2.006.0lg

lg2.06.0lg

      (4.53) 

where  
L are the economic losses expressed in billion US$, and 
D is the number of deaths. 
 
The general characteristics of earthquake-induced disasters as well as the general 
countermeasures for emergency management are presented in Table 4.17. 
 
Reduction of vulnerability to earthquakes is, clearly, an urgent goal for the coming decades. It 
is, moreover, one that is realizable as policy makers now have many earthquake mitigation 
options available. These include insurance, construction codes and standards, strengthening 
and retrofit, demolition of hazardous structures, relocations, sitting and land-use criteria, 
training and exercises. The key to success will be to integrate risk assessment and risk 
management as an ongoing strategy aimed at avoidance of flaws in planning, design, sitting, 
construction and use which create or increase vulnerability. 
 
The main strategies for mitigation of seismic risk are: 

i. Regulating, strengthening, or removing unsafe structures 
ii. Enhancing critical utility networks and facilities [e.g., redundancy, backup power]  

iii. Improving land use planning 
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Figure 4.27. Human losses as a function of magnitude 
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Figure 4.28. Human losses versus economic losses caused by earthquakes
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Table 4.17. General characteristics of earthquake disasters, general countermeasures and 
special problem areas for emergency management 

 

Characteristics General counter measures Special problem areas for 
emergency management 

 Usually no warning; 
following a major 
earthquake, secondary 
shocks may give 
warning of a further 
earthquake 

 Onset is sudden 
 Earthquake-prone 

areas are generally 
well identified and 
well known 

 Major effects arise 
mainly from violent 
ground shacking 
(vibration), fracture or 
slippage; especially 
they include damage 
(usually very severe) to 
structures and lifeline 
systems, plus 
considerable casualty 
due to lack of warning. 

 Development of 
possible warning 
indicators 

 Land-use regulations 
 Building regulations 
 Relocation of 

communities 
 Public awareness and 

education programs 

 Severe and extensive 
damage, creating the 
need for urgent 
counter-measures, 
especially search and 
rescue, and medical 
assistance 

 Difficulty of access 
and movement 

 Widespread loss of or 
damage to 
infrastructure, essential 
services and life 
support systems 

 Recovery requirements 
(e.g. restoration and 
rebuilding) may be 
very extensive and 
costly 

 Rarity of occurrence in 
some areas may cause 
problems for 
economies of counter-
measures and public 
awareness 

 Response problems 
may be severe, 
extensive and difficult 
(e.g. rescue from a 
high occupancy 
building collapses, or 
in a circumstances 
where additionally a 
chemical or radiation 
hazard exists, etc.) 

 Victim identification 
may often be very 
difficult 

 
It is the local governments, first of all, that should recognize the risk of disasters within their 
domain. Decision makers and local government officials have the actual power to make the 
physical environment resistant against disasters through development policies such as urban 
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planning, construction of infrastructure, land-use control, and building regulations. If urban 
infrastructures were to be destroyed by disasters, urban activities would be halted for a long 
time, severely damaging economic and social activities.  
 
It is the communities and citizens that should recognize the risk of loss of their own houses 
and lives. They are supposed to build and maintain their houses in good physical condition, 
while local governments are not able to reinforce a huge number of inappropriately 
constructed buildings, most of which are owned privately, in developing countries. It is said 
that earthquakes do not kill people but collapsed buildings and houses do. Unless people take 
action concerning their existing houses, casualties cannot be reduced by much. 
 
Semi-public companies, which maintain basic urban infrastructures such as the telephone, and 
water supply, should be prepared for disasters as their disruption could cause serious damage 
to urban activities. Business leaders and related companies such as building owners, 
developers, real estate agents, and insurance/reinsurance companies should also understand 
the seismic risk to their properties, to avoid human loss caused by their collapse and to 
minimize the damage their businesses.  
 
From experience, it can be said that even if scientists were to lay stress on such seismic risk to 
local governments, the officials would not take it into account. Only when the government 
officials can understand the possible damage through their own efforts, are they likely to take 
the necessary action.   
 
Similarly, although most of the buildings seem highly vulnerable to earthquakes, and although 
it is obvious that certain houses would be easily destroyed, communities and residents are, in 
some instances, indifferent to the seismic risk. They will take appropriate action for the 
reinforcement of their houses only when they understand that they would be killed by their 
houses or lose their fortunes. 
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5. INTRODUCTION TO STOCHASTIC PROCESSES 
 

5.1. Background 
 
Physical phenomena of common interest in engineering are usually measured in terms of 
amplitude versus time function, referred to as a time history record. The instantaneous 
amplitude of the record may represent any physical quantity of interest, for example, 
displacement, velocity, acceleration, pressure, and so on. There are certain types of physical 
phenomena where specific time history records of future measurements can be predicted with 
reasonable accuracy based on one’s knowledge of physics and/or prior observations of 
experimental results, for example, the force generated by an unbalanced rotating wheel, the 
position of a satellite in orbit about the earth, the response of a structure to a step load. Such 
phenomena are referred to as deterministic, and methods for analyzing their time history 
records are well known. Many physical phenomena of engineering interest, however, are not 
deterministic, that is, each experiment produces a unique time history record which is not 
likely to be repeated and cannot be accurately predicted in detail. Such processes and the 
physical phenomena they represent are called random or stochastic. In this case a single 
record is not as meaningful as a statistical description of the totality of possible records.  
As just mentioned, a physical phenomenon and the data representing it are considered random 
hat when a future time history record from an experiment cannot be predicted with reasonable 
experimental error. In such cases, the resulting time history from a given experiment 
represents only one physical realization of what might have occurred. To fully understand the 
data, one should conceptually think in terms of all the time history records that could have 
occurred, as illustrated in Figure 5.1.  

 
 
 
 
 
 
 
 
 
The ensemble given by all )(txi defines 
the stochastic process while 

)(),....,(),( 21 txtxtx n  are the samples. 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Ensemble of time history records defining a random process 
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This collection of all time history records xi(t), i= 1, 2, 3, …, which might have been produced 
by the experiment, is called the ensemble that defines a random process {x(t)} describing the 
phenomenon. Any single individual time history belonging to the ensemble is called a sample 
function. Each sample function is sketched as a function of time. The time interval involved is 
the same for each sample. There is a continuous infinity of different possible sample 
functions, of which only a few are shown. All of these represent possible outcomes of 
experiments which the experimenter considers to be performed under identical conditions. 
Because of variables beyond his control the samples are actually different. Some samples are 
more probable than others and to describe the random process further it is necessary to give 
probability information. 

5.2. Average properties for describing internal structure of a stochastic process 
 

If one makes a section at jt one obtains )( ji tx that are the values of a random variable. 
Given an ensemble of time history records {x(t)} describing a phenomenon of interest, the 
average properties of the data can be readily computed at any specific time tj by averaging 
over the ensemble (theoretically for n→∞).  
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Considering two different stochastic processes )(tx and )(* tx one may get the same mean and 
the same variance for both processes (Figure 5.2). 
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Figure 5.2. Two different processes with same mean and same variance 
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Obviously, the mean and the variance cannot describe completely the internal structure of a 
stochastic process and additional higher order average values are needed for a complete 
description. 
The average product of the data values at times tj and tk called the correlation function is 
given by: 

Correlation function: 
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Furthermore, the average product of the data values at times t and t+τ is called the 
autocorrelation at time delay τ 
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If )(),(0 2 txttRx =⇒=τ .        (5.6) 
The covariance function is defined by: 
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An important property of the variance function is easily obtained by developing the right hand 
side member of Equation (5.7): 
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5.3. Main simplifying assumptions 
 
The following assumptions greatly reduce the computational effort and enable the 
development of analytical solutions in random processes theory. 
 
Stationarity: A random process is said to be stationary if its probability distributions are 
invariant under a shift of the time scale; i.e., the family of probability densities applicable now 
also applies 10 minutes from now or 3 weeks from now. This implies that all the averages are 
constants independent of time. Then, the autocorrelation function depends only of the time lag 
between tj and tk.   
For stationary data, the average values at all times can be computed from appropriate 
ensemble averages at a single time t (Figure 5.3). 
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Figure 5.3. Statistical properties of stationary random processes 
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It is possible to partially verify the stationary assumption experimentally by obtaining a large 
family of sample functions and then calculating averages such as the mean and 
autocorrelation for many different times. If the stationary hypothesis is warranted there should 
be substantial agreement among the results at different times.  
For a process to be strictly stationary it can have no beginning and no end. Each sample must 
extend from t = -∞ to t = -∞. Real processes do in fact start and stop and thus cannot be truly 
stationary. The nonstationary effects associated with starting and stopping are often neglected 
in practice if the period of stationary operation is long compared with the starting and 
stopping intervals. If changes in the statistical properties of a process occur slowly with time, 
it is sometimes possible to subdivide the process in time into several processes of shorted 
duration, each of which may be considered as reasonably stationary. 
 
Ergodicity: All the averages discussed so far have been ensemble averages. Given a single 
sample x(t) of duration T it is, however, possible to obtain averages by averaging with respect 
time along the sample. Such an average is called a temporal average in contrast to the 
ensemble averages described previously.  
Within the subclass of stationary random processes there exists a further subclass known as 
ergodic processes. An ergodic process is one for which ensemble averages are equal to the 
corresponding temporal averages taken along any representative sample function.  
For almost all stationary data, the average values computed over the ensemble at time t will 
equal the corresponding average values computed over time form a single time history record 
(theoretically, infinitely long - T→∞ - practically, long enough). For example, the average 
values may be computed in most cases by: 
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where x(t) is any arbitrary record from the ensemble {x(t)}. 
The autocorrelation function becomes (Figure 5.4): 
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Figure 5.4. Autocorrelation function for a stationary stochastic process 
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 For 2)0(0 xRx =⇒=τ        (5.14) 
The autocorrelation function is a non-increasing symmetric function with respect to the time 
origin: 
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that is the normalized autocorrelation function ( 1)0( =xρ ). 
Auto covariance function is defined as:  
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Developing (17) one gets: 
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The justification for the above results comes from the ergodic theorem (Yaglom, 1962, 
Papoulis, 1977), which states that, for stationary data, the properties computed from time 
averages over individual records of the ensemble will be the same from one record to the next 
and will equal the corresponding properties computed from an ensemble average over the 
records at any time t if 

( ) 01 2 →−∫
−

τμτ dR
T

T

T
xxx   as T→∞.      (5.20) 

In practice, violations of Equation 5.20 are usually associated with the presence of periodic 
components in the data. Equation 5.20 is a sufficient but not a necessary condition for 
ergodicity, which means that the time averages are often justified even when periodic 
components are present or other violations of Equation 5.20 occur; one simply must be more 
careful in such cases to confirm that the time averaged properties of different records are the 
same. 
In conclusion, for stationary ergodic processes, the ensemble is replaced by one representative 
function, thus the ensemble averages being replaced by temporal averages, Figure 5.5. 
An ergodic process is necessarily stationary since the temporal average is a constant while the 
ensemble average is generally a function of time at which the ensemble average is performed 
except in the case of stationary processes. A random process can, however, be stationary 
without being ergodic. Each sample of an ergodic process must be completely representative 
for the entire process.  
It is possible to verify experimentally whether a particular process is or is not ergodic by 
processing a large number of samples, but this is a very time-consuming task. On the other 
hand, a great simplification results if it can be assumed ahead of time that a particular process 
is ergodic. All statistical information can be obtained from a single sufficiently long sample. 
In situations where statistical estimates are desired but only one sample of a stationary process 
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is available, it is common practice to proceed on the assumption that the process is ergodic. 
These initial estimates can then be revised when if further data become available.  
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Figure 5.5. Representative sample for a stationary ergodic stochastic process 

 
Zero mean: It is very convenient to perform the computations for zero mean stochastic 
processes. Even if the stationary stochastic process is not zero mean, one can perform a 
translation of the time axis with the magnitude of the mean value of the process (Figure 5.6). 
In the particular case of zero mean stochastic processes, the following relations hold true: 
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Figure 5.6. Zero mean stationary ergodic stochastic process 
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Normality (Gaussian): Before stating the normality assumption, some considerations will be 
given to probability distribution of stochastic processes. 
 

5.4. Probability distribution 
 
Referring again to the ensemble of measurements, assume there is a special interest in a 
measured value at some time t1 that is ξ units or less, that is, A=x(t1)≤ ξ. It follows that the 
probability of this occurrence is 

 ( )[ ] ( )[ ]
N
txNtx

N

ξξ ≤
=≤

∞→

1
1 limProb       (5.23) 

where N[x(t1)≤ ξ] is the number of measurements with an amplitude less than or equal to ξ at 
time t1. The probability statement in Equation 5.23 can be generalized by letting the amplitude 
ξ take on arbitrary values, as illustrated in Figure 5.7. The resulting function of ξ is the 
probability cumulative distribution function, CDF of the random process {x(t)} at time t1, and 
is given by 

 ( ) ( )[ ]ξ≤= 11x Prob txx,tF        (5.24) 
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Figure 5.7. General probability distribution function 
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The probability distribution function then defines the probability that the instantaneous value 
of {x(t)} from a future experiment at time t1 will be less than or equal to the amplitude ξ of 
interest. For the general case of nonstationary data, this probability will vary with the time t1.  
For the special case of stationary ergodic data, the probability distribution function will be the 
same at all times and can be determined from a single measurement x(t) by 
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TX
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=≤=
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1limProb      (5.25) 

where T[x(t)≤ ξ] is the total time that x(t) is less than or equal to the amplitude ξ, as illustrated 
in Figure 5.8.  
In this case, the probability distribution function defines the probability that the instantaneous 
value of x(t) from a future experiment at an arbitrary time will be less than or equal to any 
amplitude ξ of interest.  
 
 P(x) 

P(ξ) 

x

ξ 

t

x (t) 

 
Figure 5.8. Probability distribution function of stationary data 

 
There is a very special theoretical process with a number of remarkable properties one of the 
most remarkable being that in the stationary case the spectral density (or autocorrelation 
function) does provide enough information to construct the probability distributions. This 
special random process is called the normal random process. Aside from its analytical 
advantages the normal process has great importance as a model for real physical processes. 
 
Many random processes in nature which play the role of excitations to vibratory systems are 
at least approximately normal. This observation is made plausible by the central limit 
theorem. With some restrictions, an interpretation of the central limit theorem is that a random 
process will be approximately normal if each of its sample functions can be considered to 
have been generated by the superposition of a large number of independent random sources, 
none single one of which contributed significantly. 
 
Thus the normal (Gaussian) assumption implies that the probability distribution of all 
ordinates of the stochastic process follows a normal (Gaussian) distribution (Figure 5.9).  
A very important property of the normal or Gaussian process is its behavior with respect to 
linear systems. When the excitation of a linear system is a normal process the response will be 
in general a very different random process but it will still be normal.  
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5.5. Statistical sampling considerations 
 
The number of time history records that might be available for analysis by ensemble 
averaging procedures, or the length of a given sample record available for analysis by time 
averaging procedures, will always be finite; that is, the limiting operations n→∞ and T→∞ 
can never be realized in practice. It follows that the average values of the data can only be 
estimated and never computed exactly. The resulting error in the computation of an average 
value due to these finite sampling considerations is of major importance to the interpretations 
and applications of the analyzed data. 
 

))(( dxxtXxPdxf X +<≤=

Normal distribution 

x(t) 

 
Figure 5.9. Normal zero mean stationary ergodic stochastic process 

 

5.6. Other practical considerations 
 
Every effort is usually made in practice to design experiments that will produce stationary 
data because the necessary analysis procedures for nonstationary data are substantially more 
difficult. In most laboratory experiments, one can usually force the results of the experiment 
to be stationary by simply maintaining constant experimental conditions.  
In many field experiments as well, there is no difficulty in performing the experiments under 
constant conditions to obtain stationary data. There are, however, some exceptions. One class 
of exceptions is when the nature of the experiment requires the mechanisms producing the 
data of interest to be time dependent. Examples include the vibration of a spacecraft structure 
during launch. In this case, the experiments can hypothetically be repeated to obtain the 
ensemble of records that properly represents the nonstationary phenomenon of concern. A 
second and more difficult class of exceptions is where the basic parameters of the 
mechanisms producing the data are acts of nature that cannot be controlled by the 
experimenter. Examples include time history data for seismic ground motions, atmospheric 
gust velocities and ocean wave heights. In these cases, one cannot even design repeated 
experiments that would produce a meaningful ensemble. You simply take what you get. The 
usual approach in analyzing such data is to select from the available records quasistationary 
segments that are sufficiently long to provide statistically meaningful results for the existing 
conditions.  
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6. FOURIER SERIES AND TRANSFORMS 
 
A brief review is given here of some basic Fourier series and Fourier transforms relationships. 
More detailed discussions are available from the many textbooks on this subject. 
 

6.1. Fourier series 
 
Consider any periodic record x(t) of period T. Then for any value of t 

 ( ) ( )kTtxtx ±=  k = 1, 2, 3, …      (6.1) 

The fundamental frequency f1 satisfies 

 
T

f 1
1 =           (6.2) 

Such periodic data can be expanded in a Fourier series according to the following formula: 

 ( ) ( )∑
∞

=

++=
1

0 2sin2cos
2 k

kkkk tfbtfaatx ππ      (6.3) 

where 

 
T
kkffk == 1   k = 1, 2, 3, …      (6.4) 

Thus x(t) is described in terms of sine and cosine waves at discrete frequencies spaced Δf = f1 
apart. The coefficients {ak} and {bk} are computed by carrying out the following integrations 
over the period T, say from (-T/2) to (T/2) or from zero to T, that is, 

 ( )∫=
T

kk tdtftx
T

a
0

2cos2 π  k = 0, 1, 2, …     (6.5) 

 ( )∫=
T

kk tdtftx
T

b
0

2sin2 π  k = 1, 2, 3, …     (6.6) 

Note that  

 ( ) x

T

dttx
T

a μ== ∫
0

0 1
2

        (6.7) 

where μx is the mean value of x(t). Equations 6.3 to 6.6 are well known and can be put into 
other equivalent forms using ω=2πf and dω=2π df in place of f.  
Two alternate Fourier series formulas are also commonly used that follow directly from 
trigonometric and complex-valued relations. The first such formula is 

 ( ) ( )∑
∞

=

−+=
1

0 2cos
k

kkk tfXXtx θπ       (6.8) 

where  

 
2

0
0

aX =          (6.9) 

 22
kkk baX +=  k = 1, 2, 3, …      (6.10) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

k

k
k a

b1tanθ         (6.11) 

Here, x(t) is expressed in a polar form rather that a rectangular form using amplitude factors 
{Xk} and phase factors {θk} at the discrete frequencies fk. The second formula is  
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 ( ) ∑
∞

−∞=

=
k

tfi
k

keAtx π2         (6.12) 

where 

 
2

0
0

aA =          (6.13) 

 ( ) ( )∫ −=−=
T

tfi
kkk dtetx

T
ibaA k

0

21
2
1 π  k = ±1, ±2, ±3, …   (6.14) 

This result is based on Euler’s relation given by 
 θθθ sincos ie i −=−         (6.15) 
Even though x(t) may be real valued, it can be expressed in a theoretical complex-valued form 
using negative as well as positive frequency components. In particular, the factors {Ak} will 
be complex valued with 
 ki

kk eAA θ−=  k = ±1, ±2, ±3, …      (6.16) 
where 

 
22

1 22 k
kkk

XbaA =+=        (6.17) 
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⎠

⎞
⎜⎜
⎝

⎛
= −

k

k
k a

b1tanθ         (6.18) 

 

6.2. Fourier transforms 
 
Suppose the record x(t) is nonperiodic as occurs from stationary random processes or transient 
processes (deterministic or random). The previous Fourier series representations can be 
extended by considering what happens as T approaches infinity. This leads to the Fourier 
integral 

 ( ) ( )∫
∞

∞−

−= dtetxX tiωω  -∞<ω<∞      (6.19) 

where X(ω) will exist if  

 ( ) ∞<∫
∞

∞−

dttx          (6.20) 

The quantity X(ω) defined by Equation 6.19 is called the direct Fourier transform (or 
spectrum) of x(t). Conversely, if X(ω) is known, then the inverse Fourier transform of X(ω) 
will give x(t) by the formula 

 ( ) ( )∫
∞

∞−

= ωω
π

ω deXtx ti

2
1  -∞<t<∞     (6.21) 

The associated x(t) and X(ω) in Equations 6.19 and 6.21 are said to be Fourier transform 
pairs. Notice that X(ω) is generally a complex-valued function of both positive and negative 
frequencies, even when x(t) is real valued. In terms of real and imaginary parts, 
 ( ) ( ) ( )ωωω IR iXXX −=        (6.22) 
where 

 ( ) ( ) ( ) ( )∫
∞

∞−

== tdttxXX R ωωθωω coscos      (6.23) 
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 ( ) ( ) ( ) ( )∫
∞

∞−

== tdttxXX I ωωθωω sinsin      (6.24) 

 

6.3. Finite Fourier transforms 
 
For a stationary random time history record x(t), which theoretically exists over all time, the 
integral 

 ( ) ∞=∫
∞

∞−

dttx          (6.25) 

Hence its Fourier transform as given by Equation 6.19 will not exist. However, one cannot 
measure in the field or in the laboratory any x(t) only over some finite time interval T so that 
X(ω) is estimated by computing the finite Fourier transform 

 ( ) ( ) ( )∫ −==
T

ti
T dtetxTXX

0

, ωωω       (6.26) 

Such finite Fourier transforms will always exist for finite length records of stationary random 
processes. 
At the discrete frequencies fk = (k/T), the finite Fourier transform yields 
 ( ) kk TATfX =,  k = ±1, ±2, ±3, …     (6.27) 
Hence if f is restricted to take on only these discrete frequencies, then the finite Fourier 
transform calculations will actually produce a Fourier series of period T. For digital 
processing of data, this is precisely what occurs. 
To be specific, one should be aware of digital procedures. When x(t) is sampled at points Δt 
apart, the record length becomes T = NΔt, where N is the sample size. This automatically 
induces a Nyquist cutoff frequency fc = (1/2Δt). Also, the computations treat the data as if 
they were periodic data of period T. Hence the fundamental frequency is f1 = (1/T) and results 
are obtained only at discrete frequencies spaced Δf = f1 apart. The continuous record x(t) is 
replaced by the data sequence {xn} = {x(nΔt)} for n = 1, 2, 3, …, N, and the continuous 
Fourier transform sequence X(f) is replaced by the discrete Fourier transform sequence {Xk} = 
{X(nΔf)} for k = 1, 2, 3, …, N. Values beyond k = (N/2) can be computed from earlier values 
since fc = (N/2)Δf. The appropriate Fourier transform pair formulas are 

 ( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛−Δ=Δ=

N

n
nk N

knixtfkXX
1

2exp π  k = 1, 2, 3, …, N  (6.28) 
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N

k
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kniXftnxx
1

2exp π   n = 1, 2, 3, …, N  (6.29)  

A few consequences of these formulas for real-valued sequences {xn} follow. Let Xk
* be the 

complex conjugate of Xk. Then  
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2/2/

*

*

    (6.30) 

Thus xn is a repetitive function of n modulo N, and Xk is a repetitive function of k modulo N.  
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6.4. Delta functions 
 
Consider a rectangular-shaped function f(t) with a magnitude 1/w and a width w centered at 
t=0, as shown in Figure 6.1. The equation of this function is  

 ( )
⎪
⎩

⎪
⎨

⎧

>

≤≤−
=

2
0

22
1

wt

wtw
wtf        (6.31) 

and the area under the function is given by the integral of f(t) as follows: 

 ( ) 112/

2/

=⎟
⎠
⎞

⎜
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⎛=== ∫ ∫
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∞− −
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      (6.32) 
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Figure 6.1. Evolution of the delta function 

 
Now let the base of f(t) become increasing small with a corresponding increase in height so as 
to maintain unity are, as shown in Figure 6.1. In the limit as w→0, it follows that 

 ( )
( )

⎪⎩

⎪
⎨
⎧

≠

=∞=
= →

00

0lim
0

t

ttf
t wδ        (6.33) 

but the integral of the function, as given by Equation 6.32, remains unity, that is, 

 ( ) 1lim
0

=⎟
⎠
⎞

⎜
⎝
⎛=∫

−
→

ε

ε

δ
w
wdtt

w
        (6.34) 

where ε is an arbitrarily small value. 
Limiting functions of this type are called Delta (Dirac) functions and are denoted by δ(t). 
Delta functions can be positioned at any point t0 and can have any area A using the notation 
Aδ(t-t0). Specifically, 

 ( )
⎩
⎨
⎧

≠
=∞

=−
0

0
0 0 tt

tt
ttAδ        (6.35) 
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Furthermore, when any analytic function x(t) is multiplied by a delta function δ(t-t0) and 
integrated, the result is the value of x(t) at t=t0, that is 

 ( ) ( ) ( )00 txdttttx∫
∞

∞−

=−δ        (6.37) 

Thus the delta function can help pick out particular values of x(t) at t=t0. 
The direct Fourier transform X( f ) associated with a delta function δ(t) is given by 

 ( ) ( )∫
∞

∞−

− == 12 dtetfX fti πδ  for all f      (6.38) 

The inverse Fourier transform relation gives 

 ( ) ( ) ( )tdfedfefXtx ftifti δππ === ∫∫
∞

∞−

∞

∞−

22       (6.39) 

 
Table 6.1. Special Fourier transform pairs 

x(t) X( f ) 
1 δ( f ) 

ei2πfot δ( f – f0 ) 
x(t-t0) X( f ) e-i2πfto 
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7. POWER SPECTRAL DENSITY (PSD) FUNCTION OF A STATIONARY 
ERGODIC RANDOM FUNCTION 
 

7.1. Background and definitions 
 
Returning to random processes one recalls that for stationary processes the autocorrelation 
function R(τ) was a function of the interval τ = t2 – t1. A frequency decomposition of R(τ) can 
be made in the following way 

 ∫
+∞

∞−

⋅= ωωτ ω deSR ri
xx )()(        (7.1) 

where Sx(ω) is essentially (except for the factor 2π) the Fourier transform of R(τ) 

 ∫
∞+

∞−

−⋅= ττ
π

ω ωτ deRS i
xx )(

2
1)(       (7.2) 

Sx(ω) is a non-negative, even function of ω. 
A physical meaning can be given to Sx(ω) by considering the limiting case of Equation 7.1 in 
which τ = 0 

 ∫
+∞

∞−

== ωω dSxR xx )()0( 2        (7.3) 

The mean square of the process equals the sum over all frequencies of Sx(ω)dω so that Sx(ω) 
can be interpreted as mean square spectral density (or power spectral density, PSD). If the 
process has zero mean, the mean square of the process is equal to the variance of the process 

 {
2

0

222)()0( xxxxx mxdSR σσωω =+=== ∫
+∞

∞−

     (7.4) 

 The Equations 7.1 and 7.2 used to define the spectral density are usually called the Wiener – 
Khintchine relations and point out that )(),( ωτ xx SR are a pair of Fourier transforms. 
Note that the dimensions of Sx(ω) are mean square per unit of circular frequency. Note also 
that according to Equation 7.3 both negative and positive frequencies are counted. 
It is like a random process is decomposed in a sum of harmonic oscillations of random 
amplitudes at different frequencies and the variance of random amplitudes is plotted against 
frequencies. Thus the power spectral density (PSD) is obtained (Figure 7.1). The power 
spectral density function gives the image of the frequency content of the stochastic process. 
 

 )(ωxS

ω
2ω1ω

pω− pω0  
Figure 7.1 Power spectral density function 
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As one can notice from Equation 7.3 and from Figure 7.1, the area enclosed by the PSD 
function in the range [ω1, ω2] represents the variance of the amplitudes of the process in that 
particular range. The predominant frequency of the process, ωp, indicates the frequency 
around whom most of the power of the process is concentrated.  
The PSD so defined is convenient in analytical investigations. In experimental work a 
different unit of spectral density is widely used. The differences arise owing to the use of 
cycles per unit time in place of radians per unit time and owing to counting only positive 
frequencies. The experimental spectral density will be denoted by Gx( f ) where f is frequency 
in Hz. The relation between Sx(ω) and Gx( f ) is simply 
 ( ) ( )ωπ xx SfG 4=         (7.5) 
The factor 4π is made up of a factor of 2π accounting for the change in frequency units and a 
factor of 2 accounting for the consideration of positive frequencies only, instead of both 
positive and negative frequencies for an even function of frequency. In place of Equation 7.3 
one has 

( ) ∫∫∫∫ ∫
+∞+∞+∞+∞

∞−

+∞

======
0000

2 )(2)(2)(2)()(0 dffGdfSdSdGdSR xxxxxx πωωωωωωωσ  (7.6) 

for the relation between the variance of the zero-mean process and the experimental PSD.  
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Figure 7.2. Various representations of PSD 
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The PSD is the Fourier transform of a temporal average (the autocorrelation function) and 
thus the spectral density of a random process is itself a kind of temporal average and plays the 
role of a density distribution of the variance along the frequency axis. 
It can be shown that for real processes the autocorrelation function is an even function of τ 
and that it assumes its peak value at the origin. If the process contains no periodic components 
then the autocorrelation function approaches zero as τ→∞. If the process has a sinusoidal 
component of frequency ω0 then the autocorrelation function will have a sinusoidal 
component of the same frequency as τ→∞. 
If the process contains no periodic components then PSD is finite everywhere. If, however, 
the process has a sinusoidal component of frequency ω0 then the sinusoid contributes a finite 
amount to the total mean square and the PSD must be infinite at ω=ω0; i.e., the spectrum has 
an infinitely high peak of zero width enclosing a finite area at ω0. In particular, if the process 
does not have zero mean then there is a finite zero frequency component and the spectrum 
will have a spike at ω=0. 
For practical computations, Equations 7.1 and 7.2 become: 

 ∫
+∞

∞−

= ωωτωτ dSR xx cos)()(       (7.7) 

 ∫
+∞

∞−

= τωττ
π

ω dRS xx cos)(
2
1)(       (7.8) 

if one uses 

 tte ti ωωω sincos ±=±          

and keeps just the real parts of the integrands in Equations 7.1 and 7.2. 

 

7.2. Properties of first and second time derivatives 
 

Given a stationary random process x(t), then the random processes ( ) ( )[ ]tx
dt
dtx =

.
, each of 

whose sample functions is the temporal derivative of the corresponding sample x(t), and 

( ) ( )[ ]tx
dt
dtx 2

2..
= , each of whose sample functions is the temporal second derivative of the 

corresponding sample x(t), are also stationary random processes. Furthermore, the following 
relations hold true: 
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Using Equation 7.3 in 7.9 and 7.10, for a zero mean process is follows: 
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7.3. Frequency content indicators 
 
The frequency content of ground motion is the crucial concept for the understanding of the 
mechanism of ground motion to damage structures. The maximum values of structure 
response are when the structure frequency and the major part of the frequency content of 
ground motion fall in the same frequency band. 
The frequency content can be described:  
1. Directly, by the power spectral density function (PSD), obtained from stochastic modeling 
of the acceleration process; 
2. Indirectly, by the response spectra obtained from numerical integration of the motion 
equation for the SDOF structure. 
The stochastic measures of frequency content are related to the power spectral density 
function of stationary segment of the ground motion. They are: 
(i) The dimensionless indicator ε (Cartwright & Longuet - Higgins); 
(ii) The Kennedy – Shinozuka indicators f10, f50 and f90 which are fractile frequencies below 
which 10%, 50% and 90% of the total cumulative power of PSD occur and the frequencies f1, 
f2 and f3 corresponding to the highest 1,2,3 peaks of the PSD. 
To define the frequency content indicators, one has to introduce first the spectral moment of 
order “i”: 

 ∫
+∞

∞−

= ωωωλ dSx
i

i )(        (7.12) 

It follows from Equations 6.4, 7.11 and 7.12 that: 
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The Cartwright & Longuet-Higgins indicator is: 

 
40

2
21
λλ

λ
ε

⋅
−=         (7.16) 

Wide frequency band processes have ε values close to 2/3 and smaller than 0.85. Narrow 
frequency band seismic-processes of long predominant period (i.e. superposition of a single 
harmonic process at a short predominant frequency, fp and a wide band process) are 
characterized by ε values greater than 0.95.   
The RMS value of the ground acceleration process is the square root of two-order spectral 
moment λ0

1/2  and is very sensitive to the strong motion duration definition. 
Cumulative power of the PSD is defined by: 

  Cum G(ω1) = ∫
−offcutω

ωω
0

d)(G                                                  (7.17)                                

where the cut-off frequency is the reverse of the double of time interval used in process 
digitization. 
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The duration for computing PSD of the stationary segment of the acceleration process should 
be selected as D = T0.9 - T0.1, where T0.9 and T0.1 are the times at which 90% and 10% of the 
total cumulative energy of the accelerogram are reached. Alternative duration definitions are: 
D = T0.95 - T0.05 or D = T0.75 - T0.05. 
The Kennedy-Shinozuka indicators are 905010 ,, fff  and can be defined as: 

 1.0)(
10

0

=∫
f

x dffg         (7.18) 

 5.0)(
50

0

=∫
f

x dffg         (7.19) 

 9.0)(
90

0

=∫
f

x dffg         (7.20) 

 
The physical meaning of the above indicators is that for 10f - the area enclosed by the 
normalized spectral density situated to the left of 10f is equal to 10% of the total area. 

)( fgx

f

10f 50f 90f

1

 
Figure 7.3. Kennedy – Shinozuka indicators 

 
The difference 1090 ff − gives an indication on the bandwidth of the process. 
 

7.4. Wide-band and narrow-band random process 
 
The PSD of a stationary random process is usually an incomplete description of the process 
but it does constitute a partial description. Here this description is examined for two extreme 
cases: a wide-band spectrum and a narrow-band spectrum. 
 
7.4.1. Wide-band processes. White noise 
 
A wide-band process is a stationary random process whose PSD has significant values over a 
band or range of frequencies which is of roughly the same order of magnitude as the center 
frequency of the band. A wide range of frequencies appears in representative sample 
functions of such a process. An example of a wide-band spectrum is displayed in Figure 7.4.  
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wide band process 

)(ωxS

ω

pω

 
Figure 7.4. Example of wide band spectrum 

 
In analytical investigations a common idealization for the spectrum of a wide-band process is 
the assumption of a uniform PSD, S0 as shown in Figure 7.5. A process with such a spectrum 
is called white noise in analogy with white light which spans the visible spectrum more or less 
uniformly. Ideal white noise is supposed to have a uniform density over all frequencies. This 
is a physically unrealizable concept since the mean square value (equal to the variance for 
zero-mean processes) of such a process would be infinite because there is an infinite area 
under the spectrum. Nevertheless, the ideal white noise model can sometimes be used to 
provide physically meaningful results in a simple manner.  

 
)(ωxS

ω

0S

 
Figure 7.5. Theoretical white noise ( +∞<<∞− ω ) and ∞→2

xσ  
 
The band-limited white noise spectrum shown in Figure 7.6 is a close approximation of many 
physically realizable random processes.  
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Figure 7.6. Band-limited white noise, )(2 120

2 ωωσ −⋅= Sx  
 

For band-limited white noise the autocorrelation function is, Figure 7.7: 
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For a wide band process the autocorrelation function is vanishing quickly (~2cycles). Here is 
a finite variance )(2 120

2 ωωσ −⋅= Sx  and nonzero correlation with the past and the future, at 
least for short intervals.  

τ

)(τxR

 
Figure 7.7. Autocorrelation function corresponding to the band-limited white noise spectra 

 
7.4.2. Narrow band processes 
 
A narrow-band process is a stationary random process whose PSD has significant values only 
in a band or range of frequencies whose width is small compared with the magnitude of the 
center frequency of the band, Figure 7.8. Only a narrow range of frequencies appears in the 
representative samples of such a process. Narrow-band processes are typically encountered as 
response variables in strongly resonant vibratory systems when the excitation variables are 
wide-band processes. 
If it can be assumed that the process is normal then it is possible to compute the average or 
expected frequency of the cycles. 
 

7.4.2.1. Expected frequency of narrow-band process 
When a stationary normal random process with zero mean has a narrow-band spectrum, the 
statistical average frequency or expected frequency is ω0 where: 
 

 

narrow band process 

)(ωxS

ω

pω

 
Figure 7.8. Narrow band spectrum 
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This result is simply stated and has a simple interpretation; i.e., ω0
2 is simply a weighted 

average of ω2 in which the PSD is the weighting function. The establishment of this result, by 
S. O. Rice represented a major advance in the theory of the random processes. Following is a 
brief outline of the procedure. 
Let x(t) be a stationary process and let νa

+ be the expected frequency of crossing the level x=a 
with positive slope. It will be seen that for a narrow-band process ν0

+ is just the expected 
frequency of cycles so that ω0 = 2π ν0

+. It is no more difficult to consider a general value of a 
at this point and set a = 0 at the end.  
We next consider the geometry involved in a sample function crossing the level x=a during a 
particular small time interval dt. The situation is sketched in Figure 7.9. All sample functions 

cross the line t=t but only a small fraction of these cross the line x=a with positive slope 
.
x >0 

during the interval dt. Two such samples are indicated in the Figure 7.9. We suppose that dt is 
so small that the samples can be treated as straight lines in the interval. If a sample crosses t = 
t with an x value less than a then it will also cross x=a with positive slope during the time dt if 

its slope 
.
x  at t = t has any value from ∞ down to the limiting value (a-x)/dt. Using this 

statement we can examine each sample at t = t and decide whether or not its combination of x 

and 
.
x  values will yield a crossing of x = a.   

 

 
Figure 7.9. Sample functions which cross x = a during the interval dt 

 
If one assumes that x(t) is a stationary normal zero-mean process, one finds the expected 
number of crossing the level x=a with positive slope: 
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The standard deviations in Equation 7.23 are obtained from Equations 7.6 and 7.11. Returning 
to our original problem, we set a = 0 in Equation 7.23 to obtain the expected frequency, in 
crossings per unit time, of zero crossings with positive slope. Finally if the process narrow-
band, the probability is very high that each such crossing implies a complete “cycle” and thus 
the expected frequency, in cycles per unit time, is ν0

+. It should be emphasized that this result 
is restricted to normal processes with zero mean.  

7.4.2.2. Autocorrelation function of narrow-band processes 
For band-limited white noise, Figure 7.10, the autocorrelation function is: 
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Figure 7.10. Band-limited white noise, ωσ Δ= 0

2 2Sx  
 
For narrow-band processes, the autocorrelation function is periodically and is vanishing 
slowly, Figure 7.11. 
 

 )(τxR

τ

 
Figure 7.11. Autocorrelation function of narrow-band processes 
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8. DYNAMIC RESPONSE OF SDOF SYSTEMS TO STOCHASTIC PROCESSES 
 
When attention is focused on the response of structural systems to random vibration it is 
generally possible to identify an excitation or input and a response or output. The excitation 
may be a motion (i.e., acceleration, velocity, or displacement), or a force history. The 
response may be a desired motion history or a desired stress history. When the excitation is a 
random process, the response quantity will also be a random process. The central problem of 
this chapter is the determination of information regarding the response random process from 
corresponding information regarding the excitation process. 
A general solution to this problem for stationary processes is described in the case where the 
vibratory structure is a linear time-invariant system and explicit solutions are obtained for 
systems with one degree of freedom. 
A vibratory system is said to be linear and time-invariant if its equations of motions take the 
form of linear differential equations with constant coefficients. A system with a single degree 
of freedom can be described by a single second-order ordinary differential equation. 
The general problem is shown schematically in Figure 8.1. The excitation history is x(t) and 
the response history is y(t). At present, these are still generalized quantities. In preparation for 
the case where input and output are both random vibrations we review the case where they are 
individual particular functions.  
 
 
 
 

 
Figure 8.1. Block diagram of excitation-response problem 

 
If x(t) is a specified deterministic time history then it is possible to obtain a specific answer 
for y(t) by integrating the differential equations of motion, subject to initial conditions. 
 

8.1. Complex frequency response 
 
It is a property of linear time-invariant systems that when the excitation is steady state simple 
harmonic motion (without beginning or end) then the response is also steady state simple 
harmonic motion at the same frequency. The amplitude and phase of the response generally 
depend on the frequency. A concise method of describing the frequency dependence of the 
amplitude and phase is to give the complex frequency response or transfer function H(ω). 
This has the property that when the excitation is the real part of eiωt then the response is the 
real part of H(ω) eiωt. The complex transfer function H(ω) is obtained analytically by 
substituting  
 tiex ω=               (8.1) 
 ( ) tieHy ωω=              (8.2) 
in the equations of motion, canceling the eiωt terms, and solving algebraically for H(ω). 
Since H(ω) is essentially an output measure for unit input its dimensions will have the 
dimensions of the quotient y/x. In complex structures where more than one response is of 
interest it will be necessary to use subscripts to suitably identify which complex transfer 
function is being considered. 
Knowledge of a transfer function H(ω) for all frequencies contains all the information 
necessary to obtain the response y(t) to an arbitrary known excitation x(t). The basis for this 
remark is the principle of superposition, which applies to linear systems. The superposition 

x(t) 
Linear time-invariant 

vibratory system y(t) 
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here is performed in the frequency domain using Fourier’s method. When x(t) has a period 
then it can be decomposed into sinusoids forming a Fourier series. The response to each 
sinusoid, separately, is provided by H(ω) and these responses form a new Fourier series 
representing the response y(t). When x(t) is not periodic but has a Fourier transform 

 ( ) ( )∫
∞

∞−

−= dtetxX tiωω        (8.3) 

then an analogous superposition is valid. For each frequency component separately Equations 
8.1 and 8.2 yield: 
 ( ) ( ) ( )ωωω XHY =        (8.4) 
as the Fourier transform of the response y(t). The response itself is given by the inverse 
Fourier transform representation 

 ( ) ( )∫
∞

∞−

= ωω
π

ω deYty ti

2
1        (8.5) 

Telescoping Equations 8.3, 8.4 and 8.5 provides a very general input-output relation for a 
wide class of inputs x(t) 

 ( ) ( ) ( )∫∫
∞

∞−

−
∞

∞−

= ττωω
π

ωτω dexdeHty iti

2
1      (8.6) 

In principle, knowledge of H(ω) permits evaluation of Equation 8.6 to give the explicit 
response y(t) for an arbitrary excitation x(t). 
 

8.2. Impulse response 
 
A general solution for the response of a linear time-invariant system may also be obtained by 
superposing unit solutions in the time domain. If x(t) is the unit impulse and has the form  
 ( ) ( )τδ −= ttx         (8.7) 
where δ(t-τ) is the Dirac delta function which is zero except at t=τ where the ordinate is 
infinite and it encloses unit area. In case x(t) represents an acceleration history then δ(t-τ) 
represents the acceleration that accompanies an instantaneous unit change in velocity. When 
x(t) represents a force history then δ(t-τ) represents a blow with unit impulse in the sense of 
classical mechanics.  
Let the response y(t), of the system in Figure 8.1, to the excitation δ(t-τ) be called the impulse-
response function h(t-τ). It is assumed that y(t) is zero prior to t=τ so that h(t-τ) is obtained by 
solving the differential equations of motions with δ(t-τ) as the excitation and with zero initial 
conditions for t<τ. Essentially, h(t-τ) is response per unit of excitation multiplied by time.  
The impulse-response function h(t-τ), once obtained, contains all the information necessary to 
find the response y(t) to an arbitrary known excitation x(t). The basis for this remark is once 
more the principle of superposition. The superposition now is accomplished in the time 
domain. This is illustrated in Figure 8.2 where an arbitrary excitation x(t) is shown divided 
into differential elements. A typical area element at t=τ has width dτ and height x(τ). This area 
can be approximated by an impulse of magnitude x(τ)dτ applied at t=τ. The response at t=t to 
this impulse would be  

 ( )[ ] ( )τττ −thdx  

Then, because of the linearity, the response y(t) due to all such elements in the past of x(t) is 
given by the following superposition or convolution integral 
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 ( ) ( ) ( )∫
∞−

−=
t

dthxty τττ        (8.8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.2. Arbitrary excitation x(t) is represented by a sum  

of infinitesimal impulses of magnitudes x(τ)dτ applied at times τ 
 
Furthermore, of one remembers that h(t-τ) vanishes when τ>t (i.e., when the response is 
considered before the impulse is applied) then one can replace the upper limit in Equation 8.8 
by ∞ without changing the value of the integral 

 ( ) ( ) ( )∫
∞

∞−

−= τττ dthxty        (8.9) 

 
An alternative form of Equation 8.9 may be obtained by changing the integration variable 
from τ to θ= t-τ 

 ( ) ( ) ( )∫
∞

∞−

−= θθθ dhtxty        (8.10) 

 
Either Equation 8.9 or 8.10 provides a general input-output relation giving the explicit 
response y(t) to an arbitrary known excitation x(t). Thus these superposition integrals 
accomplish the same purpose as the Fourier integral representation, Equation 8.6.  
It is pointed out that H(ω) is in fact just the Fourier transform of h(t). A simple way to show 
this is to insert a unit impulse δ(τ) for x(τ) in Equation 8.6. Evaluating the integral one finds 

 ( ) ( )∫
∞

∞−

= ωω
π

ω deHth ti

2
1        (8.11) 

 
since in the second integral of Equation 8.6 x(τ) is zero everywhere except at τ = 0 where it 
has unit area and since e-iωt is also unity at τ = 0 the complete second integral is unity. 
Thus, H(ω) is in fact just the Fourier transform of h(t) 

 ( ) ( )∫
∞

∞−

−= dtethH tiωω        (8.12) 

 

x(t)

t 

t=τ 

dτ 

t=t 0 
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8.3. Single degree of freedom (SDOF) systems 
 
To illustrate the preceding ideas one considers now the system shown in Figure 8.3 where a 
single mass is attached to a moving support by means of a linear rod in parallel with a linear 
dashpot. One suppose that the motion of the support is known in terms of its acceleration a(t) 
and that one is interested in the relative displacement y(t) between the mass and the support. 

 
 DOF )(ty

)(ta

kc,

)(),(),( tdtvta  - action 
)(ty - response 

 

a(t) y(t)

A(iω) Y(iω)

h(t)

H(iω) 

System 

 
 

Figure 8.3. SDOF system and excitation-response diagram associated with this system 
 
Newton’s law of motion in terms of relative displacement provides the following differential 

equation 

 0)()()( =++ tFtFtF restoringdampinginertia      (8.13) 

which simplifies to 

 )()()(2)( 2
00 tatytyty −=⋅+⋅+ ωξω &&&       (8.14) 

where: 
ξ – damping ratio 
ω0 – natural circular frequency of the SDOF system. 
Equation 8.14 can be solved in the time domain or in the frequency domain. 
 
8.3.1. Time domain 
One uses the solution of Equation 8.14 given by Duhamel’s integral 

 ∫ −⋅=
t

dthaty
0

)()()( τττ          (8.15) 

where: 

d(t) 
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 teth d
t

d

ω
ω

ξω sin1)( 0 ⋅−= −        (8.16) 

is the impulse-response function to unit and the damped circular frequency is 

 2
0 1 ξωω −=d         (8.17) 

 
8.3.2. Frequency domain 
The solution of the problem in the frequency domain is given by adapting the Equation 8.4 

 )()()( ωωω AHY ⋅=               (8.18) 

where:  
A(ω) – Fourier transform of the excitation (input acceleration) given by  

 ∫
+∞

∞−

−⋅= dtetaA tiωω )()(         (8.19) 

)(ωH  - transfer function of the system 
Y(ω) – Fourier transform of the response (relative displacement). 
If the excitation is the real part of the complex function tie ω , then, the response is the real part 
of the complex function tieH ωω)( . Consequently, the transfer function H(ω) is obtained by 
making the substitution ( ) tieta ω= and ( ) ( ) tieHty ωω=  in equation 8.14, canceling the eiωt 
terms, and solving algebraically for H(ω): 
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Note that here H(ω) has the dimensions of displacement per unit acceleration. 
The square of the modulus of the complex transfer function is given by 
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The maximum response of the system is, Figure 8.4 

 )()(max ωHty =         (8.22) 

and the employment of Equations 8.21 and 8.22 gives the maximum response of the system 
as: 
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The modulus of the non-dimensional complex transfer function is given by, Figure 8.4  
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which is related to the modulus of the complex transfer function by 

 )(1)( 02
0

ω
ω

ω iHiH ⋅=        (8.25) 

The maximum value of the maximum response is reached for ω= ω0 and is given by, Figure 
8.4 

 
ξξω 2
1

2
11)(max 2

0
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k
mty       (8.26) 

 
where m is the mass of the SDOF system and k is the stiffness of the SDOF system 
( 2

0ωmk = ). 
 

)( ωiH )(0 ωiH

ω ω0ω 0ω

1

ξω 2
11

2
0

⋅ ξ2
1

0 0  
Figure 8.4. Modulus of the complex transfer function  

and of the non-dimensional transfer function 
 
Once the solution of Equation 8.18 is computed, one can go back in time domain by using the 
inverse Fourier transform 

 ∫
+∞

∞−

= ωω
π

ω deiYty ti)(
2
1)(        (8.27). 

 

8.4. Excitation-response relations for stationary random processes 
 
The main assumptions used in the following are, Figure 8.5: 
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o SDOF 
 

o action 
 
 

o structure with elastic behavior 
 
The previous section has dealt with the excitation-response or input-output problem for linear 
time-invariant systems in terms of particular responses to particular excitations. In this section 
the theory is extended to the case where the excitation is no longer an individual time history 
but is an ensemble of possible time histories; i.e., a random process. When the excitation is a 
stationary random process then the response is also a stationary random process. One shows 
how the more important statistical properties of the response process can be deduced from 
knowledge of the system and of the statistical properties of the excitation. 
 

)(ta )(ty

tt

 
Figure 8.5. Excitation-response processes 

 
8.4.1. Mean value of the response 
It is desired to obtain the mean, my(t) or expected value, E[y(t)] of the response process. For 
any individual sample excitation and response one has the relation 94: 

 ( ) ( ) ( )∫
∞

∞−

−= θθθ dhtxty  

Using E[ ] to denote ensemble average (which for ergodic processes is equal to the temporal 
average) one imagines Equation 8.10 to be written for x, y pair and then one averages: 

 ( )[ ] ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= ∫

∞

∞−

θθθ dhtxEtyE       (8.28) 

Since integration and averaging are both linear operations their interchange is permissible  

 ( )[ ] ( )[ ] ( )∫
∞

∞−

−= θθθ dhtxEtyE       (8.29) 

Now E[x(τ)] is a constant independent of τ when x is a stationary random process so that 
finally 

 ( )[ ] ( )[ ] ( )∫
∞

∞−

= θθ dhtxEtyE        (8.30) 

which gives the mean of the output process in terms of the mean of the input process. The 
integral in Equation 8.30 is a system constant which can be given alternatively by setting ω=0 
in Equation 8.12 to obtain 

 ( ) ( )∫
∞

∞−

= θθ dhH 0         (8.31) 

Finally, using Equations 8.30 and 8.31 one gets the relation between the means of the input 
and output random processes as 

 Stationary 
 Ergodic 
 Zero-mean 
 Normal 

response
 Stationary 
 Ergodic 
 Zero-mean 

Normal 



 

Structural Reliability and Risk Analysis – Lecture Notes 
 

119

 ( )[ ] ( )[ ] ( )0HtxEtyE =         (8.32) 

Note that E[y(t)] is actually independent of t. 
In particular, if the input has zero mean value than so does the output. If the input is an 
acceleration zero-mean process: 

 [ ] 0)()( === consttaEtma  

the response process is also zero-mean process: 

 ( )[ ] 0)(1)()0()( 2
0

=⋅=⋅== tmtmHtyEtm aay ω
. 

 
8.4.2. Input-output relation for spectral densities 
The relation between the PSD of the excitation x(t) and the spectral density of the response 
y(t) is simply 

 )()()()( ωωωω xy SHHS ⋅−=       (8.33) 

A slightly more compact form is achieved by noting that the product of H(ω) and its complex 
conjugate may be written as the square of the modulus of H(ω); i.e., 

 )()()( 2 ωωω xy SHS ⋅=        (8.34). 

The power spectral density of the response is equal to the square of modulus of the transfer 
function multiplied with the power spectral density of the excitation. Note that this is an 
algebraic relation and only the modulus of the complex transfer function H(ω) is needed. 
8.4.3. Mean square response 
The mean square E[y2] of the stationary response process y(t) can be obtained when the 
spectral density Sy(ω) of the response is known according to Equation 7.3. These may be 
restated in terms of the input process x(t) by using the result 8.34 just obtained. 
Thus if the input PSD Sx(ω) is known 

 [ ] ωωω
ω

ωωωωω dSHdSHdSyE xxy ∫∫ ∫
+∞

∞−

+∞

∞−

+∞

∞−

⋅⋅=⋅== )()(1)()()( 2
04

0

22    (8.35) 

In particular, if the output has zero mean value, the mean square is equal to the variance of the 
stationary response process y(t) and equation 8.35 turns to: 

 ∫ ∫
+∞

∞−

+∞

∞−

⋅== ωωωωωσ dSHdS xyy )()()( 22     (8.36) 

The procedure involved in Equation 8.36 is depicted in Figure 8.6 for stationary ergodic zero-
mean acceleration input process. 
 

8.5. Response of a SDOF system to stationary random excitation 
 
As an application of the general results of the preceding section one studies the simply 
vibratory system illustrated in Figure 8.3. The excitation for this system is the acceleration 
a(t) of the foundation and the response y(t) is the relative displacement between the 
foundation and the suspended mass. One shall consider two cases: first when the excitation is 
white noise; and, second, when the vibratory system is low damped. 
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8.5.1. Response to band limited white noise 
The excitation a(t) is taken to be a stationary random process with band limited white 
spectrum with uniform spectral density S0. The response y(t) will also be a random process. 
Because the excitation is stationary the response process will also be stationary. If, in 
addition, the input is known to be ergodic then so also will be the output. Similarly, if it is 
known that the input is a normal or Gaussian process then one knows that the output will also 
be a normal process. Aside from these general considerations the results of the previous 
sections permit us to make quantitative predictions of output statistical averages (which are 
independent of the ergodic or Gaussian nature of the processes). 
Thus, let us suppose that the excitation has zero mean. Then according to Equation 8.32 the 
response also has zero mean.  
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Figure 8.6. Variance of output process from the PSD of the input process 

 
The corresponding analysis in the frequency domain involves simple calculations. The 
spectrum of the input is simply the constant S0. The spectrum of the output follows from 
Equation 8.34, Figure 8.7: 
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The mean square of the response (equal to the variance of the process in case of zero-mean 

processes) can be deduced from the spectral density of the response using 
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In case the process is normal or Gaussian it is completely described statistically by its spectral 
density. The first-order probability distribution is characterized by the variance alone in this 
case where the mean is zero.  
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Figure 8.7. Band limited white noise and transfer function of the system 

 
8.5.2. SDOF systems with low damping  
 
For the systems with low damping ( 1.0<ξ ), the transfer function of the system has a very 
sharp spike at ω= ω0 and the amplitudes of the function decreases rapidly as moving away 
from ω0. At a distance of ±ξω0 from ω0 the amplitude of the transfer function is half the 
maximum amplitude. Because of this particular aspect of the transfer function of SDOF 
systems with low damping, the product under the integral in Equation 8.36 will raise 
significant values only in the interval ω0  ± ξω0 and one can assume that the PSD of the input 
excitation is constant in this interval and equal to )( 0ωaS , Figure 8.8. Thus, Equation 8.38 
valid for band-limited white noise is also applicable and the variance of the response process 

is equal to 3
0
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2
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Note: If the mean and the variance of the displacement response process are known, the mean 

and the variance of the velocity and the acceleration response processes can be found using 

the relations: 
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Figure 8.8. Computation of response process variance for SDOF systems with low damping 

 
8.5.3. Distribution of the maximum (peak) response values 
 
Let y(t) be a stationary ergodic normal process, Figure 8.9. The distribution of all values of 
the process is known to follow a Gaussian distribution type. One is interested in the 
distribution of the maximum response values.  
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Let νb
+ be the expected frequency of crossing the level x=b (b is called barrier or threshold 

value) with positive slope. Basically, one counts how many times the process intersects the 

barrier in unit time with positive slope, 
0)(

)(
>
>

ty
bty

&
. 

The question to be answered here is what is the number of crossings over threshold „b” with 
positive slope in unit time, ( +

)(bν )? The problem was already analyzed: 
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Figure 8.9. Distribution of all values and of the maximum values  

of the stationary ergodic normal response process y(t) 
 

If one uses the spectral moments ∫
+∞

∞−

= ωωωλ dS y
i

i )( , the variance of the response is equal to 

the spectral moment of order zero, 2
0 yσλ =  and the variance of the first derivative of the 

response is equal to the spectral moment of second order, 2
2 y&σλ =  and Equation 8.39 

becomes: 
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The expected frequency, in crossings per unit time, of zero crossings with positive slope (the 
average number of zero crossings with positive slope in unit time) is obtained setting b=0 in 
Equation 8.40: 
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Finally, combining Equations 8.40 and 8.41, one gets the expected number of crossing the 
level x=a with positive slope: 
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For getting the distribution of the peak values of the response process one uses the 
Davenport’s approach. The maximum (peak) response is normalized as: 
 

 
y

y
σ

η max=          (8.43) 

 
The normalized response process as well as the distribution of the peak values of the response 
are represented in Figure 8.10. 
Considering the new random variable,η  one can proof that its probability distribution is of 
exponential type: 
 

CDF: ))(exp( max tyF ⋅−= +νη       (8.44) 

where t is the time interval under consideration. 
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Figure 8.10. Normalized response and distribution of peak values 

 
Combining Equation 8.44 with Equations 8.42 and 8.43 one gets the cumulative distribution 
function, CDF: 
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The probability distribution function, PDF is obtained by: 
 

PDF: 
η

η
η d
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The probability density function and the cumulative distribution function of the normalized 
peak response, η are represented in Figure 8.11 and Figure 8.12, respectively.  
 
The mean value of the distribution, ηm (mean of the maximum (peak) response values) is 
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while the standard deviation of the maximum response values is 
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Combining Equations 8.38, 8.43 and 8.47, one gets the mean of maximum response values: 
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Figure 8.11 Probability density function of the normalized peak response η  

for various ν0T values 
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Figure 8.12 Cumulative distribution function of the normalized peak response η  

for various ν0T values 
 
Finally, one has to answer the following question, Figure 8.13: What is the maximum 
response with p non-exceedance probability in the time interval T?  
The maximum response with p non-exceedance probability in the time interval T is given by:  
 yTpTpy ση ⋅= ,max ),(        (8.50) 
 
Returning to Equation 8.45, the CDF gives the non-exceedance probability p of Tp,η : 
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It follows from Equation 8.51 that: 
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 ( ) ( )( )pTTp lnln2ln2 0, −−= νη      (8.52) 
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Figure 8.13. Distribution of normalized peak values of the response 

 
The normalized maximum response with p non-exceedance probability in the time interval T, 

Tp ,η  is represented in Figure 8.14. 
The maximum response with p non-exceedance probability in the time interval T is: 
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Figure 8.14. Normalized maximum response with p non-exceedance probability 

in the time interval T 
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9. ALONG-WIND DYNAMIC RESPONSE OF BUILDINGS AND STRUCTURES 
 
The along-wind dynamic response of buildings and structures is presented according to the 
Romanian technical regulation NP 082-04 „Cod de proiectare privind bazele proiectarii si 
actiuni asupra constructiilor. Actiunea vantului” Deisgn Code. Basis of Design and Loads on 
Buildings and Structures. Wind Loads, that is in line with and compatible to EUROCODE 1: 
Actions on structures — Part 1-4: General actions — Wind actions. 
 

9.1. General 
 
Wind effects on buildings and structures depend on the exposure of buildings, structures and 
their elements to the natural wind, the dynamic properties, the shape and dimensions of the 
building (structure.  
 
The random field of natural wind velocity is decomposed into a mean wind in the direction of 
air flow (x-direction) averaged over a specified time interval and a fluctuating and turbulent 
part with zero mean and components in the longitudinal (x-) direction, the transversal (y-) 
direction and the vertical (z-) direction.  
 
The sequence of maximum annual mean wind velocities can be assumed to be a Gumbel 
distributed sequence with possibly direction dependent parameters. The turbulent velocity 
fluctuations can be modeled by a zero mean stationary and ergodic Gaussian process.  
 
The wind force acting per unit area of structure is determined with the relations: 

(i) For rigid structures of smaller dimensions: 
 

  ( ) refearefrga QccQccc=w =⋅                                          (9.1) 
 

(ii) For structures sensitive to dynamic effects (natural frequency < 1Hz) and for 
large rigid structures: 

 
  refead Qccc=w                                                                                  (9.2) 
 
where: 
  Qref is the reference (mean) velocity pressure 
  cr       - roughness factor 
  cg    - gust factor 
  ce    - exposure factor  

ca    - aerodynamic shape factor 
  cd     -dynamic factor. 
 

9.2 Reference wind velocity and reference velocity pressure 
 
The reference wind velocity, min10

refU is the wind at 10m above ground, in open and horizontal 
terrain exposure, averaged on 10 min time interval (EUROCODE 1 and NP 082-04). For other 
than 10 min averaging intervals, in open terrain exposure, the following relationships may be 
used:  
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s3

ref
1min
ref

10min
ref

1h
ref U67.00.83UUU05.1 === .               (9.3) 

 
The distribution of maximum annual mean wind velocity fits a Gumbel distribution for 
maxima: 
   

)]}ux(exp[exp{)x(F 11U −−−= α                   (9.4) 
 
The mode u and the parameter α1 of the distribution are determined from the mean m1 and the 
standard deviation σ1 of the set of maximum annual velocities: 
 

1
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282.1
σ

α = .                 (9.5) 

 
The coefficient of variation of maximum annual wind velocity, V1 = σ1 / m1 depends on the 
climate and is normally between 0.10 and 0.40; the mean of the maximum annual wind 
velocities is usually between 10 m/s to 50 m/s. 
 
The lifetime (N years) maxima of wind velocity are also Gumbel distributed. The mean and 
the standard deviation of lifetime maxima are functions of the mean and of the standard 
deviation of annual maxima:  
 

)]}ux(exp[exp{)x(F NN
N

U −−−= α                 (9.6) 

11N 1.282
Nlnmm σ+=   ,   σN = σ1 .                (9.7) 

 
The reference wind velocity having the probability of non-exceedance during one year, p = 
0.98, is so called “characteristic” velocity, U0.98. The mean recurrence interval (MRI) of the 
characteristic velocity is T= 50 yr. For any probability of non-exceedance p, the fractile Up of 
Gumbel distributed random variable can be computed as follows: 
 

( ) 11 lnln
282.1
145.0 σ⎥⎦

⎤
⎢⎣
⎡ −−−+= pmU p                 (9.8) 

 
The characteristic velocity can be determined as follows: 
 

1198.0yr50T 593.2mUU σ⋅+===                  (9.9) 
 
Generally, it is not possible to infer the maxima over dozens of years from observations 
covering only few years. For reliable results, the number of the years of available records 
must be of the same order of magnitude like the required mean recurrence interval. 
 
The wind velocity pressure can be determined from wind velocity (standard air density 
ρ=1.25kg/m3) as follows: 
 

[ ] [ ]s/mU612.0U
2
1PaQ 2

ref
2
refref ⋅=⋅⋅= ρ                (9.10) 
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The conversion of velocity pressure averaged on 10 min into velocity pressure averaged on 
other time interval can be computed from Eq. (9.3): 
 

s3
ref

1min
ref

10min
ref

1h
ref Q44.00.7QQQ1.1 === .               (9.11) 

9.3 Probabilistic assessment of wind hazard for buildings and structures 
 
The meteorological existing database comprises the maximum annual wind velocity (at 10 m, 
averaged on 1 min) at more than 120 National Institute of Meteorology and Hydrology 
(INMH) locations in Romania, at which wind measurements are made. The period of records 
for those locations is between 20 to 60 years, up through 1991, when the meteorological 
datasets were provided by INMH, Bucharest-Baneasa, to the civil engineers via Building 
Research Institute (INCERC), Bucharest. 
 
The extreme value distribution used for the estimation of the characteristic wind velocity is 
the Gumbel distribution for maxima, Table 9.1. The distribution is recommended by 
American Standard for Minimum Design Loads for Buildings, ASCE 7-98, 2000 and fits very 
well the available Romanian data.  
 
The coefficient of variation of the maximum annual wind velocity is in the range VU = 
0.15÷0.3 with mean 0.23 and standard deviation 0.06. The VU values have the same order of 
magnitude like American values (quoted in LRFD studies) and are greater than those 
proposed by the CIB report (1991). The coefficient of variation of the velocity pressure 
(square of the velocity) is approximately double the coefficient of variation of the velocity: 

    
                            VQ = 2 VU.                                               (9.12) 
 
The Romanian climate is softer in the intra-Carpathians area, in Transylvania than in 
Moldavia and central Walachia. The Northeastern part of Moldova has the highest, in 
Romania, reference wind velocity. Locally, in the mountain areas of the Southwestern part of 
Romania, there are very high velocities, too. 
 
Table 9.1. Reference wind velocity and velocity pressure having MRI=50 yr. (0.02 annual 
probability of exceedance) 

Zone Uref 
1 min

 
m/s 

Qref 
1 

min 
 

kPa 

Uref 
10 min 
 

m/s 

Qref 
10min 

 
kPa 

1 
2 
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35 
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0.75 
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0.5 
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Figure 9.1.  The characteristic wind velocity pressure, kPa with mean recurrence interval MRI=50 yr. – wind velocity averaged on 10 min. at 10 m above ground
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9.4 Terrain roughness and Variation of the mean wind with height 
 
The roughness of the ground surface is aerodynamically described by the roughness length, zo, 
(in meters), which is a measure of the size and spacing of obstacles on the ground, Table 9.2. 
Alternatively, the terrain roughness can be described by the surface drag coefficient, κ, 
corresponding to the roughness length, zo: 
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where k ≅ 0.4 is von Karman´s constant and zref = 10 m. 
 
Various terrain categories are classified in Table 9.2 according to their approximate roughness 
lengths. The distribution of the surface roughness with wind direction must be considered. 

Table 9.2. Roughness length zo, in meters, for various terrain categories 1)  2) 

Terrain 
category 

Terrain description Range of zo, in m Code 
value 

A. Open sea. 
Smooth flat 

country 

Areas exposed to the wind coming from large bodies of 
  water; snow surface; 
Smooth flat terrain with cut grass and rare obstacles.  

0.001 
 

0.005 

 
0.003 

B. Open 
country 

High grass (60 cm) hedges and farmland with isolated 
  trees; 
Terrain with occasional obstructions having heights less 
  than 10 m (some trees and some buildings) 

0.01 
 

0.1 

 
0.05 

C.  Sparsely 
built-up 

urban areas. 
Wooded areas 

Sparsely built-up areas, suburbs, fairly wooded areas 
  (many trees) 

0.1 
 

0.7 

 
0.3 

D.  Densely 
built-up 

urban areas. 
Forests 

Dense forests in which the mean height of trees is about 
  15m;  
Densely built-up urban areas; towns in which at least 
  15% of the surface is covered with buildings having 
  heights over 15m 

0.7 
 

1.2 

 
1.0 

E.  Centers of 
Very large cities 

Numerous large high closely spaced obstructions: more 
  than 50% of the buildings have a height over 20m 

≥ 2.0 2.0 

 

1) Smaller values of zo provoke higher mean velocities of the wind 
2) For the full development of the roughness category, the terrains of types A to D must prevail 
in the up wind direction for a distance of at least of 500m to 1000m, respectively. For 
category E this distance is more than 1 km. 
 
The variation of the mean wind velocity with height over horizontal terrain of homogenous 
roughness can be described by the logarithmic law: 
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0

0* z
zln)z(u

k
1)z(U =   for z > do >> zo            (9.14) 

where: 
)z(U  - the mean velocity of the wind at height z above ground, m/s 

  zo     - the roughness length, m 
  k - von Karman’s constant (k ≅ 0.4) 
 do  - the lowest height of validity of Eq. (9.14) 

)z(u 0* - friction velocity defined as function of surface frictional shear stress, and 
measured as: 

  

0

0*

z
zln5.2

)z(U)z(u = .                                     (9.15) 

 
The logarithmic profile is valid for moderate and strong winds (mean hourly velocity > 10 
m/s) in neutral atmosphere (where the vertical thermal convection of the air may be 
neglected). Even the Eq. (9.14) holds through the whole atmospheric boundary layer, its use is 
recommended only in the lowest 200m, or 0.1δ, where δ is the depth of the boundary layer.  
The lowest height of validity for the Eq.(9.14), do is close to the average height of dominant 
roughness elements : i.e. from less than 1 m, for smooth flat country to more than 15 m, for 
centers of cities. On account of this, Eq.(9.14) is more precisely valid as: 
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1)z(U *

−
= ; z ≥ do.                         (9.16) 

 
In engineering practice, Eq.(9.16) is very conservatively used with do = 0. 
 
With respect to the reference height, zref=10m and reference (open terrain) exposure, zo,ref, the 
relation between wind velocities in two different roughness categories at two different heights 
can be written approximately  as: 
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The mean wind velocity pressure at height z is defined by: 

  )z(U
2
1Q(z) 2ρ=                  (9.18) 

where ρ is the air density (ρ=1.25 kg/m3 for standard air). 
 
The roughness factor (EUROCODE 1 and NP 082-04) describes the variation of the mean 
velocity pressure with height above ground and terrain roughness as function of the reference 
velocity pressure. From Eq. (9.17) and (9.18) one gets: 
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( ) ( )minrr zzczc ==        for z≤ zmin            (9.19b) 
 
The roughness factor in EUROCODE 1 notation is called exposure factor in the American 
Code ASCE 7-98, 2000. The roughness factor is represented in Figure 9.2. 
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9.5.  Stochastic modelling of wind turbulence 
  
9.5.1 Intensity of turbulence 
 
The wind turbulence has a spatial character. In the neutral atmospheric surface layer, for 
z<<δ, the root mean square value of the three-dimensional velocity fluctuations in the airflow 
deviating from the longitudinal mean velocity can be assumed independent of the height 
above ground ( *u - friction velocity): 
 
  *uu uβσ =   Longitudinal      (9.20) 
  *vv uβσ =   Transversal      (9.21) 
  *ww uβσ =   Vertical.      (9.22)  
For z < 0.1h, the ratios σv/σu and σw/σu near the ground are constant irrespective the 
roughness of the terrain (ESDU, 1993): 

  78.0
u

v ≅
σ
σ         (9.23) 
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  55.0
u

w ≅
σ
σ .        (9.24) 

 
The variance of the longitudinal velocity fluctuations can be expressed from non-linear 
regression of measurement data, as function of terrain roughness (Solari, 1987): 
 
  5.7zln856.05.45.4 0

2
u ≤−=≤ β                 (9.25) 

The stochastic model for along-wind turbulence is represented in Figure 9.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.3. Stochastic process of the wind velocity at height z above ground:  
 

The standard deviation of the longitudinal velocity fluctuations, βu, is plotted in Figure 9.4. 
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Figure 9.4. Standard deviation of the longitudinal velocity fluctuations, βu 

U(z,t) = U(z) + u(z,t) 
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The intensity of longitudinal turbulence is the ratio of the root mean squared value of the 
longitudinal velocity fluctuations to the mean wind velocity at height z (i.e. the coefficient of 
variation of the velocity fluctuations at height z): 
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2

u zU
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==        (9.26) 

 
The longitudinal turbulence intensity at height z can be written in the form: 
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  ( ) ( )minzzIzIu ==    for z≤ zmin   (9.27b) 
 
In open terrain it may approximately be assumed as: 1/ [ln(z/z0)].  
 
The transversal and the vertical intensity of turbulence can be determined by multiplication of 
the longitudinal intensity Iu(z) by the ratios σv/σu and σw/σu. Representative values for 
intensity of turbulence are represented in Figure 9.5. 
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Figure 9.5. Intensity of longitudinal turbulence, ( )
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9.5.2 Power spectral density for along-wind gustiness 
 
 From numerous proposals for the spectral density of along-wind gustiness: Karman (1948), 
Panovski (1964), Davenport (1967), Harris (1968), Flicht (1970), Kaimal (1972), Simiu 
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(1974,1975), ESDU (1976, 1985), Naito (1978, 1983), Kareem (1985), Solari (1987,1993) 
those of Davenport, Solari and von Karman were selected. The power spectra are given as 
normalized (i.e. unit area) and unilateral (i.e. half sided) spectral densities. The normalizing 
parameter of spectra is the variance σu

2 of the wind velocity process. The spectra are 
represented in terms of frequency, n, in Hz, on a logarithmic scale i.e. n⋅Gu(n) is plotted on a 
linear scale versus lgn.  
A comparative study of these spectral densities is presented. In characterizing wind 
turbulence, the length scale of turbulence, Lu(z), plays an important role. The length scale of 
turbulence is a comparative measure of the average size of gusts in appropriate directions and 
is an important scaling factor in determining how rapidly gust properties vary in space. The 
integral length scale of turbulence from Couniham, used by Solari for EC1 (denoted by Lu), 
was also selected in NP 082-04. The formulas of the 3 spectral densities and the length scale 
of turbulence are summarized in Table 9.3 and compared in Figure 9.6. 
 
Table 9.3. Normalized (unit area) half sided power spectra of the along-wind gust velocity  
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Figure 9.6. Comparison of Solari, von Karman and Davenport normalized (unit area) 
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half sided power spectra for along-wind gustiness (z=10m) 

9.6 Gust factor for velocity pressure 
 
The gust factor for velocity pressure is the ratio of the peak velocity pressure to the mean 
wind velocity pressure: 

  ( ) ( )
( )

( )
( ) ( )[ ]zI2g1Vg1
zQ
gzQ

zQ
zq

zc uq
qpeak

g ⋅+=⋅+=
⋅+

==
σ

  (9.28) 

where:   
 Q(z) is the mean velocity  pressure of the wind 

 ( )
2/1

2
q tz,q=σ - root mean square value of the longitudinal velocity pressure  

  fluctuations from the mean 
         VQ - coefficient of variation of the velocity pressure fluctuations (approximately equal 
  to the double of the coefficient of variation of the velocity fluctuations):  
  VQ ≅ 2 I(z)        (9.29) 
            g - the peak factor for velocity pressure (equal to 3.5 in EC1). 
 
The gust factor for velocity pressure is represented in Figure 9.7. 
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Figure 9.7. Gust factor for velocity pressure, ( ) ( )[ ]zI2g1zc ug ⋅+=  

 

9.7 Exposure factor for peak velocity pressure 
 
The peak velocity pressure at the height z above ground is the product of the gust factor, the 
roughness factor and the reference velocity pressure: 
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  Qg(z) = cg(z) cr(z) Qref         (9.30) 
 

The exposure factor is defined as the product of the gust and roughness factors: 
   

ce(z) = cg(z) cr(z).         (9.31) 
The exposure factor is plotted in Figure 9.8. 
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Figure 9.8. Exposure factor, ce(z) = cg(z) cr(z) 

 
The exposure factor (Eurocode 1) is called the combined factor in American wind literature. 
 

9.8. Dynamic response factor 
 
According to EUROCODE 1 and NP 082-04 format, the dynamic factor is defined by: 

 

  
)z(I71

RQ)z(gI21
C

eqv

2
x

2
0eqv

d +

++
=            (9.32) 

 
where: 
 
g – the peak factor for computing the peak response of the structure with respect to the 

mean response averaged on t =10 min. = 600 s 
Iv(zeq) – intensity of turbulence at height  z = zeq 
Q0

2 - the background response part 
Rx

2 - the resonant response part. 
  
The intensity of turbulence at height z = zeq is defined by: 
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where ct =1.0 - topographic factor and z0 = 0.05 is the roughness length for reference 
terrain category. 
 
The background response part, Q0

2, is given by, Figure 9.9: 
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where: 
 
bmed is the width of the structure 
h – height of the structure 
zeq – equivalent height of the structure 
Li(zeq) – integral length scale of the turbulence in terrain category 
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Figure 9.9. Background response 63.0
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The resonant response part Rx
2 is given by: 

 

  
bh

RRR
2

R N
s

2
2
x ηηδ

π
=         (9.36) 

where: 
RN – the resonant nondimensional power spectral density function for n = n1,x 

Rη - the aerodynamic admittance functions for uniform lateral displacement 
(fundamental mode shape without node point) 
δs – logarithmic damping decrement of along wind vibration. 

 
The resonant nondimensional power spectral density function RN is defined by, Figure 9.10: 
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where: 
 
Nx – nondimensional frequency of the structure 
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and 
n1,x – fundamental frequency of along wind vibration of structures 
Vm(zeq) – mean wind velocity for the height  z = zeq. 

 
The aerodynamic admittance functions for uniform lateral displacement Rη is given by, Figure 
9.11: 
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where η is, respectively, ηh and ηb 
 

and  
η - normalized frequency, given by: 
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=η .  (9.40) 

 
The peak factor for computing the peak response of the structure with respect to the mean 
response averaged on t =10 min. = 600 s, g, is given by:  

  
tln2

6.0tln2g
ν

ν +=        (9.41) 

where: 
ν - the expected frequency of the structure under wind gusts excitation, in Hz 
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Figure 9.10. Resonant nondimensional power spectral density function 
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Figure 9.11. Aerodynamic admittance functions for uniform lateral displacement 
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ν0 – the expected frequency of gust loading on rigid structures, in Hz 
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S - factor for computing the expected frequency of gusts 
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Typical values of the critical damping ratio (or logarithmic damping decrement) should be 
selected from appropriate national or international documents. 
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