Optimization Problems

EXAMPLE 1: A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Solution: Note that the area of the field depends on its dimensions:

Area $=700 \cdot 1000=700,000 \mathrm{ft}^{2}$

Area $=1000 \cdot 400=400,000 \mathrm{ft}^{2}$

To solve the problem, we first draw a picture that illustrates the general case:

The next step is to create a corresponding mathematical model:
Maximize: $A=x y$
Constraint: $2 x+y=2400$
We now solve the second equation for y and substitute the result into the first equation to express A as a function of one variable:

$$
2 x+y=2400 \quad \Longrightarrow \quad y=2400-2 x \quad \Longrightarrow \quad A=x y=x(2400-2 x)=2400 x-2 x^{2}
$$

To find the absolute maximum value of $A=2400 x-2 x^{2}$, we use
THE CLOSED INTERVAL METHOD: To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from Step 1 and 2 is the absolute maximum value; the smallest value of these values is the absolute minimum value.

We first show that $0 \leq x \leq 1200$. Indeed,

$$
y \geq 0 \quad \Longrightarrow \quad 2400-2 x \geq 0 \quad \Longrightarrow \quad 2400 \geq 2 x \quad \Longrightarrow \quad 1200 \geq x
$$

On the other hand, $x \geq 0$. Combining these two inequalities gives $0 \leq x \leq 1200$. The derivative of $A(x)$ is

$$
A^{\prime}(x)=\left(2400 x-2 x^{2}\right)^{\prime}=2400 x^{\prime}-2\left(x^{2}\right)^{\prime}=2400 \cdot 1-2 \cdot 2 x=2400-4 x
$$

so to find the critical numbers we solve the equation

$$
2400-4 x=0 \quad \Longrightarrow \quad 2400=4 x \quad \Longrightarrow \quad x=\frac{2400}{4}=600
$$

To find the maximum value of $A(x)$ we evaluate it at the end points and critical number:

$$
A(0)=0, \quad A(600)=2400 \cdot 600-2 \cdot 600^{2}=720,000, \quad A(1200)=0
$$

The Closed Interval Method gives the maximum value as $A(600)=720,000 \mathrm{ft}^{2}$ and the dimensions are $x=600 \mathrm{ft}, y=2400-2 \cdot 600=1200 \mathrm{ft}$.

EXAMPLE 5: A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction.

Solution: We first draw a picture:

The next step is to create a corresponding mathematical model:
Minimize: $A=2 \pi r^{2}+2 \pi r h$
Constraint: $V=\pi r^{2} h=1500$
We now solve the second equation for h and substitute the result into the first equation to express A as a function of one variable:
$\pi r^{2} h=1500 \quad \Longrightarrow \quad h=\frac{1500}{\pi r^{2}} \quad \Longrightarrow \quad A=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \cdot \frac{1500}{\pi r^{2}}=2 \pi r^{2}+\frac{3000}{r}$
To find the absolute minimum value of $A=2 \pi r^{2}+\frac{3000}{r}$, we use the First Derivative Test for Absolute Extreme Values. The derivative of $A(r)$ is

$$
A^{\prime}(r)=\left(2 \pi r^{2}+\frac{3000}{r}\right)^{\prime}=4 \pi r-\frac{3000}{r^{2}}=\frac{4 \pi r^{3}-3000}{r^{2}} \quad \text { (see Appendix for details) }
$$

Since $r>0$, the only critical number is $r=\sqrt[3]{\frac{3000}{4 \pi}}=\sqrt[3]{\frac{750}{\pi}}$. It is easy to see that $A^{\prime}(r)<0$ for all $0<r<\sqrt[3]{\frac{750}{\pi}}$ and $A^{\prime}(r)>0$ for all $r>\sqrt[3]{\frac{750}{\pi}}$. Therefore the minimum value of the area must occur at $r=\sqrt[3]{\frac{750}{\pi}} \approx 6.2035 \mathrm{~cm}$ and this value is

$$
A\left(\sqrt[3]{\frac{750}{\pi}}\right) \approx 725.3964 \mathrm{~cm}^{2}
$$

Finally, the height of the can is

$$
h=\frac{1500}{\pi r^{2}}=\frac{1500}{\pi(750 / \pi)^{2 / 3}}=2 r \approx 12.4070 \mathrm{~cm}
$$

