## ULTRA-HIGH PERFORMANCE CONCRETE



# ULTRA-HIGH PERFORMANCE CONCRETE A SIMPLER APPROACH

JACOB LIM LOK GUAN ROSZILAH HAMID SUDHARSHAN RAMAN

Penerbit Universiti Kebangsaan Malaysia Bangi • 2024 www.ukm.my/penerbit

#### Cetakan Pertama / First Printing, 2024 Hak Cipta / Copyright Universiti Kebangsaan Malaysia, 2024

Hak cipta terpelihara. Tiada bahagian daripada terbitan ini boleh diterbitkan semula, disimpan untuk pengeluaran atau ditukarkan ke dalam sebarang bentuk atau dengan sebarang alat juga pun, sama ada dengan cara elektronik, gambar serta rakaman dan sebagainya tanpa kebenaran bertulis daripada Penerbit UKM terlebih dahulu.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopy, recording, or any information storage and retrieval system, without permission in writing from Penerbit UKM.

Diterbitkan di Malaysia oleh/ Published in Malaysia by PENERBIT UNIVERSITI KEBANGSAAN MALAYSIA 43600 UKM Bangi, Selangor Darul Ehsan, MALAYSIA www.ukm.my/penerbit e-mel: penerbit@ukm.edu.my

Penerbit UKM adalah anggota/ is a member of the MAJLIS PENERBITAN ILMIAH MALAYSIA/
MALAYSIAN SCHOLARLY PUBLISHING COUNCIL
PERSATUAN PENERBIT BUKU MALAYSIA/
MALAYSIAN BOOK PUBLISHERS ASSOCIATION
No. Ahli/ Membership No. 198302

Atur huruf oleh/ *Typeset by*PENERBIT UNIVERSITI KEBANGSAAN MALAYSIA
43600 UKM Bangi, Selangor Darul Ehsan, MALAYSIA

Dicetak di Malaysia oleh/ Printed in Malaysia by PEWARIS GEMILANG SDN. BHD. No. 27G, Jalan Putra 8 Taman Kajang Putra 43000 Kajang, Selangor Darul Ehsan, MALAYSIA



Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

A catalogue record for this book is available from the National Library of Malaysia

ISBN 978-629-486-316-3

### Contents

|           | List of Tables & Figures 7 Lists of Abbreviations 13 Preface 15                        |
|-----------|----------------------------------------------------------------------------------------|
| CHAPTER 1 | History of Concrete 17                                                                 |
| CHAPTER 2 | Application of Ultra-High Performance Concrete 22                                      |
| CHAPTER 3 | Engineering Properties of Ultra-High Performance<br>Concrete 41                        |
| CHAPTER 4 | Characteristic of the New Designed Ultra-High<br>Performance Cementitious Composite 64 |
| CHAPTER 5 | Properties of Ultra-High Performance Cementitious<br>Composite 100                     |
| CHAPTER 6 | Design of Ultra-High Performance Cementitious<br>Composite 137                         |
| CHAPTER 7 | Potential and Future Prospective 159                                                   |
|           | References 165                                                                         |



# List of Tables & Figures

| TABLE 2.1 | Material characteristics of types of UHPC compared           |
|-----------|--------------------------------------------------------------|
|           | to normal strength concrete (NSC) 23                         |
| TABLE 2.2 | Typical composition of various type of UHPC                  |
|           | (percentage by weight) 25                                    |
| TABLE 2.3 | Typical composition of various type of UHPC                  |
|           | (percentage by ratio) 25                                     |
| TABLE 2.4 | Dimension, mechanical, thermal and electrical propertie      |
|           | of CNFs and CNTs 31                                          |
| TABLE 2.5 | Published results of studies related to CNTs/CNFs            |
|           | reinforced concrete 38                                       |
| TABLE 3.1 | Effect of curing on UHPC compressive strength 42             |
| TABLE 3.2 | Classification of the degradation process 53                 |
| TABLE 3.3 | Classification of pore sizes in hydrated cement              |
|           | pastes 54                                                    |
| TABLE 3.4 | Effect of w/b and curing regime on UHPC porosity 5           |
| TABLE 3.5 | Electric charge through UHPC specimens 55                    |
| TABLE 4.1 | Chemical composition of cement 67                            |
| TABLE 4.2 | Properties of CNFs and CNF suspension 70                     |
| TABLE 4.3 | The density and flow value of all the fresh UHPCC mix        |
|           | design 72                                                    |
| TABLE 4.4 | Void Analysis from ImageJ 81                                 |
| TABLE 4.5 | Weight loss of the degradation 91                            |
| TABLE 4.6 | Pore intrusion volume of the UHPCC 94                        |
| TABLE 5.1 | Modulus of Elasticity without CNF 118                        |
| TABLE 5.2 | Modulus of Elasticity with CNF 118                           |
| TABLE 5.3 | The coefficients of each UHPCC corresponded to the           |
|           | CEB (1988) and proposed model for the DIF 132                |
| TABLE 6.1 | Properties of carbon nanofibres 139                          |
| TABLE 6.2 | Dispersion technique of CNFs 139                             |
| TABLE 6.3 | Mix proportions (% by weight based on 1450 kg/m <sup>3</sup> |
|           | of cement) 143                                               |
| TABLE 6.4 | Tests and specimens for Quasi-static 144                     |

| FIGURE 1.1 | The development of nano-particle in concrete           |
|------------|--------------------------------------------------------|
|            | technology 20                                          |
| FIGURE 2.1 | Optimum packing of UHPC design 27                      |
| FIGURE 2.2 | Representation of CNFs (a) Stacked form; (b)           |
|            | Herringbone form and CNTs (c) MWCNTs 31                |
| FIGURE 2.3 | TEM image of poor dispersion of carbon nanomaterials   |
|            | in water 34                                            |
| FIGURE 2.4 | SEM image of poor dispersion of carbon nanomaterials   |
|            | in water 34                                            |
| FIGURE 2.5 | Crack bridging observed in cement-CNT                  |
|            | composites 35                                          |
| FIGURE 2.6 | Ultrasonication bath for dispersion of CNFs in         |
|            | water 35                                               |
| FIGURE 2.7 | Chemical reactions between carboxylated carbon         |
|            | nanomaterial and cement hydration products             |
|            | (CSH and Ca(OH) <sub>2</sub> ) 36                      |
| FIGURE 2.8 | Damaged test samples without (a) and with              |
|            | (b) CNFs 37                                            |
| FIGURE 3.1 | Grid in concrete cross-sectional analysis 49           |
| FIGURE 3.2 | Binary imaging in UHPC cross-sectional analysis,       |
|            | (a) lower entrapped air UHPC, (b) higher entrapped air |
|            | UHPC 49                                                |
| FIGURE 3.3 | UHPC a) without quartz powder, (b) with quartz         |
|            | powder 51                                              |
| FIGURE 3.4 | SEM images of a nano cracks bridged by CNFs 51         |
| FIGURE 3.5 | Microstructural of UHPC enhanced with CNT 51           |
| FIGURE 3.6 | Dispersion of CNT in UHPC matrix (a) poor (b) good     |
|            | (c) nano-bridging 52                                   |
| FIGURE 3.7 | Various load cases with corresponding strain rates 57  |
| FIGURE 3.8 | Modified model for DIF modulus of rupture 60           |
| FIGURE 3.9 | DIFs for modulus of rupture 61                         |
| FIGURE 4.1 | SEM imaging of graded silica sand 65                   |
| FIGURE 4.2 | The grading curve of cement from various source and    |
|            | graded sand 66                                         |
| FIGURE 4.3 | Particle grading of UHPCC mixes 66                     |
| FIGURE 4.4 | XRD pattern of the Cement A, Cement B and              |
|            | Cement C 68                                            |

| FIGURE 4.5  | Types of CNFs suspensions produced 69                   |
|-------------|---------------------------------------------------------|
| FIGURE 4.6  | Morphology of CNF-A 70                                  |
| FIGURE 4.7  | Morphology of CNF-B 70                                  |
| FIGURE 4.8  | Hydration reaction of a) contribution of CNF-A          |
|             | b) The contribution of CNF-B 74                         |
| FIGURE 4.9  | The peak heat of CNF A and CNF B at same                |
|             | percentage 75                                           |
| FIGURE 4.10 | Transformation of an ideal denser microstructure 77     |
| FIGURE 4.11 | Void distribution at cross-sectional on vary particle   |
|             | grading 78                                              |
| FIGURE 4.12 | Void distribution at cross-sectional on types of        |
|             | cement 79                                               |
| FIGURE 4.13 | Void distribution at cross-sectional on CNFs type and   |
|             | dispersion 80                                           |
| FIGURE 4.14 | Void distribution at cross-sectional on hybrid micro-,  |
|             | nano-fibres 81                                          |
|             | SEM imaging of UHPCC-PG4 83                             |
|             | SEM imaging of UHPCC-CNFA3 84                           |
|             | SEM imaging of UHPCC-CNFA4 85                           |
|             | SEM imaging of UHPCC-CNFB3 86                           |
|             | SEM imaging of UHPCC-CNFB4 87                           |
| FIGURE 4.20 | Distribution of CNF A and CNF B in the UHPCC            |
|             | matrix 88                                               |
|             | TGA observation of UHPCC incorporating CNF 90           |
|             | Pore distribution of UHPCC 93                           |
| FIGURE 4.23 | Autogenous shrinkage of UHPCC 96                        |
| FIGURE 4.24 | Drying shrinkage of UHPCC 97                            |
| FIGURE 4.25 | Water permeability relation to chloride permeability 99 |
| FIGURE 5.1  | Compressive strength of UHPCC mixes produced with       |
|             | different w/c ratio 101                                 |
| FIGURE 5.2  | Compressive strength of UHPCC mixes produced with       |
|             | different particle grading 102                          |
| FIGURE 5.3  | Compressive strength of UHPCC mixes produced with       |
|             | different types of cement 104                           |
| FIGURE 5.4  | Workability and compressive strength of UHPCC mixes     |
| _           | produced with different percentages of CNFs 105         |
| FIGURE 5.5  | Compressive strength of UHPCC mixes produced with       |
|             | CNFs 106                                                |

| FIGURE 5.6  | Compressive strength of UHPCC mixes produced with          |
|-------------|------------------------------------------------------------|
|             | hybrid micro-nano-fibre 108                                |
| FIGURE 5.7  | Flexural strength of UHPCC with different particle         |
|             | grading 110                                                |
| FIGURE 5.8  | Flexural strength of UHPCC with different source of        |
|             | cement 112                                                 |
| FIGURE 5.9  | Flexural strength of UHPCC incorporating with CNF-A        |
|             | and CNF-B 114                                              |
| FIGURE 5.10 | Flexural strength of UHPCC incorporating with micro-       |
|             | ,nano-scaled fibres 116                                    |
| FIGURE 5.11 | Stress-strain behaviour of the CNF-A and CNF-B $\dots$ 120 |
| FIGURE 5.12 | Stress-strain behaviour of the hybrid fibred system 121    |
| FIGURE 5.13 | Proposed UHPCC strength models for compressive             |
|             | strength at early age and mature age 124                   |
| FIGURE 5.14 | UHPCC equation for flexural strength 125                   |
| FIGURE 5.15 | Proposed UHPCC equation for modulus of                     |
|             | elasticity 127                                             |
| FIGURE 5.16 | The correlation between entrapped air and mechanical       |
|             | properties 128                                             |
| FIGURE 5.17 | DIF from vary strain rates 130                             |
| FIGURE 5.18 | Validation of the proposed DIF model for UHPCC 131         |
| FIGURE 5.19 | DIF for tensile characteristic of UHPCC at varying strain  |
|             | rates and the curve fit of the proposed DIF model 135      |
| FIGURE 6.1  | X-ray diffraction equipment 138                            |
| FIGURE 6.2  | Laser granulometry analyser 138                            |
| FIGURE 6.3  | Ultrasonication of CNF 140                                 |
| FIGURE 6.4  | Ultrasonic dispersion of CNF-A Sample 1: without           |
|             | surfactants; Sample 2: with surfactants; Sample 3:         |
|             | ultrasonic dispersion of CNF-B without surfactants Water   |
|             | and Superplasticiser 140                                   |
| FIGURE 6.5  | Mix design of (a) typical conventional UHPC, (b)           |
|             | optimised version of UHPCC 141                             |
| FIGURE 6.6  | Mixing sequence for UHPCC 141                              |
| FIGURE 6.7  | Flow measurement device 144                                |
| FIGURE 6.8  | 8-channels hydration cells 145                             |
| FIGURE 6.9  | Setup of compression testing 147                           |
| FIGURE 6.10 | Setup of 3-points bending 147                              |
|             |                                                            |

FIGURE 6.11 Setup of modulus of elasticity ... 147
FIGURE 6.12 Setup of optical imaging device ... 148
FIGURE 6.13 (a) Cross-section of UHPCC specimens; (b) Binary analysis ... 149
FIGURE 6.14 Scanning electron microscope equipment ... 149
FIGURE 6.15 Thermal gravimetric analysis equipment ... 150
FIGURE 6.16 Setup of shrinkage monitoring devices for (a) autogenous shrinkage real time monitoring (b) total shrinkage ... 152
FIGURE 6.17 Permeability Test (a) Rapid chloride penetration test (b) Water permeability test ... 154



### List of Abbreviations

ACI American Concrete Institute

ASTM American Society for Testing and Materials

C3S Tricalcium Silicate
C2S Dicalcium Silicate
CNF Carbon Nanofibre
CNT Carbon Nanotube

CSH Calcium silicate hydrates

DIF Dynamic Factor

EC2 European Design Code 2

FA Fly-Ash

fib International Federation for Structural Concrete

GGBS Ground-Granulated Blast-Furnace Slag

MSF Micro Steel Fibers

MIP Mercury Intrusion Porosimetry

NaCl Sodium Chloride NaOH Sodium Hydroxide

OPC Ordinary Portland Cement
RCPT Rapid Chloride Penetration Test
SEM Scanning Electron microscopy

SiO2 Silicon Dioxide SP Superplasticiser

TGA Thermogravimetric analysis
UHPC Ultra-high performance concrete

UHPCC Ultra-high performance cementitious composite

w/b water to binder ratiow/c water to cement ratioXRD X-Ray Diffraction



### Preface

Ultra-High Performance Concrete: A Simpler Approach is designed to bridge gaps in knowledge, equipping researchers, practitioners, and students with practical insights into UHPC. This book is driven by the pursuit of sustainable and efficient building materials that not only meet the increasing structural requirements but also contribute to long-term environmental objectives. The book begins with an overview of concrete's evolution in *Chapter 1*, tracing its development and significance in construction history. Chapter 2 explores the applications of Ultra-High Performance Concrete (UHPC), highlighting its impact on modern engineering. In *Chapter 3*, the engineering properties of UHPC, such as strength and durability. Building on this, Chapter 4 discusses the specific characteristics of a newly designed Ultra-High Performance Cementitious Composite (UHPCC). Chapter 5 explores into the properties of UHPCC, emphasizing its advanced performance metrics. Chapter 6 covers design considerations and methodologies for optimizing UHPCC. The book concludes with Chapter 7, examining the potential and future prospects of UHPCC, suggesting directions for innovation and expanded use in construction.

The authors acknowledge the support and testing facilities provided by the Concrete Laboratory of both Department of Civil Engineering and Department of Architecture and Built Environment of Universiti Kebangsaan Malaysia. The research work undertaken in this book was supported through research grants granted by the Ministry of Higher Education, Malaysia (FRGS/1/2015/TK01/UKM/02/01) and Universiti Kebangsaan Malaysia (DLP-2014-005, GGPM-2023-078 & DPB-2023-109). The authors would like to acknowledge these grants for allowing the experimental and analytical work to be performed for this book.

The authors dedicate this book to advancing the field of construction materials and nurturing a deeper understanding of UHPCC, hoping it will inspire new research and applications in civil engineering, architecture, and beyond.

Jacob Lim Lok Guan Roszilah Hamid Sudharshan Raman