Carbon Emission Reduction Initiative through Methane Emission Capture and Renewable Energy in Sime Darby's Palm Oil Mill

Muhammad Ainuddin Ubaidah Renewable Resources, Processing & Engineering Sime Darby Research Sdn Bhd

Developing Sustainable Futures

Plantation

Sime Darby: Centuries of Heritage

- **Kumpulan Guthrie** was founded in Singapore in 1821 by Alexander Guthrie as the first British trading company in South East Asia and one that introduced rubber and oil palm in Malaysia.
- **Golden Hope Plantations**, previously named Harrisons & Crosfield when founded in 1844, was a major oil palm plantation player in Malaysia.
- **Kumpulan Sime Darby**, founded in 1910 by British businessmen William Sime and Henry Darby, and grew into a diversified multinational.
- In **2007** all three companies merged to form the new **Sime Darby Berhad**.

Corporate Information

Managing Palm Oil Mill Effluent Effluent Treatment Plant Anaerobic Digestion Process Sime Darby Biogas Projects 3

Sime Darby focuses on 5 core businesses...

Sime Darby Berhad

Property

Industrial

Motors

4

Corporate Information

Managing Palm Oil Mill Effluent Effluent Treatment Plant Anaerobic Digestion Process Sime Darby Biogas Projects

Plantation: Vision and Strategic Thrusts

Sustainability Milestones of Sime Darby Plantation

Zero burning Pioneering Best Agro-management Since Practices in the Industry Integrated Pest Management (IPM) 1980's Maintain HCV areas Compliance to Sustainability Management Stringent Safety Standards Since Programs encompassing Safety, High Work & Crop Quality Standards 1990's Environment and Quality Standards Field, Soil/Water Conservation Achieved 85% CSPO as of May 2012 Compliance to New International Since **Enhance FPIC- SOP** Standards : 2005 **Community Development Programs** RSPO, ISPO, ISCC, ISO (CSR) Commitment on Climate Change : Carbon Reduction Target: 2012- Carbon Emission Reduction 25% by 2016 2020 40% by 2020 Water Conservation Policy **Managing Palm Oil** Effluent Treatment Anaerobic Digestion **Sime Darby Biogas** Plantation **Corporate Information** Mill Effluent Plant Process Projects

6

Carbon Footprint Overview

Sime Darby Plantation division's total carbon emissions for 2009 was $2,607,752 \text{ tCO}_2-e^{(1)}$ Effluent treatment was the highest emission source for the division 70% of total division emissions

Malaysia Upstream Operations contributes 60% of the total emissions of plantation division

Emissions by Intensity tCO₂e/mt of products

Country ⁽²⁾	FFB (Ton)	CPO (Ton)	Refined products (Ton)	Fresh Latex (Ton)	Dry Rubber (Ton)
Malaysia	0.22	1.07	0.07	0.29	0.26
Indonesia	0.25	1.03	-	-	-
Singapore	-	-	0.08	-	-
Thailand	-	-	0.10	-	-
Netherlands	-	-	0.13	-	-
Average	0.23	1.06	0.09	0.29	0.26

An average of 1.06 tons of carbon dioxide equivalent is emitted to produce a ton of CPO

Note :

- (1) Validated by PwC Plantation Division Global Rollout Report v2.0, dated June 2012
- (2) 2009 Baseline data excludes emission from Vietnam, South Africa, China and Liberia. Complete list of data are made available in 2010 inventory.

Plantation

Corporate Information

Managing Palm Oil Mill Effluent Effluent Treatment Plant Anaerobic Digestion Process Sime Darby Biogas Projects

Market Analysis – Industry Landscape

Plantation

Managing Palm Oil Mill Effluent Effluent Treatment Plant

POME Characteristics

Parameter	Mean	Range
рН	4.2	3.4 – 5.2
BOD	25,000	10,250 – 43750
COD	50,000	16,000 - 100,000
TS	40,500	11,500 – 78,700
SS	18,000	5,000 - 54,000
TVS	34,000	9,000 - 72,000
Oil & Grease	6,000	150 – 18,000
AN	35	4 - 80
TKN	750	180 – 1,400

- Brownish liquid
- Thick and viscous
- High organic strength
- Wide range

All units in mg/L except pH

Managing Palm Oil Mill Effluent Effluent Treatment Plant

Regulations on POME

- Environment Quality Act 1974
 - Environment Quality (Prescribed Premises) (Crude Palm Oil) Regulations, 1977

11

Wastewater Treatment Method

POME can be treated with one or either one or combination of the treatment methods below;

In biological treatment, the pollutants will be degraded into solids and gases

Effluent Treatment Plant

Concept of POME Treatment

- Combination of physical and biological processes
- To comply with discharge license stipulated by DOE:
 - Discharge to watercourse or land application
 - Combination of discharge to watercourse and land application

- Cooling process
- Separation process / collection of sludge oil in raw buffer pond
- Anaerobic, facultative and aerobic digestion processes
- For delicate and specific location

Effluent Treatment Plant

- Oxidation process of organic substance without presence of oxygen.
- The process produces;
 - Gases such as carbon dioxide (CO₂) and methane (CH₄)
 - New bacteria cells
 - Stable organic matters
 - Inorganic residue
- Degradation stages of complex organic matters;

Anaerobic Digester Selection Criteria

Description	Remarks			
Mesophilic @ 37°C to 45°C	Greater number of bacteria allows for wider range of environmental tolerance, affording operational stability			
Anaerobic Suspended Growth	Covered lagoon, Continuous-Stirred Tank Reactor, Anaerobic Sequencing Batch Reactor based on suspended or contact process			
Chemical Oxygen	 ✓ > 80% for CSTR 			
Demand (COD) Removal	✓ > 90% for covered lagoon			
efficiency	✓ > 95 % for ASBR			
Riagas / Mathana Viald	\checkmark > 30 m ³ biogas/m ³ POME			
biogas / Methane heiu	\checkmark > 0.30 Nm ³ CH ₄ /kg COD _{converted}			
Organic Loading	✓ From 1.5 kg COD/m ³ -day up to 4 kg COD/m ³ -day ✓ HRT – SRT – MRT			

Notes :

Reason for above based on strong reference (similar configuration), POME characteristics (high TSS, O&G etc), stable, degree of process complexity etc.

Plantation

Effluent Treatment Plant

Other Types Anaerobic Digester

Description	Remarks
Thermophilic @ 50°C to 55°C	Operates at slightly elevated temperature, susceptible to temperature change, possibly increasing requirement for auxiliary load, narrow control of operational parameter
	Anaerobic Sludge Blanket
High Data Apparabia	Upflow Anaerobic Sludge Blanket, Anaerobic Baffled Reactor
Process	Attached Growth Anaerobic Reactor
	Upflow Packed-bed, Expanded Granular Sludge Blanket, Fluidized-Bed Reactor
Organia Loading	✓ > 6 kg COD/m ³ -day
Organic Loading	✓ Resulting in short HRT less than 10 days (HRT < SRT)
Issues	POME with high TSS easily clog digester, resulting in MO washout
Chemical Oxygen Demand (COD) Removal efficiency	Typically can achieved > 95 $\%$ for certain waste water , but may not be suitable for high TSS effluent ie. POME >5,000 mg/l

Notes :

Upflow Solids reactor are categorised as High Rate Anaerobic Digester, except process flow is sequenced to limiting failure in cells. UASB and EGSB can be adapted for secondary treatment for further biogas recovery.

Effluent Treatment Plant Anaerobic Digestion Process Darby

Plantation

Typical Anaerobic Digester Comparative Pointers

Summary of Key Criteria and Other Consideration

- Crop throughput and POME ratio
- Concentration of organic waste measured as COD
- Substrate composition is a major factor in determining the methane yield and methane production rates from the digestion of biomass
- > Other composition i.e. TSS, pH, temperature etc
- ✓ Land availability, terrain, soil condition and flood possibilities
- ✓ Environmental constraint such as strong wind that may affect lagoon cover
- ✓ Flow variations
- ✓ Flexibility and compatibility for possible system expansion, shock loading or altered effluent characteristics
- ✓ Auxiliary load requirement to determine the net electricity output supply to the grid – for biogas power generation for export to the electricity grid
- $\checkmark\,$ Construction and Operation & Maintenance cost
- ✓ Spares and service personnel availability
- ✓ Technology track record

Anaerobic Digestion Process

Biogas vs Bio-natural Gas

- Gas generated from organic material
 - Primarily consists of methane gas 50%-65%
- Potential source of biogas
 - Anaerobic digester
- Bio-natural Gas
 - Methane from renewable source Upgraded biogas

Managing Palm Oil Mill Effluent Effluent Treatment Plant Anaerobic Digestion Process Sime Darby Biogas Projects

Bio-natural Gas Makes Sense

Existing Projects & Future Potential

Johor

Hadapan

Ulu Remis

Pagoh

Chaah

Bkt Benut

Gunung Mas

Perak	Crop	
Flemington	236	FIT
Seri Intan	216	FIT CNG NEW
Elphil	129	CoF
Chersonese	186	TDC
Selaba	144	TDC

Selangor	Crop	
Tennamaram	253	FIT
West	211	
East	128	CaP
Bkt Kerayong	139	TDC

N. Sembilan	Crop	
Sua Betong	245	FIT
Tanah Merah	148	CoF
Kok Foh	172	CoF
Labu**	133	LP

Project Summary	FIT	CNG	FIT <u>OR</u> CNG	FIT <u>OR</u> CNG <u>OR</u> NEW	CaP	CoF	Total	TDC <u>OR</u> LP
On-Going	3	2			5		10	
Future Potential	2	3	1	3	1	5	15	11
Total	5	5	1	3	6	5	<u>25</u>	11

Melaka

Kempas

Diamond Jubilee

Kedah

Sg. Dingin

Crop 320

Crop

288

113

FIT

TDC

CNG

	Sarawak	Crop		
5	Rajawali	218	CNG	
	Lavang	200	CNG	
	Derawan	165	LP	
.,	Pekaka	190	TDC	
Ľ	6			

Sabah	Crop	
Merotai	303	CNG
Sandakan Bay	198	CaP
Binuang	195	CaP
Giram	175	CaP
Melalap	82	LP

Pahang	Crop		
Kerdau*	231	FIT CNG	
Jabor	74	LP	X
Bkt Puteri	55	LP	5

Crop

231

263

247

167

120

99

Indonesia	Crop	
Rantau	229	CaP
Pemantang	218	CaP

Legend **On-Going Projects** Future Potential

Abbreviations

FIT - Feed-in-Tariff CNG – Compressed Natural Gas CaP - Captive Power CoF - Co-Firing **NEW** – New Technology TDC – To be decommissioned LP - Limited potential

Note

Crop – 5-year avg. (FY11-FY15), kMT p.a *To reconsider – geographically isolated ** Earmarked for property development

Corporate Information

Managing Palm Oil Mill Effluent

Effluent Treatment Plant

Anaerobic Digestion Process

Sime Darby Biogas Projects

FIT | CNG | NEW

FIT | CNG | NEW

CoF

CoF

TDC

23

Existing Projects

No	Mill Name	Carbon Reduction (tCO ₂ e/year)	Projected year	Status
1	Tennamaram	40,036	Y2015/16	Completed
2	West	42,386	Y2016/17	86% Completion
3	Merotai	59,387	Y2016/17	Expected completion by July 2016
4	Binuang	20,810	Y2016/17	Tender - Evaluation in progress
5	Sandakan Bay	35,944	Y2017/18	Tender - Evaluation in progress
6	Hadapan	40,113	Y2017/18	Physical completion 46.7%
7	Flemington	40,063	Y2017/18	Physical completion 47.7%
8	Giram	21,501	Y2017/18	Tender - Evaluation in progress
9	Rantau	37,441	Y2017/18	Expected physical completion: 15 th December 2016
10	Pemantang	53,227	Y2017/18	Expected physical completion: 15 th November 2016

Corporate Information

Conclusion

- 1. The Carbon 'Emission' Reduction Strategy is one of the key initiatives under Sime Darby Plantation's Sustainability Blueprint.
- 2. Among the various initiatives mentioned herein, the biogas initiative has huge bearing on enabling the Division to commit to a significant carbon reduction target immediately within the timeframe mentioned. As one of the major renewable resources, the biogas initiative meets the growing global Green aspirations of the plantation industry.
- 3. Besides reducing the GHG emissions, there are potentially other financial benefits that the Group can gain from carbon credit sales and receiving premium prices for our sustainable and traceable palm products.

Plantation

Projected Outcomes Sustainability Outlook

5-Year Carbon Emission Reduction

Thank You

<u>Renewable Resources, Processing & Engineering</u> <u>Sime Darby Research Sdn Bhd</u>

MOHAMMED FAISAL MOHAMMED YUNUS NOOR IRMA NAZASHIDA MOHD HAKIMI MUHAMMAD AINUDDIN UBAIDAH SYED MOHD HADI SYED HILMI

Developing Sustainable Futures

Plantation