

AS NEW BIOGAS FOR OIL PALM INDUSTRY

JAMALIAH MD JAHIM BIOHYDROGEN GROUP UNIVERSITY KEBANGSAAN MALAYSIA

UKM: Inspiring Futures & Kebangsaan **Nurturing Opportunities**

National University of Malaysia

Universiti

Malaysia

- Promotes the national language in its intellectual **tradition** yet gives greater space for proficiency in English
- Encourages its student population to celebrate cultural diversity that promotes inter ethnic understanding & **unity**, **a** living demonstration to a better future for the nation
- Adapts global knowledge by looking at others through our eyes (e.g. Institute of Occidental Studies, Institute of West Asian Studies)

Faculty of Engineering and Built Environment

Established 1 Nov 1984

Departments:

- Civil and Structure Engineering
- Electrical, Electronics and Systems Engineering
- Chemical and Process Engineering
- Mechanical and Materials Engineering
- Architecture

Research centers

213 academic staff 151 supporting staff 1170 undergraduates 1030 postgraduates

Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, UKM

Research Focus	Research categories; basic, applied, bench scale, lab pilot, industrial pilot, demonstration plant					
Sustainable development	Integrating appropriate technologies to achieve sustainable development with zero waste, increase revenue and productivity. Undertaken by the UKM-YSD Chair for Sustainable Development					
	Intograting o	poroprioto toob	oplaging to days	olon hig rafinany	to rocover velu	oblo producto
Bio-refinery	from biomass. Undertaken by the LRGS Bio-refinery Group					
Cutting-edge process system	Integrating appropriate technologies to develop cutting-edge process to solve specific issues and problems of industries and communities					
Other research programs	Integrating	appropriate tecl	nnologies to pro	vide solutions a	nd develop new	knowledge
Focus	Bio- technology	Chemical technology	Separation technology	Nano- technology	Renewable Energy	Processing Technology

Introduction Why Biohydrogen at Oil Palm Mill

- Good goverment policies, action plans & initiatives on biomass direction strategy by Malaysian Government
- Biological hydrogen process
 - ✓ Cheap technology
 - ✓ Green & sustainable
 - ✓ Natural phenomenon in anaerobic digestion
- Hydrogen as biofuel
 - Clean carbon neutral energy & environmental friendly
 - ✓ near to zero levels of pollution, emits no CO₂ but only water

- Oil Palm biomass resourses
 - ✓ provide carbohydrate as main carbon if biological conversion without light
 - ✓ abundant source of low value feedstock such as POME and OP residues
 - Carbohydrates are best feedstock: oligosaccharides, hexoses, pentoses, as e.g. coming from (hemi)cellulose

Palm and Palm Kernel Oil

Palm Oil Extraction Rate = 20% FFB Palm kernel Extraction Rate = 5 % FFB => Kernel oil Oil yield = 3.5-4.0 t/ha Economic life around 25 years Oil recovered by pressing

Kernel Oil content 45-48%

Palm oil mill products

 Basis: Fresh Fruit Bunch (FFB) processed in Malaysia = 99.6 million MT (MPOB, 2015)

Νο	Products	Quantity (million MT)	%FFB
1	Crude Palm Oil (CPO)	19.9	20
2	Kernel	5	5
3	Shell	7	7
4	Empty Fruit Bunch (EFB)	19.9	20
5	Fiber	11.9	12
6	Palm Oil Mill Effluent (POME)	64.7	65

Hydrogen production from biomass

Fermentative hydrogen production

- Biomass or carbohydrate-based substrate presents a promising route of biological hydrogen production.
- Strict anaerobes and facultative anaerobes chemoheterotrophs, such as Clostridia and Enteric bacteria, are efficient producer.
- Fermentation of glucose by microbiological route can produce theoretically up to 4 mol of hydrogen per mol of glucose

Main challenge in fermentative production of hydrogen

- A conversion efficiency of 33% is theoretically possible for hydrogen production from glucose (based on maximum four moles hydrogen per mole glucose), only half of this is usually obtained under batch and continuous fermentation conditions.
- Four moles of hydrogen could only be obtained from glucose if two moles of acetate are produced, however only two moles of hydrogen are produced when butyrate is the main fermentation product.
- high H₂ pressure inside the reactor caused inhibition thus a low hydrogen pressure of around 10⁻³ atm is necessary for achieving high conversion efficiency.

H₂ yield on carbohydrates

Organism	Domain	T-opt.	Culturing type	Substrate	H ₂ /glucose
Mesophiles					
Enterobacter aerogenes E.82005	В	38	batch	glucose	1.0
Enterobacter aerogenes HU-101	В	37	chemostat	glucose	0.6
Klebsiella oxytoca HP1	В	38	chemostat	glucose	1.0
Clostridium acetobutylicum	В	34	controlled batch	glucose	1.4
Clostridium sp. No 2	В	36	batch	glucose	2.0
Thermophiles					
Clostridium thermosaccharolyticum	В	55	chemostat	glucose	1.44
Clostridium thermocellum JW20	В	60	batch	glucose	1.8
Clostridium thermocellum JW20	В	60	chemostat	glucose	3.5
Clostridium thermocellum LQRI	В	60	batch	cellobiose	2.86
Extreme/hyperthermophiles					
Thermotoga maritima	В	80	batch	glucose	4
Caldicellulosiruptor saccharolyticum	В	70	controlled batch	sucrose	3.3
Thermoanaerobacter tengcongensis	В	75	chemostat	glucose	4
Pyrococus furiosus	А	90	batch	maltose	3.5
Thermococcus kodakaraensis	А	85	chemostat	starch	3.33

UKM-YSD CHAIR ON SUSTAINABLE DEVELOPMENT: ZERO WASTE TECHNOLOGY

RM15 Million Endowment by Sime Darby Foundation since February 2011

Forging Mutually Beneficial Partnerships between UKM- Sime Darby

Developing Sustainable Futures Inspiring Futures, Nurturing Possibilities

UNIVERSITI KEBANGSAAN MALAYSIA The National University of Malaysia

To turn palm oil mills into green factories-targeting for carbon neutral

No pollutants to the air

No pollutants to the ground

No pollutants to the water

-But yet;

□ Increase of revenue

Iong term productivity and sustainability of the oil palm industry ensured

Process Model

Carbon Neutral Palm Oil Mill

An integrated approach for zero waste with production of hydrogen fuel, electricity, fertiliser, animal feed and other chemicals

UKM-YSD Chair on Sustainable Development

THRUST AREAS

- 1 H₂ for Power and Steam Generation
- 2 In-line composting for organic fertilizer
- 3 H₂ production from POME and biomass
- 4 Pretreatment of biomass for H₂ production
- 5 Algae production to sink CO₂
- 6 Water recycle and reuse

Key Messages from Tun Chairman Integrate projects within Sime Darby with UKM-YSD

Key Messages from EVP Plantation & Agribusiness Short term: Focus on Quick Gain Projects Long term: DO NOT reinvent the wheel

UKM-SDR Thrust Area 3: Hydrogen production from POME and biomass

Objective:

To produce hydrogen gas for electricity generation

2 projects

- TA3A H2 and CH4 production via biological processes from POME and biomass residue (empty fruit bunch)
- TA3B Cracking of CH4 into hydrogen for more H2 generation

POME characteristic

Parameters	RAW POME
pH	4.5
Total Chemical Oxygen Demand (COD) (g/L)	99.91 ± 19.89
Soluble COD (g/L)	47.89 ± 3.48
Total carbohydrate (g/L)	22.65 ± 1.71
TSS (g/L)	70.06 ± 14.16
VSS (g/L)	57.64 ± 10.13
TS %	10.69
Water content %	89.31
Total reducing sugar (g/L)	15.7 ± 1.3
Total soluble sugar (g/L)	8.4 ± 4.2
Total sugar (g/L)	20.9 ± 4.6
Oil and Grease (g/L) (%)	<1%
Total nitrogen (mg/L N)	723.33 ± 20.82

- Location: at Bukit Krayong Oil Mill, Kapar;
- Centrifuge POME

Composition Analysis: POME and OPDC

3-phase decanter POME

Component	OPDC	POME*			
component	(wt %)				
рН	4.5	3.9			
Total moisture	73-75	90-96			
Solid	20-30	3-5			
Lignin	4.89	1.03			
T. carbohydrate	9.45	2.20			
glucan	5.30	0.60			
xylan	3.39	0.23			
arabinan	0.93	0.08			

POME

Oil Palm Decanter Cake (OPDC)

THERMOPHILIC BIOHYDROGEN PRODUCTION IN FLUIDISED BED COLUMN REACTOR

Volume = 16 L

Column vessel H/D = 8

Temperature = $55 \degree C$

Working volume = 10 L

pH = 5.5

```
Substrate feed = sucrose and
POME (pH adjusted to 7.0)
Inoculum = GAC biofilm
(mixed culture)
Mode of mixing = pump
recirculation
Mode of feeding = Sequential
Batch
```


16L packed bed column bioreactor

H2 Profile using synthetic at different HRT

The use of 10% POME with synthetic media

Comparison of rate of H2 production by GAC-biofilm with different % POME (Batch run)

% POME	Yield mol/mol	HPR mmol (I.h)-1
control	1.90	3.2
10	1.76	2.5
20	1.73	1.9
30	1.56	1.2

GAC- biofilm after performing the run at 10% POME

- a) Bacterial colonization onto GAC (magnification 1,000×);
- b) Close-up view of rod-shaped microorganisms (magnification 10,000×) found to be the predominant species during biohydrogen production at thermophilic conditions (60 °C)

Experimental setup:

- Mode: continuous
- T = 55 deg C
- Working volume = 20L (5L inoculum + 15L substrate)
- HRT = 1-2 days
- pH = 6.0
- Substrate = 50% diluted POME
- Inoculum = mixed culture

Biohydrogen production in 20L column bioreactor

Acknowledgement

- Yayasan Sime Darby
- Sime Darby Research Sdn Bhd
- CESPRO, UKM
- Fuel Cell Institute UKM
- Malaysia Genome Institute
- Research Collaborators: UPM, SIRIM, UM and Monash University
- Dr Pieternel Claassen, ex-Chair Holder of UKM-YSD Chair on Sustainable Development: Zero Waste Technology
- MSc and PhD students

THANK YOU

National University of Malaysia

