Efficient biohydrogen production from POME by two-stage dark fermentation and electrohydrogenesis

Sompong O-Thong

Thaksin University, Thailand

H₂ production from renewable feedstock

Yield, L-biohydrogen/ L-substrate1

The yield of biohydrogen from POME is the highest in comparison with other wastes and wastewaters

Sugar

- glucose, sucrose, xylose etc.
- showing yields between 1.84 3.85 mol H₂/mol glucose
- in practice it may not be feasible to use pure cultures for H₂ production in large scale production facilities

Agricultural waste and energy crop

- highest yields of 3.8 mol H₂/mol glucose from wheat straw hydrolysates (Ivanova et al., 2009)
- pretreat feedstock requirement, In some studies the focus was on different pretreatment methods used

Starch and mix biomass

- H₂ yields varied from 1.84 to 2.82 mol H₂/mol glucose
- high H₂ yields on starch (3.3 mol H₂ / mol hexose)

Management of Palm Oil Industrial Effluent

Palm Oil Mill Effluent (POME) is suitable for biohydrogen production

- hydrogen at mesophilic = $1.5 L H_2/L$ -POME

- hydrogen at thermophilic = $3.5 \text{ LH}_2/\text{L-POME}$

65% of the energy contained still remains in the liquid

ethanol, formate, acetic acid, propionic acid and butyric acid 0-300 mmol/L-H₂ production

Two-stage dark fermentation and electrohydrogenesis

Fermentation H₂ production

Dark fermentation $C_6H_{12}O_6 + 2H_2O \longrightarrow 2CH_3COOH^- + 4H_2 + 2CO_2$

Theoretical Biological Hydrogen Production

Dark fer	mentation		Microbial ele	ctrolysis cell	
$C_6H_{12}O_6 + 2H_2O$ $C_6H_{12}O_6 + 2H_2O$	$2CH_{3}COOH^{-} + 4H_{2} + 2CO_{2}$ $2CH_{3}CH_{2}CH_{2}COOH + 2CO_{2} + 2H_{2}$		$C_{2}H_{4}O_{2} + 2H_{2}O \longrightarrow 4H_{2} + 2CO_{2}$ $C_{4}H_{8}O_{2} + 10H_{2}O \longrightarrow 8H_{2} + 4HCO^{-}_{3} + 3H^{+}$		
		Ano Catl	de : CH ₃ COOH + 2H ₂ O hode: 8H ⁺ + 8e ⁻	2CO ₂ + 8e ⁻ + 8H ⁺ 4H ₂	

Dark fermentation + Microbial electrolysis cell $C_6H_{12}O_6 + 2H_2\Theta$ 2CH₃COOH⁻ + $4H_2 + 2CO_2 \rightarrow$ $2CH_3COOH^- + 2H_2O$ 8H₂ + 2CO₂

Continuous hydrogen production in 10 L CSTR by dark fermentation process

Hydrogen production from POME by fermentation process

Microbial community

Thermophilic H₂ production

Manage biohydrogen process

• Biostimulization with adding nutrient species specific for *Thermoanaerobacterium* PSU-2.

Fig. 1 - Transmission electron micrograph of T. thermosaccharolyticum PSU-2.

O-Thong et al., 2009

Start-up process for continuous biohydrogen production from POME

Anaerobic sequencing batch reactor for hydrogen production

The reactor tank was made from a glass bottle with a total volume of 1L. The operating volume was 800 mL. The reactor was run by intermittent mixed feeding at 200 rpm and with 24 h cycles. Each cycle consisted of 30 min fill, 22 h 40 min reaction, 30 min settlement, 10 min draw and 10 minidle.

Parameters	HT	0%-PSU 2	10%-PSU 2	20%-PSU 2	30%-PSU 2
Initial pH	5.57	5.59	5.58	5.53	5.52
Final pH	5.37	5.29	5.34	5.37	5.37
H ₂ (%)	40.87	44.06	42.15	39.51	41.32
Yield H ₂ (L/L)	2.01	2.32	1.65	1.78	1.94
HY (mmol/gCOD)	12.01	11.55	9.00	11.02	13.22
Yield H ₂ (mLH ₂ /gCOD)	249.13	208.63	211.51	246.86	296.14
Acetic acid (g/L)	5.94	4.82	4.10	3.72	4.46
Butyric acid (g/L)	4.57	4.73	4.50	4.31	3.83
Lactic acid (g/L)	0.21	0.22	0.21	0.19	0.18
Formic acid (g/L)	0.23	0.24	0.20	0.18	0.17
Propionic acid (g/L)	0.69	0.69	0.65	0.60	0.55
Total sugar utilization (%)	53.10	53.40	51.30	57.50	60.70
Total carbohydrate utilization (%)	81.51	80.77	78.84	82.72	84.22
Total alkalinity (g/L)	2.80	3.20	2.30	2.70	2.10
COD reduction (%)	23.07	23.05	23.04	23.09	23.09
Total Solids (g/L)	52.01	35.12	47.18	59.04	33.88
Volatile Solids (g/L)	22.03	14.16	22.37	29.98	17.98
Volatile Organic Acids (g/L)	3.32	3.55	3.19	2.88	2.74

Table 3. Comparative hydrogen production performance from various methods used for preparing thermophilic hydrogen producing seed

The microbial populations that result from various methods used for preparing thermophilic hydrogen production by (Denaturing Gradient Gel Electrophoresis) DGGE technique

Manage Biohydrogen Process

• **Biostimulization** with adding nutrient species specific (organic nitrogen) for their community

Manage Biohydrogen Process

• Process control for maintaining their community by monitor and quantify major hydrogen producing bacteria

Fluorescence image of sludge samples from thermophilic biohydrogen producing systems stained with DAPI (A and C), green Thermoanaerobacterium spp. detected by <u>Tbm1282</u> probe labeled with FITC (B) and red T. thermosaccharolyticum detected by <u>Tbmthsacc184</u> probe with Cy3 (D). Fluorescence images of sludge samples from extremethermophilic system stained with DAPI (E) and red Caldicellulosiruptor spp. detected by <u>Ccs432</u> probe labeled with Cy3.

Hydrogen production from POME by fermentation process

Biohydrogen production by electrohydrogenesis in batch experiment

Results of batch hydrogen production from fermentation effluent by MEC

Accumulative hydrogen production from fermentation effluent by electrohydrogenesis

Results of batch hydrogen production from fermentation effluent by MEC

Table 3. Net energy productions of hydrogen production from fermentation effluent by MEC

Source of inoculums	Hydrogen yield	Received	Energy	Net	VFA removal
	(mL/g-COD)	power (V)	used (V)	energy (V)	(%)
Control	0.1	0	0.33	-0.33	0.1
Inoculums CH ₄ production	321.9	9.49	3.4	6.09	88.33
Swamp soil	326.5	9.63	3.5	6.13	80.25
Hot spring soil	257.3	7.59	2.13	5.46	53.08
Flood soil	102.8	4.82	4.53	0.29	60.17

Results of batch hydrogen production from fermentation effluent by MEC

Figure 5. Energy efficiency from microbial electrolysis cell at difference source of inoculum

Figure 6. Accumulative hydrogen production from fermentation effluent by electrohydrogenesis

Parameter	Swamp soil	Control	
Hydrogen production (mL/L)	8187	3	
Hydrogen yield (mL/g COD)	657	0.2	
Received power (V)	29.06	0.01	
Energy used (V)	9.53	4.73	
Net energy (V)	19.53	-4.72	
Energy efficiency (%)	330	0	
VFA removal (%)	95	0	

Effect of applied voltage on biohydrogen production from dark fermentation effluent

Applied	Hydrogen	Hydrogen	Specific hydrogen
voltage (V)	production	yield (mL	yield
	(mL H ₂ /L)	H ₂ /g COD)	(mL H ₂ /g COD/V)
0.3	0.22	0.01	0.02
0.4	1.56	0.29	0.29
0.5	30.75	5.67	3.78
0.6	3,004.70	554.37	<u>277.19</u>
0.7	3,460.32	<u>638.44</u>	255.38
0.8	2,241.48	413.56	137.85

Microbial community

M, DGGE markerP1, Before fermentationP2, Sediment (after fermentation)P3 Electrode (after fermentation)

Dominated species Aciditerrimonas sp. Geobacillus sp., Thermohydrogenium sp. Brevibacillus sp., Caloranaerobacter sp.

Continuous efficient biohydrogen production from POME by two-stage dark fermentation and electrohydrogenesis

Current work:

- To design new reactor for integrated system of two stage dark fermentation and microbial electrohydrogenesis
- Scale up
- Control and monitoring microbial in the systems

Application of Biohydrogen

Partial hydrogenation of palm oil

Commercial hydrogen = 18 Thai bath/kg Biohydrogen = 7 Thai bath/kg