Sains Malaysiana 31: 73-85 (2002)                                                                                Sains Fizis dan Gunaan /

                                                                                                                                Physical and Applied Sciences

 

Surface Pretreatment  Effect on the Electrochemical Reduction

of CO2 on Polycrystalline Copper III Aqueous

Hydrogen Carbonate Solution

 

Jumat Salimon

School of Chemical Sciences & Food Technology

Universiti Kebangsaan Malayisa

43600 UKM Bangi, Selangor D.E.,Malaysia

 

Maher Kalaji

Department of Chemistry

University of Wales

Bangor UK LL57 2UW

 

 

 

ABSTRACT

 

A major obstacle that arises during the electroreduction of carbon dioxide in aqueous solution is the formation of inactive specie on the surface of electrode. The route that leads the formation of carbonate ions during the reduction of CO2 is minimized through surface electro-polarization of the electrode. As the polarization potential is varied from -1.0 to 1.5 V (vs. SCE), an adsorbed carbon monoxide band that shifts from 1889 to 1920 cm-1 appeared, indicating that an adsorbed carbon monoxide is produced from the reduction of CO2, The band was not observed without surface pre­polarization or in nitrogen-saturated solution. These results confirm that the "carbonate route" can be overcame and depressed during the electroreduction of CO2 in aqueous solution. Studies performed using other electrodes (Ni and Pt) show the same behaviour although in different potential ranges. Com­parison with similar studies reported in recent literature suggests that the history of the electrode and pre-treatment are very critical.

 

 

ABSTRAK

 

Salah satu sebab penghalang semasa proses penurunan karbon dioksida dalam larutan akuas adalah pembentukan species tak aktif pada permukaan elektrod. Tapak jalan penghasilan ion tak aktif carbonat, boleh diminimakan melalui pempolaran permukaan elektrod secara elektrokimia. Apabila keupayaan pempolaran diubahkan dari -1.0 ke-1.5 V (vs. SCE), satu puncak inframerah bagi carbon monoksida terjerap yang teranjak dari 1889 ke 1920 cm-1 terhasil, menunjukkan bahawa CO2 telah mengalami proses penurunan. Puncak ini tidak dapat dicerap jika permukaan elektrod tidak dipolarkan terlebih dulu atau dalam larutan yang tidak ditepukan dengan karbon dioksida. Kajian yang dilakukan terhadap elektrod berlainan (Ni dan Pt) juga menunjukkan kehadiran puncak yang sama walaupun dalam julat keupayaan yang berbeza. Perbandingan dengan kajian penurunan karbon dioksida yang telah dilaporkan dalam literatur terkini merumuskan bahawa keadaan latarbelakang dan pra-olahan permukaan elektrod merupakan faktor yang amat kritikal dan perlu diambil kira.  

 

 

 

RUJUKAN/REFERENCES

 

Alhaji, J.N. & Reda, M.R. 1996. Role of solution chemistry on corrosion of copper in synthetic solutions: effect of bicarbonate ion concentration on uniform and localized attack, British Corr. J. 31: 125-131.

Beden, A., Bewick, A. Razaq, M. & Weber, J. 1982.  Infrared study of adsorbed species on electrode-adsorption of CO on Pt, Rh and Au, J. Electroanal. Chem. 142: 345-356.

Brisard, G.M., Rudnicki, J.D., McLarnonand, F. & Cairns, E.J. 1995. Application of probe beam deflection to study the electrooxidation of copper in alkaline media, Electrochim. Acta 40: 859-865.

Daniel, D.W. 1988. Infrared studies of CO and CO2 adsorption on Pt/CeO: The characterization of active sites, J. Phys. Chem. 92: 3891-3899.

Dovydov, A.A. 1990. Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides. N. York: John Wiley & Sons.

Drogowska, M., Brossard, L. & Menard, H. 1988. Effect of phosphate ions on copper corrosion behavior, Surf. Coating Technol. 34: 383-395.

Drogowska, M., Brossard, L. & Menard, H. 1992. Copper dissolution in NaHCO3 and NaHCO3 + NaCI aqueous solutions at pH 8, J. Electrochem. Soc. 139: 39-47 Drogowska, M., Brossard, L. & Menard, H. 1993. Effect of phosphate ions on copper dissolution and passivation. J. Electrochem. Soc. 139: 2787-2798 .

Frese, KW. Jr., 1993. In Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Chp. I, B. Sullivan (Ed.). Elsever Science Publishers.

Hair, M.L. 1967. Infrared Spectroscopy in Surface Chemistry. Marcel Dekker, Inc., New York

Hayden, B. E., Kretzscmar, K & Bradshaw, A.M. 1985. An infrared spectroscopic study of co on Cu(III): Yhe linear, bridging and physisorbed species. Surf. Sci. 155: 553-558

Hernandez, R.M. & Kalaji, M. 1996.Use of isotopically labeled compounds for the insitu IR study of the electroreduction of CO2 in aqueous hydrogen carbonate solutions. J. Chem. Soc., Faraday Trans. 92: 3957-3962.

Hernandez, R.M. & Kalaji, M. 1997.Electrochemical reactions of CO2 on polycrystalline copper electrodes. J. Electroanal. Chem. 283: 5323-5330.

Hori, Y., Kikuchi, K & Murata, A. 1986. Production of methane and ethylene in electrochemical reduction of CO2 at copper electrode in aqueous hydrogencarbonate solution. Chem. Leu. Chem. Soc. Jpn. 897-898.

Hori, Y., Koga, O., Aramata, A. & Enyu, M. 1992. Infrared spectroscopic observa­tion of adsorbed CO intermediately formed in the electrochemical reduction of CO2 at nickel electrode. Bull. Chem. Soc. Jpn. 65: 3008-3010.

Hori, Y.,Takahashi, R., Yoshinarni, Y. & Murata, A. 1997. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B. 101: 7075-7081.

Kyriacou, G. & Anagnostopoulos, A. 1992. Electroreduction of CO2 on differently prepared copper electrodes. The influence of electrode treatment on the currents efficiencies. J. Electroanal. Chem. Interfacial Electrochem. 322: 233-239.

Lenglet, M., Kartouni, K & Delahaye, D., 1991. Electrochemical properties of copper in alkaline solution. J. Appl. Electrochem. 21: 697.

Nakamoto, K. 1996. Infrared Spectra of inorganic and coordination compounds. 4th Edition. New York: John Wiley & Sons.

Pourbiax, M. 1965. In Atlas of Electrochemical Equilibria in Aqueous Solution, London: Pergamon Press.

Raval, R., Parker, S.F., Pemble, M.E., Hollins, P., Pritchard, J. & Chesters, M.A. 1988. FT-RAlRS, EELS and LEED studies of the adsorption of carbon monoxide on Cu(III). Surf. Sci. 203: 353-377.

Ribotta, S.B., Folquer, M.E. & Vilche, J.R. 1995. Influence of bicarbonate ions on the stability of prepassive layers formed on copper in carbonate-bicarbonate buffers. Corr. Sci. 51: 682-688

Russell, J.W., Severson, M., Scanlan, K & Bewick, A. 1983. Infrared spectrum of CO adsorbed on a platinum electrode. J. Phys. Chem. 87: 293-297.

Salimon, I. & Kalaji, M. 2002. In situ FTIR observation of the intermediate species from the electrochemical reduction of carbon dioxide on polycrystalline copper. Mal. J. of Anal. Sci. in press.

Shoesmith, D.W., Sunder, S., Bailey, M.G., Wallace, G.J. & Stanchell, F.W. 1983.  Electrochemical behaviour of prepassive layer on copper electrode. J. Electroanal. Chem. 143: 153-161.

Strehblow, H.H., & Titze, B. 1980. An anodic potential effect on the electro-chemical behaviour of copper in hydrogen carbonate solution. Electrochim. Acta 25: 839-845.

Taguchi, S., Ohmori, T., Aramata, A. & Enyo, M. 1994.  Adsorption of CO and CO2 on polycrystalline Pt at a potential in the hydrogen adsorption region in phosphate buffer solution: An in situ Fourier transform IR study. J. Electroanal. Chem. 369: 199-205.

Taguchi, S., Aramata, A. & Enyu, M. 1994. Adsorption of CO on Polycrystal-line Pt in phosphate buffer solution. J. Electroanal. Chem. 372: 161-168.

Terunuma, Y., Saitoh, A., & Momose, Y. 1997. Relationship between hydrocarbon production in the electrochemical reduction of CO2 and the characteristics of the Cu electrode. J. Electroanal. Chem. 434: 69-75.

 

 

previous