Sains Malaysiana 40(6)(2011): 587–594

 

Biodiesel Production via Transesterification of Palm Oil Using NaOH/Al2O3 Catalysts

(Pengeluaran Biodiesel Melalui Pengtransesteran Minyak Sawit  dengan Menggunakan Mangkin NaOH/Al2O3)

 

 

Taufiq Yap Yun Hin* & Nurul Fitriyah binti Abdullah

Centre of Excellence for Catalysis Science and Technology and Department of Chemistry

Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Mahiran Basri

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

 

Received: 15 April 2010 / Accepted: 25 October 2010

 

ABSTRACT

 

Due to the increase in price of petroleum and environmental concerns, the search for alternative fuels has gained importance. In this work, biodiesel production by transesterification of palm oil with methanol has been studied in a heterogeneous system using sodium hydroxide loaded on alumina (NaOH/Al2O3). NaOH/Al2O3 catalyst was prepared by impregnation of alumina with different amount of an aqueous solution of sodium hydroxide followed by calcination in air for 3 h. The prepared catalysts were then characterized by using x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunner-Emmett-Teller surface area measurement (BET), scanning electron microscopy (SEM) and temperature-programmed desorption of CO2 (CO2-TPD). Moreover, the dependence of the conversion of palm oil on the reactions variables such as the molar ratio of methanol/oil, the amount of catalysts used, reaction temperatures and reaction times were performed. The conversion of 99% was achieved under the optimum reaction conditions. The biodiesel obtained was characterized by FT-IR and the pour point was measured.

 

Keywords: Biodiesel; heterogeneous catalyst; palm oil; transesterification

 

ABSTRAK

 

Disebabkan oleh kenaikan harga minyak mentah dan keperihatinan terhadap alam sekitar, penyelidikan terhadap bahan bakar alternatif telah menjadi lebih penting. Dalam kajian ini, pengeluaran biodiesel melalui pengtransesteran minyak sawit dengan metanol telah dikaji dalam sistem heterogen menggunakan natrium hidroksida yang dimuatkan atas alumina (NaOH/Al2O3). Mangkin NaOH/Al2O3 telah disediakan dengan proses impregnasi alumina dengan larutan sodium hidroksida dengan jumlah yang berbeza diikuti dengan pengkalsinan dalam udara selama 3 jam. Mangkin yang telah disediakan kemudiannya dicirikan dengan menggunakan pembelauan sinar-X (XRD), spektrometer Fourier Transform infra merah (FT-IR), pengukuran luas permukaan Brunner-Emmett-Teller (BET), imbasan mikroskop elektron (SEM) dan Penyahjerapan CO2 Suhu Berprogram (CO2-TPD). Selain itu, kebergantungan penukaran minyak sawit kepada hasil pada pembolehubah tindak balas seperti nisbah molar metanol/minyak, jumlah mangkin yang digunakan, suhu tindak balas dan masa tindak balas turut dikaji. 99% hasil diperoleh di bawah keadaan tindak balas optimum. Biodiesel yang diperoleh dicirikan dengan FT-IR dan takat tuang diukur.

 

Kata kunci: Biodiesel; mangkin heterogen; minyak sawit; pengtransesteran

 

REFERENCES

 

Akgün, N. & İşcan, E. 2007. Effects of process variables for biodiesel production by transesterification. Journal of Lipid Science and Technology 109: 486-492.

Albuquerque, M.C.G., Santamaria-Gonzalez, J., Mérida-Robles, J.M., Moreno-Tost, R., Rodríguez-Cactellon, E., Jiménez-López, A., Azevedo, D.C.S., Cavalcante Jr., C.L. & Maireles-Torres, P. 2008. MgM (M = Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A:General 347: 162-168.

Arzamendi, G., Campo, I., Arguiñarena, E., Sánchez, M., Montes, M. & Gandía, L.M. 2007. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chemical Engineering Journal 134: 123-130.

Boz, N. & Kara, M. 2009. Solid Base Catalyzed Transesterification of Canola Oil. Chemical Engineering Communications 196: 80-92.

Chai, F., Cao, F., Zhai, F., Chen, Y., Wang, X. & Su, Z. 2007. Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. Advanced Synthesis and Catalysis 349: 1057-1065.

Di Serio, M., Cozzolino, M., Tesser, R., Patrono, P., Pinzari, F., Bonelli, B. & Santacesaria, E. 2007. Vanadyl phosphate catalysts in biodiesel production. Applied Catalysis A: General 320: 1-7.

Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R. & Santacesaria, E. 2006. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial and Engineering Chemistry Research 45: 3009-3014.

Kim, H.-J., Kang, B.-S., Kim, M.-J., Park, Y.M., Kim, D.-K., Lee, J.-S. & Lee, K.-Y. 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 93-95: 315-320.

Kiss, A.A., Omota, F., Dimian, A.C. & Rothenberg, G. 2006. Solid acid catalysts for biodiesel production-Towards sustainable energy. Advanced Synthesis and Catalysis 348: 75-81.

May, C.Y., Liang, Y.C., Foon, C.S., Ngan, M.A., Hook, C.C. & Basiron, Y. 2005. Key fuel properties of palm oil alkyl esters. Fuel 84: 1717-1720.

Mbaraka, I.K. & Shanks, B.H. 2006. Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. Journal of the American Oil Chemists’ Society 83: 79-91.

Meher, L.C., Vidya Sagar, D. & Naik, S.N. 2004. Technical aspect of biodiesel production by transesterification. Renewable and Sustainable Energy Reviews 10: 248-268.

Mross, W.-D. 1983. Alkali doping in heterogeneous catalysis. Catalysis Reviews, Science and Engineering 25: 591-637.

Perrichan, V. & Durrupty, M.C. 1988. Thermal stability of alkali metals deposited on oxide supports and their influence on the surface area of the support. Applied Catalysis 42: 217-227.

Siatis, N.G., Kimbaris, A.C., Pappas, C.S., Tarantilis, P.A. & Polissiou, M.G. 2006. Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. Journal of the American Oil Chemists’ Society, Vol. 83, no. 1.

Szczepańska, S. & Malinowski, S. 1969. Studies on solid catalysts with a basic character. II. Nature of acidic and basic centers on the surface of sodium-silica catalysts. Journal of Catalysis 15: 68-82.

Wan, T., Yu, P., Wang, S. & Luo, Y. 2009. Application of sodium aluminates as a heterogeneous base catalyst for biodiesel production from soybean oil. Energy & Fuels 23: 1089-1092.

Xie, W. & Li, H. 2006. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical 255: 1-9.

Xie, W., Peng, H. & Chen, L. 2006. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 300: 67-74.

Zabeti, M., Wan Daud, W.M.A. & Aroua, M.K. 2009. Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology 90: 770-777.

Taufiq Yap Yun Hin* & Nurul Fitriyah binti Abdullah

 

*Corresponding author; email: yap@fsas.upm.edu.my

 

 

previous