Sains Malaysiana 42(8)(2013): 1151–1157


Optical Properties of Poly( 9,9’-di-n-octylfluorenyl-2.7-diyl)/Amorphous SiO2

Nanocomposite Thin Films

(Sifat Optik Filem Nipis Nanokomposit Poli( 9,9’-di-n-ostilfluorenyl-2.7-diil)/Amorfus SiO2)



Mohammad Hafizuddin Haji Jumali1*, Bandar Ali Al-Asbahi1,2& Chi Chin Yap1, Muhamad Mat Salleh3& Mohamad Saleh AlSalhi4


1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, D.E. Malaysia


2Department of Physics, Faculty of Science, Sana’a University, Yemen

3Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, D.E. Malaysia

4Department of Physics and Astronomy, Laser Group, College of Science

King Saud University, Saudi Arabia


Received: 11 June 2012 / Accepted: 2 February 2013




Identified as potential materials for optoelectronic applications, the polymer/inorganic nanocomposites are actively studied. In this work, the effect of amorphous silica nanoparticles (NPs) content on the optical properties of Poly (9,9’-di-n-octylfluorenyl- 2.7-diyl) (PFO) thin films has been investigated. Different ratios of PFO/SiO2 NPs composites have been prepared using solution blending method. Then, the blends were spin-coated onto glass substrates at 2000 rpm for 30 s and subsequently dried at room temperature. XRD and TEM were used to determine the structural properties, while UV-Vis and PL spectrophotometers were employed to investigate the optical properties of the films. XRD confirms that there was no variation on structure of both PFO and SiO2 NPs resulted from the blending process. TEM micrographs display that majority of amorphous SiO2 NPs were well coated with PFO. The absorption spectra of the composite thin films were red-shifted, indicating the increment in conjugation length of the PFO/SiO2 composite. In addition, the calculated values of the optical energy gap, the width of the energy tails and vibronic spacing of the composite films exhibited SiO2 content dependence.


Keywords: Absorption; energy gap; energy tail; photoluminescence; vibronic spacing



Dikenal pasti sebagai bahan berpotensi untuk kegunaan optoelektronik, nanokomposit polimer/bahan inorganik sedang dikaji secara aktif. Dalam kajian ini kesan kandungan nanozarah amorfus SiO2 ke atas sifat optik filem nipis poli(9,9’-di-n-ostilfluorenyl-2.7-diil) (PFO) telah dikaji. Larutan PFO/SiO2 yang berbeza nisbah telah disediakan menggunakan teknik adunan larutan. Kemudian, adunan dimendapkan ke atas substrat kaca menggunakan teknik salutan berputar pada kelajuan 2000 ppm selama 30 s dan seterusnya dikeringkan pada suhu bilik selama 1 jam. XRD dan TEM digunakan untuk pencirian struktur sementara spektrofotometer UV-Vis dan PL digunakan untuk mengkaji sifat optik filem yang disediakan. Pencirian XRD tidak menunjukkan sebarang perubahan struktur ke atas PFO dan nanozarah SiO2 akibat dari proses adunan. Mikrograf TEM menunjukkan nanozarah amorfus SiO2 tersalut oleh PFO. Berbanding spektrum penyerapan filem PFO, spektrum penyerapan untuk filem nipis nanokomposit mempamerkan anjakan merah, menandakan pertambahan panjang konjugasi PFO/SiO2. Selain itu, nilai bagi jurang tenaga, lebar ekor tenaga dan jarak vibronik oleh filem komposit juga menunjukkan pergantungan kepada kandungan SiO2.


Kata kunci: Ekor tenaga; fotoluminesen; jarak vibronik; jurang tenaga; penyerapan


Al-Ani, S.K.J., Al-Ramadin, Y., Ahmad, M.S., Zihlif, A.M., Volpe, M., Malineonico, M., Martuscelli, E. & Ragosta, G. 1999. The optical properties of polymethylmethacrylate polymer dispersed liquid crystals. Polymer Testing 18(8): 611-619.

Assaka, A.M., Rodrigues, P.C., De Oliveira, A.R.M., Ding, L., Hu, B., Karasz, F.E. & Akcelrud, L. 2004. Novel fluorine containing polyfluorenes with efficient blue electroluminescence. Polymer 45(21): 7071-7081.

Bajpai, M., Srivastava, R., Kamalasanan, M.N., Tiwari, R.S. & Chand, S. 2010. Charge transport and microstructure in PFO: MEH-PPV polymer blend thin films. Synthetic Metals 160(15-16): 1740-1744.

Carter, S.A., Scott, J.C. & Brock, P.J. 1997. Enhanced luminance in polymer composite light emitting devices. Applied Physics Letters 71:1145.

Dow, J.D. & Redfield, D. 1970. Electroabsorption in semiconductors: The excitonic absorption edge. Physical Review B 1(8): 3358-3371.

Dutta, K. & De, S.K. 2006. Transport and optical properties of SiO2–polypyrrole nanocomposites. Solid State Communications 140(3-4): 167-171.

Elliott, S.R. 1998. The Physics and Chemistry of Solids. London: J. Wiley.

Ginger, D.S. & Greenham, N.C. 1999. Charge separation in conjugated-polymer/nanocrystal blends. Synthetic Metals 101(1-3): 425-428.

Hagler, T.W., Pakbaz, K., Voss, K.F. & Heeger, A.J. 1991. Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Physical Review B 44(16): 8652-8666.

Han, Z., Zhang, J., Yang, X., Zhu, H. & Cao, W. 2010. Synthesis and application in solar cell of poly(3-Octylthiophene)/titania nanotubes composite. Organic Electronics 11(8): 1449-1460.

Ho, P.K.H. & Friend, R.H. 2002. Π-electronic and electrical transport properties of conjugated polymer nanocomposites: Poly (P-Phenylenevinylene) with homogeneously dispersed silica nanoparticles. The Journal of Chemical Physics 116: 6782-6795.

Huang, Y., Qin, Y., Zhou, Y., Niu, H., Yu, Z-Z. & Dong, J-Y. 2010. Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler−Natta polymerization. Chemistry of Materials 22(13): 4096-4102.

Ibrahim, S., Ahmad, R. & Johan, M.R. 2012. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. Journal of Luminescence 132(1): 147-152.

Jafarzadeh, M., Rahman, I.A. & Sipaut, C.S. 2009. Synthesis of silica nanoparticles by modified sol–gel process: The effect of mixing modes of the reactants and drying techniques. Journal of Sol-gel Science and Technology 50(3): 328-336.

Kickelbick, G. 2003. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science 28(1): 83-114.

Kim, K-S. & Park, S-J. 2012. Influence of N-doped Tio2 on lithium ion conductivity of porous polymeric electrolyte membrane containing LiClO4. Solid State Ionics 212: 18-25.

Liu, D., Teng, F., Xu, Z., Yang, S., Qian, L., He, Q., Wang, Y. & Xu, X. 2007. Enhanced brightness and efficiency in organic light-emitting diodes using SiO2 as buffer layer and electron-blocking layer. Journal of Luminescence 122-123: 656-659.

Liu, J., Shi, Y. & Yang, Y. 2001. Improving the performance of polymer light-emitting diodes using polymer solid solutions. Applied Physics Letters 79: 578-580.

Peng, F., Lu, L., Sun, H., Wang, Y., Liu, J. & Jiang, Z. 2005. Hybrid organic-inorganic membrane: Solving the tradeoff between permeability and selectivity. Chemistry of Materials 17(26): 6790-6796.

Pichler, K., Halliday, D.A., Bradley, D.D.C., Burn, P.L., Friend, R.H. & Holmes, A.B. 1993. Optical spectroscopy of highly ordered poly (P-Phenylene Vinylene). Journal of Physics: Condensed Matter 5: 7155-7172.

Raja, V., Sarma, A.K. & Rao, V.V.R. 2003. Optical properties of pure and doped Pmma-CO-P4VPNO polymer films. Materials Letters 57(30): 4678-4683.

Rozenberg, B.A. & Tenne, R. 2008. Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in Polymer Science 33(1): 40-112.

Tommalieh, M.J. & Zihlif, A.M. 2010. Optical properties of polyimide/silica nanocomposite. Physica B: Condensed Matter 405(23): 4750-4754.

Uragami, T., Matsugi, H. & Miyata, T. 2005. Pervaporation characteristics of organic-inorganic hybrid membranes composed of poly (vinyl alcohol-co-acrylic acid) and tetraethoxysilane for water/ethanol separation. Macromolecules 38(20): 8440-8446.

Urbach, F. 1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review 92: 1324.

Yang, S.H., Le Rendu, P., Nguyen, T.P. & Hsu, C.S. 2007. Fabrication of MEH-PPV/SiO2. Reviews on Advanced Materials Science 15: 144-149.

Yang, S.H., Nguyen, T.P., Le Rendu, P. & Hsu, C.S. 2005. Optical and electrical investigations of poly (P-Phenylene Vinylene)/ silicon oxide and poly (P-Phenylene Vinylene)/titanium oxide nanocomposites. Thin Solid Films 471(1-2): 230-235.



*Corresponding author; email: