Sains Malaysiana 43(6)(2014): 851–859


Enhanced Mechanical Properties of Chitosan/EDTA-GO Nanocomposites Thin Films

(Peningkatan Sifat Mekanik Filem Nipis Nanokomposit Kitosan/EDTA-GO)



1Low Dimensional Materials Research Centre, Department of Physics, University of Malaya,

50603 Kuala Lumpur, Malaysia

2Laboratoire de Chimie Physique Macromoléculaire, ENSIC, Université de Lorraine, 1 rue Grandville, BP 20451, 54 001 Nancy Cedex, France


3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia

43400 Serdang, Selangor, Malaysia


Received: 19 April 2013/Accepted: 7 January 2014



Nanocomposite thin films of chitosan/graphene oxide (CS/GO) and chitosan/ EDTA-GO (CS/EDTA-GO) were prepared by environmental friendly method and the properties were compared. The experimental results showed fine dispersion of GO and EDTA-GO in CS matrix and some interaction occur between the filler and the CS matrix that leads to better distribution of stress transfer. At 0.5 wt. %, both CS/GO and CS/EDTA-GO experienced maximum tensile stress by 51 and 71% compared with CS. Moreover, the elongation at break for both nanocomposites increases and the amount of filler increases.


Keywords: Chitosan; functionalized graphene oxide; graphene oxide; nancomposite thin films



Filem nipis nanokomposit kitosan/grafin oksida (CS/GO) dan kitosan/EDTA-GO (CS/EDTA-GO) telah disediakan dalam kaedah yang mesra alam dan sifat dibincangkan. Keputusan eksperimen menunjukkan GO dan EDTA-GO sangat larut di dalam matriks kitosan dan ini membantu dalam pemindahan tekanan. Pada pengisian 0.5 wt. %, kedua-dua CS/GO dan CS/EDTA-GO menunjukkan kadar kekuatan yang paling tinggi iaitu 51 dan 71% berbanding CS. Selain itu, pemanjangan filem bagi kedua-dua nanokomposit bertambah seiring dengan pertambahan pengisian.


Kata kunci: Filem nipis nanokomposit; grafin oksida; grafin oksida fungsian; kitosan


Ash, B.J., Schadler, L.S. & Siegel, R.W. 2002. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Materials Letters 55(1): 83-87.

Cervera, M., Fernández, J., Heinämäki, M., Räsänen, S.L., Maunu, M., Karjalainen, O.M., Acosta, A., Iraizoz, C. & Yliruusi, J. 2004. Solid-state characterization of chitosans derived from lobster chitin. Carbohydrate Polymers 58(4): 401-408.

Chabba, S., Matthews, G.F. & Netravali, A.N. 2005. ‘Green’composites using cross-linked soy flour and flax yarns. Green Chem. 7(8): 576-581.

Chang, B.Y.S., Huang, N.M., An’amt, M.N., Marlinda, A.R., Norazriena, Y., Muhamad, M.R., Harrison, I., Lim, H.N. & Chia, C.H. 2012. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. International Journal of Nanomedicine 7: 3379.

Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.B.T. & Ruoff, R.S. 2007. Preparation and characterization of graphene oxide paper. Nature 448(7152): 457-460.

Dong, Yanming, Yonghong Ruan, Huiwu Wang, Yaging Zhao & Danxia Bi. 2004. Studies on glass transition temperature of chitosan with four techniques. Journal of Applied Polymer Science 93(4): 1553-1558.

Fang, M., Long, J., Zhao, W., Wang, L. & Chen, G. 2010. pH-responsive chitosan-mediated graphene dispersions. Langmuir 26(22): 16771-16774.

Giannelis, E.P. 1996. Polymer layered silicate nanocomposites. Advanced Materials 8(1): 29-35.

Granick, S., Kumar, S.K., Amis, E.J., Antonietti, M., Balazs, A.C., Chakraborty, A.K., Grest, G.S., Hawker, C., Janmey, P. & Kramer, E.J. 2003. Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science Part B: Polymer Physics 41(22): 2755-2793.

Hennig, G.R. 1959. Interstitial compounds of graphite. Progress in Inorganic Chemistry 1: 125-205.

Hou, S., Su, S., Kasner, M.L., Shah, P., Patel, K. & Madarang, C.J. 2010. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chemical Physics Letters 501(1): 68-74.

Hummers Jr., W.S. & Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80(6): 1339-1339.

Layek, R.K., Samanta, S. & Nandi, A.K. 2012. Graphene sulphonic acid/chitosan nano biocomposites with tunable mechanical and conductivity properties. Polymer 53(11): 2265-2273.

Li, D., Mueller, M.B., Gilje, S., Kaner, R.B. & Wallace, G.G. 2008. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3(2): 101-105.

Morimune, S., Nishino, T. & Goto, T. 2012. Poly(vinyl alcohol)/ graphene oxide nanocomposites prepared by a simple eco-process. Polymer Journal 44: 1056-1063.

Mukhopadhyay, P. & Gupta, R.K. 2011. Trends and frontiers in graphene-based polymer nanocomposites. Plastics Engineering 67: 32-42.

Pan, Yongzheng, Tongfei Wu, Hongqian Bao & Lin Li. 2011. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydrate Polymers 83(4): 1908-1915.

Potts, J.R., Dreyer, D.R., Bielawski, C.W. & Ruoff, R.S. 2011 Graphene-based polymer nanocomposites. Polymer 52(1): 5-25.

Rana, V.K., Pandey, A.K., Singh, R.P., Kumar, B., Mishra, S. & Ha, C.S. 2010. Enhancement of thermal stability and phase relaxation behavior of chitosan dissolved in aqueous l-lactic acid: Using ‘silver nanoparticles’ as nano filler. Macromolecular Research 18(8): 713-720.

Rhim, J-W., Hong, S-I., Park, H-M. & Ng, K-W. Perry 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry 54(16): 5814-5822.

Schadler, L.S., Brinson, L.C. & Sawyer, W.G. 2007. Polymer nanocomposites: A small part of the story. JOM Journal of the Minerals, Metals and Materials Society 59(3): 53-60.

Shen, J., Li, T., Long, Y., Shi, M., Li, N. & Ye, M. 2012. One-step solid state preparation of reduced graphene oxide. Carbon 50(6): 2134-2140.

Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T. & Ruoff, R.S. 2006. Graphene-based composite materials. Nature 442(7100): 282-286.

Szabó, T., Szeri, A. & Dékány, I. 2005. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43(1): 87-94.

Tang, C., Xiang, L., Su, J., Wang, K., Yang, C., Zhang, Q. & Fu, Q. 2008. Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. The Journal of Physical Chemistry B 112(13): 3876-3881.

Veerapandian, M., Lee, M.H., Krishnamoorthy, K. & Yun, K. 2012. Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon 50(11): 4228-4238.

Vijay Kumar, S., Huang, N.M., Lim, H.N., Marlinda, A.R., Harrison, I. & Chia, C.H. 2012. One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chemical Engineering Journal 219: 217-224.

Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H. & Yao, J. 2008. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C 112(22): 8192-8195.

Wang, S.F., Shen, L., Tong, Y.J., Chen, L., Phang, I.Y., Lim, P.Q. & Liu, T.X. 2005. Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. Polymer Degradation and Stability 90(1): 123-131.

Yang, X., Tu, Y., Li, L., Shang, S. & Tao, X. 2010. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Applied Materials & Interfaces 2(6): 1707-1713.



*Corresponding author; email: