Sains Malaysiana 44(6)(2015): 793–799

 

Effect of Cellulose Nanocrystals Content and pH on Swelling Behaviour of Gelatin Based Hydrogel

(Kesan Kandungan Selulosa Nanohablur dan pH terhadap Sifat Pembengkakan Hidrogel yang Berasaskan Gelatin)

 

 

OOI SHOK YIN1, ISHAK AHMAD1* & MOHD CAIRUL IQBAL MOHD AMIN2

 

1Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Malaysia

 

Received: 15 January 2014/Accepted: 15 November 2014

 

ABSTRACT

In this research, a novel method was performed to obtain hydrogel with superior thermal stability by incorporation of cellulose nanocrystals (CNC) into gelatin based hydrogel. Glutaraldehyde was used as cross-linker due to its high chemical reactivity towards NH2 group on gelatin. Different ratio of gelatin/CNC hydrogel was produced in order to study the effects of CNC towards the swelling behaviour and thermal stability of gelatin based hydrogel. The obtained hydrogel was subjected to Fourier transform infrared (FTIR) to verify that gelatin had been cross-linked, swelling test with different pH for swelling behaviour and thermogravimetric analysis (TGA) for thermal stability. The presence of C=N stretching group in the FTIR spectrum for gelatin/CNC hydrogel indicated that the cross-linking reaction between gelatin monomer had been successfully carried out. The hydrogel showed impressive pH sensitivity and maximum swelling was obtained at pH3. The TGA results clearly showed that the incorporation of CNC into gelatin was able to produce hydrogel with higher thermal stability compare to neat gelatin.

 

Keywords: Cellulose nanocrystals; cross-linking; gelatin; hydrogel; swelling behavior

 

ABSTRAK

Dalam kajian ini, kaedah baru telah digunakan untuk menghasilkan hidrogel yang mempunyai kestabilan terma yang lebih tinggi dengan penambahan selulosa nanohablur (CNC) ke dalam hidrogel yang berasaskan gelatin. Glutaraldehid telah dipilih sebagai agen taut silang bagi mentaut silangkan gelatin disebabkan ia mempunyai kereaktifan kimia yang tinggi terhadap kumpulan NH2 pada gelatin. Hidrogel gelatin/CNC dengan nisbah yang berbeza telah dihasilkan untuk mengkaji kesan penambahan CNC terhadap sifat pembengkakan dan kestabilan terma hidrogel. Hidrogel yang dihasilkan telah dicirikan dengan menggunakan transformasi Fourier inframerah (FTIR) untuk mengesahkan terdapat tindak balas taut silang antara monomer gelatin. Ujian pembengkakan pula dijalankan untuk mengkaji sifat pembengkakan hidrogel pada pH yang berbeza manakala analisis termogravimetri (TGA) pula digunakan untuk mengkaji kestabilan terma hidrogel yang dihasilkan. Kewujudan puncak regangan kumpulan C=N pada spektrum FTIR menunjukkan bahawa monomer gelatin telah berjaya ditaut silangkan. Hasil kajian menunjukkan bahawa hidrogel yang dihasilkan mempunyai sensitiviti yang baik terhadap pH dan hidrogel mencapai nisbah pembengkakan maksimum pada pH3. Analisis TGA pula menunjukkan penambahan CNC ke dalam hidrogel telah meningkatkan kestabilan terma hidrogel.

 

Kata kunci: Gelatin; hidrogel; selulosa nanohablur; sifat pembengkakan; taut silang

REFERENCES

Azizi Samir, M.A.S., Alloin, F. & Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.

Bell, C.L. & Peppas, N.A. 1996. Water, solute and protein diffusion in physiologically responsive hydrogels of poly (methacrylic acid-g-ethylene glycol). Biomaterials 17(12): 1203-1218.

Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N. & Rubini, K. 2002. Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23(24): 4827-4832.

Carvalho, R.A. & Grosso, C.R.F. 2004. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids 18(5): 717-726.

Chen, J.P., Leu, Y.L., Fang, C.L., Chen, C.H. & Fang, J.Y. 2011a. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J. Pharm. Sci. 100(2): 655-666.

Chen, X., Yu, J., Zhang, Z. & Lu, C. 2011b. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydrate Polymers 85(1): 245-250.

Curcio, M., Gianfranco Spizzirri, U., Iemma, F., Puoci, F., Cirillo, G., Parisi, O.I. & Picci, N. 2010. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. European Journal of Pharmaceutics and Biopharmaceutics 76(1): 48-55.

Draye, J.P., Delaey, B., Van de Voorde, A., Van Den Bulcke, A., De Reu, B. & Schacht, E. 1998. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19(18): 1677-1687.

Eichhorn, S.J. 2011. Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter. 7(2): 303-315.

Farris, S., Song, J. & Huang, Q. 2009. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry 58(2): 998-1003.

Frisk, M.L., Tepp, W.H., Lin, G., Johnson, E.A. & Beebe, D.J. 2007. Substrate-modified hydrogels for autonomous sensing of botulinum neurotoxin type a. Chemistry of Materials 19(24): 5842-5844.

Frutos, G., Prior-Cabanillas, A., París, R. & Quijada-Garrido, I. 2010. A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules. Acta Biomaterialia 6(12): 4650-4656.

Gojgini, S., Tokatlian, T. & Segura, T. 2011. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Molecular Pharmaceutics 8(5): 1582-1591.

Hou, Y., Schoener, C.A., Regan, K.R., Munoz-Pinto, D., Hahn, M.S. & Grunlan, M.A. 2010. Photo-cross-linked pdmsstar-peg hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds. Biomacromolecules 11(3): 648-656.

Jagadeeshbabu, P.E., Suresh Kumar, R. & Maheswari, B. 2011. Synthesis and characterization of temperature sensitive P-NIPAM macro/micro hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 384(1-3): 466-472.

Jain, S.K., Agrawal, G.P. & Jain, N.K. 2006. A novel calcium silicate based microspheres of repaglinide: In vivo investigations. Journal of Controlled Release 113(2): 111- 116.

Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99.

Karlsson, J.O. & Gatenholm, P. 1999. Cellulose fibre-supported pH-sensitive hydrogels. Polymer 40(2): 379-387.

Khor, E. 1997. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18(2): 95-105.

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. & Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50(24): 5438-5466.

 

Kuijpers, A.J., Engbers, G.H.M., Feijen, J., De Smedt, S.C., Meyvis, T.K.L., Demeester, J., Krijgsveld, J., Zaat, S.A.J. Dankert, J. 1999. Characterization of the network structure of carbodiimide cross-linked gelatin gels. Macromolecules 32(10): 3325-3333.

Lee, K.Y. & Mooney, D.J. 2001. Hydrogels for tissue engineering. Chemical Reviews 101(7): 1869-1880.

Lee, K.Y., Shim, J. & Lee, H.G. 2004. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers 56(2): 251-254.

Li, H., Yuan, Z., Lam, K.Y., Lee, H.P., Chen, J., Hanes, J. & Fu, J. 2004. Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosensors and Bioelectronics 19(9): 1097-1107.

Li, W., Guo, R., Lan, Y., Zhang, Y., Xue, W. & Zhang, Y. 2013. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research Part 102(4): 1131-1139.

Lindblad, M.S., Sjöberg, J., Albertsson, A.C. & Hartman, J. 2007. Hydrogels from polysaccharides for biomedical applications. ACS Symposium Series 954: 153-167.

Liu, J., Lin, S., Li, L. & Liu, E. 2005. Release of theophylline from polymer blend hydrogels. International Journal of Pharmaceutics 298(1): 117-125.

Liu, T.Y., Hu, S.H., Liu, K.H., Liu, D.M. & Chen, S.Y. 2006. Preparation and characterization of smart magnetic hydrogels and its use for drug release. Journal of Magnetism and Magnetic Materials 304(1): e397-e399.

Moon, R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994.

Moriyama, K., Minamihata, K., Wakabayashi, R., Goto, M. & Kamiya, N. 2013. Enzymatic preparation of streptavidin-immobilized hydrogel using a phenolated linear poly(ethylene glycol). Biochemical Engineering Journal 76(0): 37-42.

Mu, C., Guo, J., Li, X., Lin, W. & Li, D. 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids 27(1): 22-29.

Murdan, S. 2003. Electro-responsive drug delivery from hydrogels. Journal of Controlled Release 92(1-2): 1-17.

Paulino, A.T., Pereira, A.G.B., Fajardo, A.R., Erickson, K., Kipper, M.J., Muniz, E.C., Belfiore, L.A. & Tambourgi, E.B. 2012. Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydrate Polymers 90(3): 1216-1225.

Peng, B.L., Dhar, N., Liu, H.L. & Tam, K.C. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering 89(5): 1191-1206.

Pezron, I., Djabourov, M. & Leblond, J. 1991. Conformation of gelatin chains in aqueous solutions: 1. A light and small-angle neutron scattering study. Polymer 32(17): 3201-3210.

Prestwich, G.D., Marecak, D.M., Marecek, J.F., Vercruysse, K.P. & Ziebell, M.R. 1998. Controlled chemical modification of hyaluronic acid: Synthesis, applications, and biodegradation of hydrazide derivatives. J. Control Release 53(1-3): 93-103.

Qiu, Y. & Park, K. 2012. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 53(3): 321-329.

Rodr?́guez, R.A., Alvarez-Lorenzo, C. & Concheiro, A. 2003. Cationic cellulose hydrogels: Kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. Journal of Controlled Release 86(2-3): 253-265.

Ross-Murphy, S.B. 1992. Structure and rheology of gelatin gels: Recent progress. Polymer 33(12): 2622-2627.

Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D. & Adhikari, B. 2010. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource Technology 101(9): 3182-3187.

Shang, J., Shao, Z. & Chen, X. 2008. Chitosan-based electroactive hydrogel. Polymer 49(25): 5520-5525.

Spizzirri, U.G., Iemma, F., Puoci, F., Cirillo, G., Curcio, M., Parisi, O.I. & Picci, N. 2009. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10(7): 1923-1930.

Wan, Y., Wang, Y., Cheng, G. & Yao, K. 2000. Preparation and characterization of gelatin gel with a gradient structure. Polymer International 49(12): 1600-1603.

Ward, A.G. & Courts, A. 1977. The Science and Technology of Gelatin. New York: Academic Press.

Wu, D.Q., Qiu, F., Wang, T., Jiang, X.J., Zhang, X.Z. & Zhuo, R.X. 2008. Toward the development of partially biodegradable and injectable thermoresponsive hydrogels for potential biomedical applications. ACS Applied Materials & Interfaces 1(2): 319-327.

Zhang, H., Patel, A., Gaharwar, A.K., Mihaila, S.M., Iviglia, G., Mukundan, S., Bae, H., Yang, H. & Khademhosseini, A. 2013. Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules 14(5): 1299-1310.

Zhang, J.T., Bhat, R. & Jandt, K.D. 2009. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomaterialia 5(1): 488-497.

Zhang, X., Huang, J., Chang, P.R., Li, J., Chen, Y., Wang, D., Yu, J. & Chen, J. 2010. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion. Polymer 51(19): 4398-4407.

Zhu, D., Jin, L., Wang, Y. & Ren, H. 2012. Swelling behavior of gelatin-based hydrogel cross-linked with microbial transglutaminase. Journal of Aqeic 63: 11-20.

 

 

*Corresponding author; email: gading@ukm.edu.my

 

 

 

previous