Sains Malaysiana 44(8)(2015): 1077–1084


Growth Profile and Fatty Acid Accumulation of Four Chaetoceros Taxa Isolated from Coastal Water of Pahang, Malaysia

(Profil Tumbesaran dan Pengumpulan Asid Lemak oleh Empat Takson Chaetoceros diasingkan

dari Pesisiran Pantai Pahang, Malaysia)





1Institut Kesihatan Umum, Kementerian Kesihatan Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Wilayah Persekutuan, Malaysia


2Kulliyyah of Science, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia


Received: 14 March 2014/Accepted: 2 April 2015



This indoor study was aimed to analyze the production of fatty acids with their growth profile from few marine algae under the genus Chaetoceros isolated from coastal water of Pahang, Malaysia. The algae were established into culture using standard marine media (f/2 media) and the variation of fatty acid for each species was determined using GCMS. Statistical analysis of one-way ANOVA was performed to evaluate the significant and homogeneity data on the growth of each alga and total fatty acid percentage obtained. The results showed that four taxa were successfully cultivated and identified as Chaetoceros baculites, Chaetoceros anastomosans, Chaetoceros affinis var. willei and Chaetoceros affinis var. affinis. Out of four Chaetoceros, C. baculites showed the highest growth rate (0.75 and division’s value (1.08) while C. anastomosans showed the highest doubling time value (8.66). Statistical analysis showed that all species have significantly different growth rate (p<0.05). Myristic acid was the main component for fatty acid storage for C. baculites, C. anastomosans and C. affinis var. willei whereas palmitic acid for C. affinis var. affinis. All species contained about 35 to 75% of total percentage fatty acids throughout the growth day. Based on total percentage, both affinis varieties had high fatty acid percentage compared with the other two species with the total percentage of more than 70%. As a conclusion, all four taxa are suitable to be used in lipid industry in Malaysia with C. affinis var. affinis is the best candidate for bio-fuel industry and C. anastomosans for pharmaceutical industry.


Keywords: Chaetoceros; fatty acids; growth; indoor; industry




Kajian secara dalam persekitaran dijalankan untuk menganalisis pengeluaran asid lemak dengan profil tumbesaran daripada beberapa spesies alga marin di bawah genus Chaeotoceros yang diasingkan dari pesisiran pantai Pahang, Malaysia. Kesemua alga dimantapkan dalam bentuk kultur dengan menggunakan media marin yang dipiawai (f/2 media) dan variasi asid lemak untuk setiap spesies ditentukan dengan menggunakan GCMS. Analisis statistik ANOVA satu-hala digunakan untuk menilai kesignifikan dan kehomogenan data ke atas tumbesaran setiap alga serta jumlah peratusan asid lemak yang diterima. Hasil menunjukkan empat takson berjaya dikulturkan dan dikenal pasti sebagai Chaetoceros baculites, Chaetoceros anastomosans, Chaetoceros affinis var. willei dan Chaetoceros affinis var. affinis. Daripada empat spesies tersebut, C. baculites menunjukkan kadar pertumbuhan yang tinggi (0.75 dan nilai pendua yang tinggi (1.08) manakala C. anastomosans menunjukkan kadar masa pendua yang tinggi (8.66). Analisis statistik menunjukkan kesemua spesies mempunyai kadar pertumbuhan yang bererti (p<0.05). Asid miristik merupakan komponen simpanan asid lemak bagi C. baculites, C. anastomosans dan C. affinis var. willei manakala asid palmitik bagi C. affinis var. affinis. Kesemua spesies mengandungi lebih kurang 35 hingga 75% jumlah peratusan asid lemak mengikut hari tumbesaran. Berdasarkan jumlah peratusan, kedua-dua variasi affinis mempunyai jumlah peratusan asid lemak yang tinggi berbanding dua spesies yang lain dengan jumlah peratusan melebihi 70%. Kesimpulannya, kesemua empat takson adalah sesuai digunakan di dalam industri lipid di Malaysia dengan C. affinis var. affinis merupakan calon yang sesuai bagi industri bio-bahan api dan C. anastomosans bagi industri farmaseutikal.


Kata kunci: Asid lemak; Chaetoceros; dalam persekitaran; industri; tumbesaran


Ainie, K., Lin, S.W., Ai, T.Y., Nor Aini, I., Mokhtar, Y., Sue, T.T. & Nuzul, A.I. 2005. MPOB Test Method. Malaysian Palm Oil Board: Ministry of Plantation Industries and Commodities.

Andersen, R.A. 2005. Algal Culturing Technique. Salt Lake City: Elseiver Academic Press.

Asulabh, K.S., Supriya, G. & Ramachandra, T.V. 2012. Effect of salinity concentrations on growth rate and lipid concentration in Microcystis Sp., Chlorococcum Sp. and Chaetoceros Sp. LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems. Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science.

Be´ rard-Therriault, L., Poulin, M. & Bosse´, L. 1999. Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluantgalement certains protozoaires. Publication spéciale canadienne des sciences halieutiques et aquatiques 128: 1-387.

Carrillo, C., Cavia, M. del M. & Alonso-Torre, S. 2012. Role of oleic acid in immune system; mechanism of action: A review. Nutricion Hospitalaria 27(4): 978-990.

Chen, C.Y. & Durbin, E.G. 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology- Program Series 109: 83-94.

De Castro, A.S., Maria, V. & Garcia, T. 2005. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temparature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246: 405-412.

Fábregas, J., Maseda, A., Domínguez, A. & Otero, A. 2004. The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World Journal of Microbiology Biotechnology 20: 31-35.

Fogg, G.E. & Thake, B. 1987. Algae Cultures and Phytoplankton Ecology. 3rd ed. Wisconsin: University of Wisconsin Press.

Go, S., Lee, S.J., Jeong, G.T. & Kim, S.K. 2012. Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmis suecica. Bioprocess and Biosystem Engineering 35(1-2): 145-150.

Gordillo, F.J.L., Goutx, M., Figueroa, F.L. & Niell, F.X. 1998. Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology 10: 135-144.

Guschina, I.A. & Harwood, J.L. 2009. Algal lipids and effect of the environment on their biochemistry. In Lipids in Aquatic Ecosystems. Berlin, Germany: Springer. pp. 1-24.

Harrison, P.J. & Berges, J.A. 2004. Chapter 3: Marine Culture Media. Essentials of Medical Geology. Salt Lake City: Academic Press. pp. 21-34.

Harwood, J.L. 1998. Involvement of chloroplast lipids in the reaction of plants submitted to stress. In Lipids in Photosynthesis: Structure, Function and Genetics, edited by Siegenthaler, P.A. & Murata, N. Netherlands: Springer. Advances in Photosynthesis and Respiration Series 6: 287-302.

Jensen, K.G. & Moestrup, Ø. 1998. The genus Chaetoceros (Bacillariophyceae) in inner Danish coastal waters. Opera Bot. 133: 1-68.

Kalacheva, G., Zhila, N., Volova, T. & Gladyshev, M. 2002. The effect of temperature on the lipid composition of the green alga Botryococcus sp. Microbiology 71(3): 286-293.

Khatoon, H., Yusoff, F.M., Banerjee, S., Shariff, M. & Mohamed, S. 2007. Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality, survival and growth of Penaeus monodon Fabricius postlarvae. Aquaculture 271: 196-205.

Lakeridge, S.W. & Olympia, W.A. 2000. Pelargonic Acid. Olympia: Thurston County Health Department. Review on 2009.

Mansour, M.P., Volkman, J.K. & Blackburn, S.I. 2003. The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63: 145-153.

Mata, T.M., Martins, A.A. & Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14(1): 217-232.

Mendez, J.A., Vellon, L., Colomer, R. & Lupu, R. 2005. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin TM) in breast cancer cells with Her-2/neu oncogene amplification. Oxford Journals 16(3): 359-371.

Mendiola, J.A., Torres, C.F., Toré, A., Martin-Álvarez, P.J., Santoyo, S., Arredondo, B.O., Señoráns, F.J., Cifuentes, A. & Ibáñez, E. 2007. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research Technology 224: 505-510.

Metting, F. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology 17(5-6): 477-489.

Mohammad-Noor, N. 2012. Chapter 13: Scanning electron microscope. Basic Knowledge in Marine Sciences. 1st ed. International Islamic University Malaysia: IIUM Press. pp. 1-100.

Orhan, I., Sener, B. & Atici, T. 2003. Fatty acid distribution in the lipid extracts of various algae. Chemistry of Natural Compound 39(2): 167-170.

Pernet, F., Tremblay, R., Demers, D. & Roussy, M. 2003. Variation of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp. grown in a semicontinuous system. Aquaculture 221: 393-406.

Rika Partiwi, A., Dahrul, S., Linawati, H., Lily Maria, G.P. & Maggy, T.S. 2009. Fatty acid synthesis by Indonesian Marine Diatom, Chaetoceros gracilis. HAYATI Journal of Biosciences 16(4): 151-156.

Rines, J.E.B. & Theriot, E.C. 2003. Systematics of Chaetocerotaceae (Bacillariophyceae): I. A phylogenetic analysis of the family. Phycological Research 51(2): 83-98.

Singh, J. & Gu, S. 2010. Commercialization potential of microalgae for biofuels production. Renewable Sustainable Energy Reviews 14(9): 2596-2610.

Talukdar, J., Kalita, M.C. & Goswami, B.C. 2012. Effects of salinity on growth and total lipid content of the biofuel potential microalga Ankistro-desmus falcatus (Corda) Ralfs. International Journal of Scientific and Engineering Research 3(7): 1-7.

Thompson, G.A. Jr. 1994. Lipids and membrane function in green algae. Biochimica et Biophysica Acta 1302: 17-45.

Thompson, P.A., Harisson, P.J. & Whyte, J.N.C. 1990. The influence of irradiance on the fatty acid composition of phytoplankton. Journal of Phycology 26: 278-288.

Tin Win, D. 2005. Oleic acid - The anti-breast cancer component in olive oil. Australian Journal of Technology 9(2): 75-78.

Tornabene, T.G., Holzer, G., Lien, S. & Burris, N. 1983. Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme and Microbial Technology 5(6): 435-440.

Tsuzuki, M., Ohnuma, E., Sato, N., Takaku, T. & Kawaguchi, A. 1990. Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiology 93: 851-856.

Yang, Z.H., Miyahara, H. & Hatanaka, A. 2011. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids in Health and Disease. 10: 120.

Yanqun, L., Mark, H., Bei, W., Nan, W. & Christopher, Q.L. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology 81(4): 629-636.



*Corresponding author; email: