Sains Malaysiana 44(8)(2015): 1183–1188


Separation of Geraniol from Citronellol by Selective Oxidation of Geraniol to Geranial

(Pengasingan Geraniol daripada Sitronelol melalui Pengoksidaan Memilih Geraniol kepada Geranial)




1School of Chemical Sciences & Food Technology, Faculty of Science and Technology

University Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia


2Department of Chemistry, Gadjah Mada University, Yogyakarta, Indonesia


Received: 4 December 2014/Accepted: 9 April 2015



Rhodinol is a mixture of geraniol and citronellol. It is the second fraction in fractional distillation of commercially grown Cymbopogon nardus. The physical and chemical similarities of these two compounds made them inseparable. The individual use of each compound is of great importance. A selective oxidation (hydrogen peroxide activated by platinum black) of geraniol (in rhodinol) to geranial was done while remaining citronellol intact in order to separate the two compounds into different chemical functionality. A yield of 81% geranial achieved while minimizing citronellal formation from citronellol to 17%. Chemical separation using sodium hydrogen sulfite (NaHSO3) was done to separate the aldehydes from the unreacted citronellol. Purification using fractional distillation was done to obtain pure geraniol and remove minor fraction of citronellal.


Keywords: Geranial; geraniol; oxidation; rhodinol; selective



Rodinol adalah sebatian yang terdiri daripada geraniol dan sitronelol. Dengan menggunakan kaedah penyulingan berperingkat, rodinol adalah pecahan kedua Cymbopogon nardus. Kedua-dua sebatian ini tidak boleh diasingkan disebabkan ciri fizikal dan kimia yang seiras. Kegunaan geraniol dan sitronelol sebagai sebatian yang berasingan adalah penting daripada segi industri. Dalam kajian ini, pengoksidaan memilih (hidrogen peroksida yang diaktifkan oleh platinum hitam) geraniol (dalam rodinol) kepada geranial dilakukan sementara sitronelol kekal utuh supaya kedua-dua sebatian ini boleh diasingkan dengan keadaan fungsi kimia yang berlainan. Tindak balas ini memberikan hasil sebanyak 81% geranial dan berjaya meminimumkan penghasilan sitronelal daripada sitronelol kepada 17%. Dengan menggunakan cara pengasingan kimia, hidrogen sulfit (NaHSO3) digunakan untuk mengasingkan aldehid daripada sitronelol. Akhirnya, pecahan kecil sitronelal diasingkan daripada geraniol tulen dengan menggunakan penyulingan berperingkat.


Kata kunci: Geranial; geraniol; memilih; pengoksidaan; rodinol


Abad, A., Corma, A. & García, H. 2007. Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure and Applied Chemistry 79(11): 1847-1854.

Armarego, W.L.F. & Chai, C. 2009. Purification of Laboratory Chemicals. 6th ed. Burlington, MA: Butterworth-Heinemann.

Byenkya, G.S., Gumisiriza, G. & Kasigwa, H. 2013. Evaluation of control stradegies for Cymbopogon nardus in grazing areas of Uganda. Journal of Agricultural Science and Technology B 3: 656-660.

Dowthwaite, S.V. 2009. Empowering the independent perfumer. The Professional Perfumer’s Bulletin © 3.01-3.28. pp. 1-39.

Ganjewala, D. 2009. Cymbopogon essential oils: Chemical compositions and bioactivities. International Journal of Essential Oil Therapeutics 3: 56-65.

Gholizadeh, M., Mohammadpoor-Baltork, I. & Kharamesh, B. 2004. Selective oxidation of benzylic and allylic alcohols using strontium manganate in the presence of lewis acids in solution and under solvent-free conditions. Bulletin of the Korean Chemical Society 25(4): 566-568.

Gilpin, S., Hui, X. & Maibach, H. 2010. In vitro human penetration of geraniol and citronellol. Dermatitis 21: 41-48.

Haake, M., Gerlach, T. & Funke, F. 2004. U.S. Patent 6743956 B1.

Join, B., Möller, K., Ziebart, C., Schröder, K., Gördes, D., Thurow, K., Spannenberg, A., Junge, K. & Beller, M. 2011. Selective iron-catalyzed oxidation of benzylic and allylic alcohols. Advanced Synthesis & Catalysis 353(16): 3023- 3030.

Kon, Y., Yazawa, H., Usui, Y. & Sato, K. 2008. Chemoselective oxidation of alcohols by a H2O2-Pt black system under organic solvent- and halide-free conditions. Chemistry, An Asian Journal 3(8-9): 1642-1648.

Laksmono, J.A., Agustian, E. & Adilina, I.B. 2007. Predicting the azeotrophic of citronellal enrichment using process simulator. International Conference On Chemical Sciences. pp. 1-5.

Roelofs, J.C.A.A. 2001. Activated hydrotalcites as solid base catalysts in Aldol condensations. PhD Thesis. Utrecht University, Netherlands (unpublished).

Roelofs, J.C.A.A., Dillen, A.J. & Jong, K.P. 2000. Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts. Catalysis Today 60: 297-303.

Sastrohamidjojo, H. 1994. Kimia minyak sereh= The chemistry of citronella oil. Berkala MIPA (1).

Singh, D., Kumar, T.R., Gupt, V.K. & Chaturvedi, P. 2012. Antimicrobial activity of some promising plant oils, molecules and formulations. Indian Journal of Experimental Biology 50: 714-717.

Ssegawa, P. 2007. Removing barriers to invasive plant management in Africa. Final report on activity 3,4 of component 3 of the UNEP/GEF-IAS funded project (NARO). Makerere University (Kampala).

Wany, A., Jha, S., Nigam, V.K. & Pandey, D.M. 2013. Chemical analysis and therapeutic uses of citronella oil from Cymbopogon winterianus: A short review. International Journal of Advanced Research 1: 504-521.

Xing, K., You, K., Yin, D., Yuan, Z. & Mao, L. 2009.  A simple and effiecient approach for synthesis of pseudoionone from citral and acetone catalyzed by powder LiOH.H2O. Catalysis Communications 11: 236-239.


*Corresponding author; email: