Sains Malaysiana 44(9)(2015): 1269–1273


Antibacterial Activities of Selected Seaweed and Seagrass from Port Dickson Coastal Water against different Aquaculture Pathogens

(Aktiviti Antibakteria daripada Rumpai Laut dan Rumput Laut Terpilih di Pesisiran Port Dickson terhadap Patogen Akuakultur Berbeza)





1Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia


2Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia, Bintulu Sarawak Campus

97008 Bintulu, Sarawak Bumi Kenyalang, Malaysia


3Laboratory of Marine Biotechnology, Institute Bioscience, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia


Received: 23 May 2014/Accepted: 15 May 2015



Eight seaweed species in Teluk Kemang and three seagrass species in Teluk Pelanduk, Port Dickson, respectively, were screened for antibacterial activities. The antibacterial activities were screened using disc diffusion test, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six aquacultural pathogens strains Aeromonas hydrophila ATCC35654, Vibrio harveyi BB120, Vibrio harveyi ATCC14126, Vibrio alginolyticus ATCC17749, Vibrio parahaemolyticus ATCC17803 and Vibrio anguillarum ATCC43313. The results showed that among all the pathogens, seaweed Padina minor and seagrass Thalassia hemprichii had the strongest antibacterial activity against Vibrio harveyi BB120 and Vibrio harveyi ATCC14126, respectively. The lowest values for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were obtained from Padina minor against V. harveyi BB120 and Thalassia hemprichii against V. harveyi ATCC14126, respectively. The findings suggested that seaweed and seagrass in Port Dickson coastal water have the potential to prevent bacterial diseases particularly in aquaculture.


Keywords: Antibacteria; aquaculture pathogens; Port Dickson; seagrass; seaweed



Lapan rumpai laut dari Teluk Kemang dan tiga rumput laut dari Teluk Pelanduk Port Dickson telah disaring untuk aktiviti antibakteria. Aktiviti antibakteria telah disaring dengan menggunakan ujian resapan disk, pemekatan resapan minimum (MIC) dan pemekatan bakteriasid minimum (MBC) terhadap enam patogen akuakultur Aeromonas hydrophila ATCC35654, Vibrio harveyi BB120, Vibrio harveyi ATCC14126, Vibrio alginolyticus ATCC17749, Vibrio parahaemolyticus ATCC17803 dan Vibrio anguillarum ATCC43313. Hasil uji kaji menunjukkan daripada kesemua patogen, rumpai laut Padina minor dan rumput laut Thalassia hemprichii menunjukkan aktiviti antibakteria yang paling tinggi terhadap Vibrio harveyi BB120 dan Vibrio harveyi ATCC14126. Nilai paling rendah bagi asai pemekatan resapan minimum (MIC) dan pemekatan bakteriasid minimum (MBC) diperoleh daripada Padina minor terhadap V. harveyi BB120 dan Thalassia hemprichii terhadap V. harveyi ATCC14126. Hasil kajian ini mencadangkan rumpai laut dan rumput laut dari pesisiran pantai Port Dickson berpotensi untuk mencegah penyakit bakteria terutamanya dalam akuakultur.


Kata kunci: Antibakteria; patogen akuakultur; Port Dickson; rumpai laut; rumput laut



Alam, K., Agua, T., Maven, H., Taie, R., Rao, K.S., Burrows, I., Huber, M.E. & Rali, T. 1994. Preliminary screening of seaweeds, seagrass and lemongrass oil from Papua New Guinea for antimicrobial and antifungal activity. Pharmaceutical Biology 32: 396-399.

Austin, B.B. & Austin, D.A. 1999. Bacterial Fish Pathogens: Disease of farmed and Wild Fish. Chichester, United Kingdom: Praxis Publishing Ltd.

Bansemir, A., Blume, M., Schröder, S. & Lindequist, U. 2006. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252: 79-84.

Bushmann, P.J. & Ailstock, M.S. 2006. Antibacterial compounds in estuarine submersed aquatic plants. Journal of Experimental Marine Biology and Ecology 331: 41-50.

Chee, S-Y., Wong, P-K. & Wong, C-L. 2011. Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. Journal of Applied Phycology 23: 191-196.

Chiao-Wei, C., Siew-Ling, H. & Ching-Lee, W. 2011. Antibacterial activity of Sargassum polycystum C. Agardh and Padina australis Hauck (Phaeophyceae). African Journal of Biotechnology 10: 14125-14131.

Daud, A., Gallo, A. & Sánchez Riera, A. 2005. Antimicrobial properties of Phrygilanthus acutifolius. Journal of Ethnopharmacology 99: 193-197.

Devienne, K.F. & Raddi, M.S.G. 2002. Screening for antimicrobial activity of natural products using a microplate photometer. Brazilian Journal of Microbiology 33: 166-168.

Febles, C.I., Arias, A., Gil-Rodruguez, M.C., Hardisson, A. & Sierra Lopez, A. 1995. In vitro study of antimicrobial activity in algae Chlorophyta and Rhodophyta collected from the coast of Tenerife in Spanish. Anuario del Institute de Estudios Canarios 34: 181-192.

Immanuel, G., Vincybai, V.C., Sivaram, V., Palavesam, A. & Marian, M.P. 2004. Effect of butanolic extracts from terrestrial herbs and seaweeds on the survival, growth and pathogen Vibrio parahaemolyticus load on shrimp Penaeus indicus juveniles. Aquaculture 236: 53-65.

Japar Sidik, B., Muta Harah, Z. & Aziz, A. 2006. Distribution and significance of seagrass ecosystems in Malaysia. Aquatic Ecosystem Health and Management 9: 203-214.

Jones, O.A.H., Voulvoulis, N. & Lester, J.N. 2004. Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Critical Reviews in Toxicology 34: 335-350.

Kandhasamy, M. & Arunachalam, K.D. 2008. Evaluation of in vitro antibacterial property of seaweeds of southeast coast of India. African Journal of Biotechnology 7: 1958-1961.

Kannan, R.R.P., Arumugam, R., Iyapparaj, P., Thangaradjou, T. & Anantharam, P. 2013. In vitro antibacterial, cytotoxicity, haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chemistry 136: 1484-1489.

Kannan, R.R.R., Arumugam, R. & Anantharaman, P. 2012. Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens. Food Chemistry 135: 2470-2473.

Kannan, R.R.R., Arumugam, R. & Anantharaman, P. 2010. Antibacterial potential of three seagrasses against human pathogens. Asian Pacific Journal of Tropical Medicine 3: 890-893.

Kayis, S., Ozcelep, T., Capkin, E. & Altinok, I. 2009. Protozoan and metazoan parasites of cultured fish in Turkey and their applied treatments. The Israeli Journal of Aquaculture 61: 93-102.

Kolanjinathan, K., Ganesh, P. & Govindarajan, M. 2009. Antibacterial activity of ethanol extracts of seaweeds against fish bacterial pathogens. European Review Medical Pharmacological Sciences 13: 173-177.

Lavanya, R. & Veerappan, N. 2011. Antibacterial potential of six seaweeds collected from gulf of mannar of southeast coast of India. Advances in Biological Research 5: 38-44.

Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy 50: 889-893.

Phang, S.M. 2006. Seaweed resources in Malaysia: Current status and future prospects Aquatic Ecosystem Health and Management 9: 185-202.

Premanathan, M., Rajendran, S., Ramanathan, T., Kathiresan, K., Nakashima, H. & Yamamoto, N. 2000. A survey of some Indian medicinal plants for anti-human immunodeficiency virus (HIV) activity. Indian Journal of M e d i c a l Research 112: 73-77.

Stirk, W.A., Reinecke, D.L. & van Staden, J. 2007. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. Journal of Applied Phycology 19: 271-276.

Taskin, E., Ozturk, M. & Kurt, O. 2007. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal Biotechnology 6: 2746-2751.

Zubia, M., Payri, C. & Deslandes, E. 2008. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). Journal of Applied Phycology 20: 1033-1043.



*Corresponding author; email: