Sains Malaysiana 45(11)(2016): 1689–1696

 

Generation, Characterization and Application of Atmospheric Pressure Plasma Jet

(Penjanaan, Pencirian dan Aplikasi Jet Plasma Bertekanan Atmosfera)

 

R. SHRESTHA1,2, D.P. SUBEDI1, J.P. GURUNG1 & C.S. WONG3*

 

1Department of Natural Science, Kathmandu University, Dhulikhel, Nepal

 

2Department of Physics, Nepal Banepa Polytechnic College, Banepa, Kavre, Nepal

 

3Plasma Technology Research Centre, Physics Department, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 1 June 2015/Accepted: 29 March 2016

 

ABSTRACT

The development of a non-thermal plasma jet with a capillary configuration working at atmospheric pressure is reported in this paper. The plasma jet is powered by a power source with frequency of several kilohertz. The working gas is argon. The plasma obtained has been characterized by optical emission spectroscopic measurements and electrical measurements of the discharge using voltage and current probes. The electron temperature has been estimated by using the modified Boltzmann plot method utilizing the Ar 4p-4s transition. The electron temperatures at various positions along the plasma jet length have been obtained and it is found that the electron temperature decreases at position further from orifice. The electron density has been estimated from current and voltage measurements using the power balance method. The effects of gas flow rate, applied voltage and frequency on the characteristics of the plasma jet have also been investigated. The applications of the atmospheric pressure plasma jet (APPJ) developed to modify the surface properties of Polyethyleneterephthalate (PET) and polycarbonate (PC) have been tested. Our results showed that the atmospheric pressure non-thermal plasma jet can be effectively used to enhance the surface wettability and surface energy of the PET and PC. The plasma jet has also been tested for inactivation of prokaryotic cells (Escherichia coli, Staphylococcus aureus). In the case of E. coli, better than 4 log10 reduction can be achieved. The effect of plasma jet on the pH of cell culture medium has suggested that the plasma species, particularly the electrons, are solely responsible for the effect of inactivation of living cells.

 

Keywords: Electron density; electron temperature; optical emission spectroscopy; plasma jet

 

ABSTRAK

Kertas ini membincangkan pembangunan jet plasma bukan terma yang mempunyai konfigurasi kapilari dan beroperasi dengan tekanan atmosfera. Jet plasma ini dikuasakan oleh suatu sumber kuasa berfrekuensi beberapa kilohertz. Gas yang digunakan adalah argon. Plasma yang dihasilkan telah dicirikan dengan menggunakan ukuran spektroskopi pancaran optik dan elektrik dengan menggunakan penduga voltan dan arus. Suhu elektron telah dianggarkan dengan kaedah ubah suai plot Boltzmann yang menggunakan peralihan Ar 4p-4s. Suhu elektron pada beberapa kedudukan di sepanjang jet plasma telah diambil dan suhu elektron didapati berkurang pada kedudukan yang lebih jauh dari orifis. Ketumpatan elektron telah dianggarkan daripada ukuran arus voltan menggunakan kaedah kuasa imbangan. Kesan kadar aliran gas, voltan yang digunakan serta ciri jet plasma juga telah dikaji. Aplikasi jet plasma bertekanan atmosfera (APPJ) yang dibangunkan untuk mengubah ciri permukaan polietilenatereftalat (PET) dan polikarbonat (PC) telah diuji. Keputusan menunjukkan bahawa jet plasma bertekanan atmosfera bukan terma boleh digunakan dengan berkesan untuk meningkatkan kebolehbasahan permukaan dan tenaga permukaan PET dan PC. Jet plasma ini juga telah diuji untuk pentakaktifan sel prokariot (Escherichia coli, Staphylococcus aureus). Untuk E. coli, pengurangan melebihi 4 log10 boleh dicapai. Kesan jet plasma kepada nilai pH medium sel kultur telah mencadangkan bahawa spesies plasma, terutamanya elektron, bertanggungjawab sepenuhnya untuk kesan pentakaktifan sel hidup.

 

Kata kunci: Jet plasma; ketumpatan elektron; spektroskopi pancaran optik; suhu electron

REFERENCES

Bekeschus, S., Masur, K., Kolata, J., Wende, K., Schmidt, A., Bundscherer, L., Barton, A., Kramer, A., Broker, B. & Human, K. 2013. Mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Weltmann, Plasma Process. Polym. 10: 706-713.

Goree, J., Liu, B., Drake, D. & Stoffels, E. 2006. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Transactions on Plasma Science 34(4): 1317-1324.

Hofmann, S., van Gessel, A.F.H., Verreycken, T. & Bruggeman, P. 2011. Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources Sci. Technol. 20: 065010.

Jiang, N., Ji, A. & Cao, Z. 2009. Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism. Journal of Applied Physics 106: 013308.

Joh, H.M., Kim, S.J., Chung, T.H. & Leem, S.H. 2013. Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interaction. AIP Advances 3: 092128.

Keidar, M., Shashurin, A., Volotskova, O., Stepp, M.A., Srinivasan, P., Sandler, A. & Trink, B. 2013. Cold atmospheric plasma in cancer therapy. Physics of Plasmas 20: 057101.

Kim, K., Choi, J.D., Hong, Y.C., Kim, G., Noh, E.J., Lee, J.S. & Yang, S.S. 2011. Atmospheric-pressure plasma-jet from micro-nozzle array and its biological effects on living cells for cancer therapy. Applied Physics Letters 98: 073701.

Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., Van Dijk, J. & Zimmermann, J.L. 2009. Plasma medicine: An introductory review. New J. Phys. 11: 115012.

Laroussi, M., Kong, M., Morfill, G. & Stolz, W. 2012. Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology. Cambridge: Cambridge University Press.

Laroussi, M. 2008. The biomedical application of plasma: A brief history of the development of a newfield of research. IEEE Trans. Plasma Sci. 36(4): 1612-1614.

Mariotti, D., Shimizu, Y., Sasaki, T. & Koshizaki, N. 2007. Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma. Journal of Applied Physics 101: 013307.

Nastuta, A.V., Pohoata, V. & Topala, I. 2013. Atmospheric pressure plasma jet-living tissue interface: Electrical, optical, and spectral characterization. Journal of Applied Physics 113: 183302.

Qian, M., Ren, C., Wang, D., Zhang, J. & Wei, G. 2010. Stark broadening measurement of the electron density in an atmosphericpressure argon plasma jet with double-power electrodes. Journal of Applied Physics 107: 063303.

Raheem, H. & Mahmood, M.A. 2013. Deactivation of Staphylococcus aureus and Escherichia coli using plasma needle at atmospheric pressure. International Journal of Current Engineering and Technology 3(5)(Dec 2013): 1848-1851.

Sarani, A., Nikiforov, A.Y. & Leys, C. 2010. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements. Physics of Plasmas 17: 063504.

Schuetze, A., Jeong, J.Y., Babayan, S.E., Park, J., Selwyn, G.S. & Hicks, R.F. 1998. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Transactions on Plasma Science 26(6): 1685-1698.

Subedi, D.P., Tyata, R.B., Shrestha, R. & Wong, C.S. 2014. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon. AIP Conference Proceeding 1588: 103-108.

Shrestha, R., Gurung, J.P., Subedi, D.P. & Wong, C.S. 2015, Atmospheric pressure single electrode argon plasma jet for biomedical applications. International Journal of Emerging Technology and Advanced Engineering 5(11): 193-198.

Tyata, R.B., Subedi, D.P., Shrestha, R. & Wong, C.S. 2013. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge. Pramana-Journal of Physics 80(3): 507-517.

Weltmann, K.D., Von Woedtke, T., Brandenburg, R. & Ehlbeck, J. 2008. Biomedical applications of atmospheric pressure plasma chem. II Central European Symposium on Plasma. Chem. Listy 102: s1450-s1451.

Wu, S., Wang, Z., Huang, Q., Tan, X., Lu, X. & Ostrikov, K. 2013. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation. Physics of Plasmas 20: 023503.

Xiong, Q., Nikiforov, A.Y., Gonzalez, M.A., Leys, C. & Lu, X.P. 2013. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy. Plasma Sources Sci. Technol. 22: 015011.

Yanguas-Gil, A., Focke, K., Benedikt, J. & Keudell, A.V. 2007. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH4 and Ar/C2H2 mixtures. Journal of Applied Physics 101: 103307.

Ying, J., Chunsheng, R., Liang, Y., Jialiang, Z. & Dezhen, W. 2013. Atmospheric pressure plasma jet in Ar and O2/ Ar mixtures: Properties and high performance for surface cleaning. Plasma Science and Technology 15(12): 1203-1208.

Yuji, T., Suzaki, Y., Yamawaki, T., Sakaue, H. & Akatsuka, H. 2007. Experimental study of temperatures of atmospheric-pressure nonequilibrium Ar/N2 plasma jets and poly(ethylene terephtalate)-surface processing. Japanese Journal of Applied Physics 46(2): 795-798.

Zhang, Q., Sun, P., Feng, H., Wang, R., Liang, Y., Zhu, W., Becker, K.H., Zhang, J. & Fang, J. 2012. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet. Journal of Applied Physics 111: 123305.

 

 

*Corresponding author; email: cswong@um.edu.my

 

 

 

 

previous