Sains Malaysiana 45(11)(2016): 1707–1714

 

Bulk CO2/CH4 Separation for Offshore Operating Conditions using Membrane Process

(Pemisahan Pukal CO2/CH4 untuk Keadaan Operasi Luar Pesisir menggunakan Proses Membran)

 

NORWAHYU JUSOH, KOK KEONG LAU*, YIN FONG YEONG & AZMI M. SHARIFF

 

Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

Received: 6 April 2015/Accepted: 30 March 2016

 

ABSTRACT

The increasing demands of natural gas pushes energy industries to explore the reservoirs contain high CO2 concentration and impurities including heavy hydrocarbons. High efficiency of using membrane technology in CO2-natural gas separation has extended its potential application to offshore environment. Due to the limited studies related with the separation of CO2 under offshore conditions, the present work has investigated the separation performance of a commercial membrane in removing bulk CO2 from methane at elevated pressure condition. A wide range of offshore operating conditions including, pressure from 10 to 50 bar, CO2 concentration from 25 to 70% and temperature of 30oC, 40oC and 50oC were studied. High relative CO2 permeance and relative CO2/CH4 selectivity were observed when the pressure and the CO2 concentration increased. This work, therefore substantial is to bridge the gap and facilitates the application of membrane technology for offshore operating conditions.

 

Keywords: Bulk CO2; membrane process; natural gas separation

 

ABSTRAK

Peningkatan permintaan terhadap gas asli telah mendorong industri tenaga untuk meneroka takungan yang mengandungi kepekatan CO2 dan bendasing yang tinggi termasuk hidrokarbon berat. Kecekapan tinggi dalam penggunaan teknologi membran dalam pemisahan CO2-gas asli telah meningkatkan potensi aplikasi kepada persekitaran luar pesisir. Disebabkan kajian yang berkaitan dengan pemisahan CO2 di luar pesisir yang terhad, kajian terkini telah mengkaji prestasi pemisahan membran komersial dalam mengeluarkan CO2 pukal daripada metana pada keadaan tekanan yang tinggi. Pelbagai keadaan operasi luar pesisir termasuk tekanan dari 10 kepada 50 bar, kepekatan CO2 dari 25% ke 70% dan suhu 30°C, 40°C dan 50°C telah dikaji. Ketelapan relatif CO2 dan kepemilihan CO2/CH4 relatif yang tinggi telah diperhatikan apabila tekanan dan kepekatan CO2 meningkat. Oleh itu, penyelidikan ini penting untuk merapatkan jurang dan memudahkan penggunaan teknologi membran bagi keadaan operasi luar pesisir.

 

Kata kunci: CO2 pukal; pemisahan gas asli; proses membrane

REFERENCES

Ahmad, A.L. & Lau, K.K. 2007. Modeling, simulation, and experimental validation for aqueous solutions flowing in nanofiltration membrane channel. Ind. Eng. Chem. Res. 46: 1316-1325.

Ahmad, F., Lau, K.K., Shariff, A.M. & Murshid, G. 2012. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Comput. Chem. Eng. 36: 119-128.

Al-Juaied, M. & Koros, W.J. 2006. Performance of natural gas membranes in the presence of heavy hydrocarbons. J. Membrane Sci. 274: 227-243.

Ambrose, D., Ewing, M.B. & McGlashan, M.L 2011. Critical constants and second virial coefficient of gases. Kaye & Laby: Tables of Physical & Chemical Constants. Chapter 3, Section 3.5.

Baker, R.W. & Lokhandwala, K. 2008. Natural gas processing with membane: Overview. Ind. Eng. Chem. Res. 4: 2109- 2021.

Baker, R.W., Wijmans, J.G. & Kaschemekat, J.H. 1998. The design of membrane vapor-gas separation systems. J. Membrane Sci. 151: 55-62.

Chen, G.Q. 2012. Water vapor permeation through glassy polyimide membranes and its impact upon carbon dioxide capture operations. PhD Thesis. The University of Melbourne, Melbourne, Australia (Unpublished).

Costello, L.M. & Koros, W.J. 1992. Temperature dependence of gas sorption and transport properties in polymers: Measurement and application. Ind. Eng. Chem. Res. 31: 2708-2714.

Dhingra, S.S. 1997. Mixed gas transport study through polymeric membranes: A novel technique. PhD Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia (Unpublished).

Duda, J.L., Hadj Romdhane, I. & Danner, R.P. 1994. Diffusion in glassy polymers relaxation and antiplasticization. J. Non- Cryst. Solids 172: 715-720.

Chatterjee, G., Houde, A.A. & Stern, S.A. 1997. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. J. Membrane Sci. 135: 99-106.

Geankoplis, C.J. 2003. Transport Processes and Separation Process Principles: Includes Unit Operations. 4th ed. New Jersey: Prentice Hall.

Hanif, A., Suhartanto, T. & Green, M.L.H. 2002. Possible utilisation of CO2 on Natuna’s gas field using dry reforming of methane to syngas (CO & H2). SPE Asia Pacific Oil and Gas Conference and Exhibition. Melbourne, Australia.

Hasan, R., Scholes, C.A., Stevens, G.W. & Kentish, S.E. 2009. Effect of hydrocarbons on the separation of carbon dioxide from methane through a polyimide gas separation membrane. Ind. Eng. Chem. Res. 48: 5415-5419.

Hillock, A.M.W., Miller, S.J. & Koros, W.J. 2008. Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification. J. Membrane Sci. 314: 193-199.

Husain, S. & Koros, W.J. 2007. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. J. Membrane Sci. 288: 195-207.

Khan, A.L., Li, X. & Vankelecom, I.F.J. 2011. Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes. J. Membrane Sci. 372: 87-96.

Khulbe, K.C., Matsuura, T., Lamarche, G. & Kim, H.J. 1997. The morphology characterisation and performance of dense PPO membranes for gas separation. J. Membrane Sci. 135: 211-223.

Koros, W.J., Chern, R.T., Stannett, V. & Hopfenberg, H.B. 1981. A model for permeation of mixed gases and vapors in glassy polymers. J. Polym. Sci. Polym. Phys. 19: 1513-1530.

Lee, A.L., Feldkirchner, H.L., Stern, S.A., Houde, A.Y., Gomez, J.P. & Meyer, H.S. 1994. Field tests of membrane modules for the separation of carbon dioxide from low quality natural gas. Gas Sep. Purif. 9: 35-43.

Lee, J.S., Madden, W. & Koros, W.J. 2010. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes - Part A. Experimental. J. Membrane Sci. 350: 232-241.

Liu, L. 2008. Gas separation by poly(ether block amide) membranes. PhD Thesis. University of Waterloo, Ontario, Canada. (Unpublised).

Liu, Y., Chung, T.S., Wang, R., Li, D.F. & Chng, M.L. 2003. Chemical cross-linking modification of polyimide/poly(ether sulfone) dual-layer hollow-fiber membranes for gas separation. Ind. Eng. Chem. Res. 42: 1190-1195.

Madden, W.C. 2005. The performance of hollow fiber gas separation membranes in the presence of an aggressive feed stream. PhD Thesis. Georgia Institute of Technology Atlanta, Georgia (Unpublised).

Maeda, Y. & Paul, D.R. 1987. Effect of antiplasticization on gas sorption and transport. III. Free volume interpretation. J. Polym. Sci. Polym. Phys. 25: 1005-1016.

Mohammadi, T., Moghadam, M.T., Saeidi, M. & Mahdyarfar, M. 2008. Acid gas permeation behavior through poly(ester urethane urea) membrane. Ind. Eng. Chem. Res. 47: 7361- 7367.

Mohammad Hosein, S., Amin, G. & Mohammad, Mehdi, M.R. 2009. Optimization of membrane based CO2 removal from natural gas using simple models considering both pressure and temperature effect. International Journal of Greenhouse Gas Control 3: 3-10.

O’Brien, K.C., Koros, W.J. & Barbari, T.A. 1986. A new technique for the measurement of multicomponent gas transport through polymeric films. J. Membrane Sci. 29: 229-238.

Schell, W.J. & Houston, C.D. 1983. Membrane gas separations for chemical process and energy application. In Indusrial Gas Separation, Vol. 223, edited by Whyte, Jr. T.E., Yon, C.M. & Wagener, E.H. New York: American Chemical Society. pp. 125-143.

Simons, K. 2010. Membrane technologies for CO2 Capture. PhD Thesis. University of Twente, Netherlands (Unpublished).

Tin, P.S. 2005. Membrane materials and fabrications for gas separation. PhD Thesis. National University of Singapore. Singapore (Unpublished).

Vaughan, G.L. & Carrington, C.G. 1998. Psychometric properties of a moist carbon dioxide atmosphere. Int. J. Food Prop. 1: 77-87.

Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2: 203-215.

Wessling, M., Schoeman, S., Boomgaard, T. & Smolders, C.A. 1991. Plasticization of gas separation membranes. Gas Sep. Purif. 5: 222-228.

Wiryotmojo, A.S., Mukhtar, H. & Man, Z. 2009. Development of polysulfone carbon molecular sieves mixed matrix membranes for CO2 removal from natural gas. International Conference on Chemical, Biological and Environmental Engineering, Singapore.

Wu, F., Li, L., Xu, Z., Tan, S. & Zhang, Z. 2006. Transport study of pure and mixed gases through PDMS membrane. Chem. Eng. J. 117: 51-59.

Yoshimune, M. & Haraya, K. 2013. CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia 37: 1109-1116.

Zhai, S., Foster, J., Ward, S. & Harrison, M. 2012. Process for Gas Sweetening. U.S Patent 8298505 B2.

 

*Corresponding author; email: laukokkeong@utp.edu.my

 

 

 

 

previous