Sains Malaysiana 45(5)(2016): 777–785

 

Dengue Vector Control in Malaysia: A Review for Current and Alternative Strategies

(Kawalan Vektor Denggi di Malaysia: Semakan Kajian Semasa dan Strategi Alternatif)

 

SONG-QUAN ONG*

 

Vector Control Research Unit, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

KDU University College Penang, Jalan Anson, George Town, 10400 George Town,

Pulau Pinang, Malaysia

 

Received: 13 April 2015/Accepted: 24 November 2015

 

 

ABSTRACT

Dengue is a major issue in Malaysia as the dramatic emerge of infection. Yet an effective vaccine or medicine is not yet available, although many attempts are undergoing. Dengue vector control is still considered the most effective way for controlling and preventing the transmission of dengue virus. Nonetheless, as the conventional approaches are less successful in managing the dengue transmission, it is time to review the current applied and other available approaches. Current dengue vector relied greatly on the chemical approach as space treatment either thermal or ULV fogging, however, the approach seem like under the expectation. Beside space treatment, new control methods for example biological control (bacterium Bacillus thuringiensis, predatory mosquito Toxorhynchites) and attractive trap were carried out at certain location of Malaysia. Moreover, new emerged approaches such as mass release of genetic modification or artificially Wolbachia infected male dengue vector for the objective of generating sterile offspring when mate with wild population is urge to be tested in Malaysia, although concerns have to be taken before the actual mass release. In conclusion, control of dengue vector shall not consist exclusively for a single approach, neither genetic modification of artificially Wolbachia infected technique, nor the conventional insecticidal treatment. It should, however, comprise of the environment management as the fundamental approach, a well-planned integrated control program and a good cooperation among the organization.

 

Keywords: Aedes; dengue control; dengue vector; Malaysia; strategies

 

ABSTRAK

Denggi merupakan isu yang penting di Malaysia disebabkan oleh kemunculan jangkitan yang dramatik. Namun, vaksin atau perubatan yang berkesan masih belum diperoleh walaupun banyak cubaan sedang dijalankan. Kawalan vektor denggi masih dianggap sebagai cara yang paling berkesan untuk mengawal dan mencegah penyebaran virus denggi. Namun begitu, cara kawalan konvensional kurang berjaya dalam pencegahan denggi; ia merupakan masa untuk mengkaji kaedah sedia ada dan cara lain yang berpotensi. Kini, kawalan vektor denggi sangat bergantung kepada kawalan kimia iaitu rawatan ruang sama ada terma atau ULV fogging, walau bagaimanapun, kaedah ini adalah di bawah jangkaan. Selain rawatan ruang, kaedah kawalan seperti kawalan biologi (bakteria Bacillus thuringiensis, nyamuk pemangsa Toxorhynchites) dan perangkap telah dijalankan di lokasi tertentu di Malaysia. Selain itu, kaedah baru yang muncul seperti pelepasan populasi pengubahsuaian genetik ataupun infeksi Wolbachia pada vektor denggi jantan dengan objektif untuk menghasilkan anak yang disteril apabila disenyawakan dengan populasi liar telah dicadangkan di Malaysia, walaupun pengawasan perlu diberi perhatian sebelum pelepasan yang sebenar. Kesimpulannya, kawalan vektor denggi tidak hanya terdiri daripada pendekatan tunggal atau teknik modifikasi genetik infeksi buatan Wolbachia, ataupun rawatan racun serangga konvensional. Ia sepatutnya terdiri daripada pengurusan alam sekitar untuk vektor denggi sebagai kaedah asas, program kawalan yang pelbagai dan dirancang dengan baik serta kerjasama yang baik antara organisasi.

 

Kata kunci: Aedes; kawalan denggi; Malaysia; strategi; vektor denggi

REFERENCES

 

Abu Hassan, A. 2014. Understanding Vector Biology of Dengue: Implication to Dengue Control in Proceeding 2nd International Symposium on Insects, Malaysia.

Abu Hassan, A., Che Salman, M.R., Ngumbang, J., Ramli, A. & El-Badri, A.M. 2005. Mosquitoes of urban areas of Penang abundance and control in Proceeding of the 5th International Conference on Urban Pests.

Ali, A., Nayar, A. & Xue, R.D. 1995. Comparative toxicity of selected larvicides and insect growth-regulators to a Florida laboratory population of Aedes albopictus. Journal of the American Mosquito Control Association 11: 72-76.

Banu, S., Hu, W., Hurst, C., & Tong, S. 2011. Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Tropical Medicine & International Health 16(5): 598-607.

Cheah, W.K., Ng, K.S., Marzilawati, A.R. & Lum, L.C.S. 2014. Review of dengue research in Malaysia. Medical Journal of Malaysia 69: 59-67.

Christophides, G.K., Gouagna, L.C., Jacobs-Lorena, M., James, A.A. & Olson, K. 2006. What are relevant assays for refractoriness? In Bridging Laboratory and Field Research for Genetic Control of Disease Vector, edited by Knols, B.G.J. & Louis, C. pp. 165-170.

Collins, L.E. & Blackwell, A. 2000. The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News and Information 21(4): 105-116.

Crisis Preparedness and Response Centre (CPRC). 2015. Bahagian Kawalan Penyakit Kebangsaan Kementerian Kesihatan Malaysia (KKM) http://idengue.remotesensing.gov.my/ idengue/index.php. Accessed on 28 March 2015.

Elizabeth, A.M. & Scott, L.O. 2013. Beyond insecticides: new thinking on an ancient problem. Nature Reviews Microbiology 11: 181-193.

Focks, D.A. 1982. Toxorhynchites - a biological control agent of container-breeding mosquitoes. AMCA Bulletin 6: 1-9.

Foo, A.E.S. & Yap, H.H. 1982. Comparative bioassays of Bacillus thuringiensis H-14 formulations against 4 species of mosquitoes in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health 13: 206-210.

Fu, G., Lees, R.S., Nimmo, D., Aw, D., Jin, L., Gray, P., Berendonk, T.U., White-Copper, H., Scaife, S., Phuc, H.K., Marinotti, O., Jasinskiene, N., James, A.A. & Alphey, L. 2010. Female-specific flightless phenotype for mosquito control. In Proceeding National Academy of Sciences USA 107: 4550-4554.

Gabrieli, P., Andrea, S. & Flaminia, C. 2014. Engineering the control of mosquito-borne infectious diseases. Genome Biology 15: 535.

Gerberg, E.J. & Visser, W.M. 1978. Preliminary field trial for the biological control of Aedes aegypti by means of Toxorhynchites brevipalpis, a predatory mosquito larva. Mosquito News 38: 197-200.

Gubler, D.J. 2011. Dengue, urbanization and globalization: The unholy trinity of the 21st century. Tropical Medicine and Health 39(4): 3-11.

Gubler, D.J., Reiter, P., Ebi, K.L., Yap, W., Nasci, R. & Patz, J.A. 2001. Climate variability and change in the United States: potential impacts on vector- and rodentborne diseases. Environmental Health Perspectives 109(2): 223-233.

Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martínez, E., Nathan, M.B., Pelegrino, J.L., Simmons, C., Yoksan, S. & Peeling, R.W. 2010. Dengue: A continuing global threat. Nature Reviews Microbiology 8(12 Suppl): S7-S16.

Hales, S., de Wet, N., Maindonald, J. & Woodward, A. 2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360(9336): 830-834.

Harris, A.F., Nimmo, D., Mckemey, A.R., Kelly, N., Scaife, S., Donnelly, C.A., Beech, C., Petrie, W.D. & Alphey, L. 2011. Field performance of engineered male mosquitoes. Nature Biotech. 29: 1034-1037.

Hedges, L.M., Brownlie, J.C., O’Neill, S.L. & Johnson, K.N. 2008. Wolbachia and virus protection in insects. Science 322(5902): 702.

Hii, Y.L., Rocklov, J., Ng, N., Tang, C.S., Pang, F.Y. & Sauerborn, R. 2009. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Global Health Action. p. 2.

Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. 2008. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiology Letters 281: 215-220.

Hoel, D.F., Kline, D.L. & Allan, S.A. 2009. Evaluation of six mosquito traps for collection of Aedes albopictus and associated mosquito species in a suburban setting in North Central Florida. Journal of the American Mosquito Control Association 25(1): 47-57.

Jones, C.J. 1993. Larval growth rates and adult reproduction of Toxorhynchites splendens (Diptera: Culicidae) with restricted dietary intake. Environmental Entomology 22: 174-182.

Kenawy, E.R. 1998. Recent advances in controlled release of agrochemicals. Reviews in Macromolecular Chemistry & Physics 38: 365-390.

Kumarasamy, V. 2006. Dengue fever in Malaysia: time for review? Medical Journal of Malaysia 61(10): 1-3.

Laban, N.N. 2010. Comparative evaluation of the MosquitoMagnet® trap and the CDC light trap as sampling tools for outdoor mosquitoes. MSc. in Medical Parasitology and Entomology. Jomo Kenyatta University of Agriculture and Technology (Unpublished).

Lacroix, R., McKemey, A.R., Raduan, N., Kwee Wee, L., Hong Ming, W., Guat Ney, T., Rahidah, A.A.S., Salman, S., Subramaniam, S., Nordin, O., Hanum, A.T.N., Angamuthu, C., Marlina Mansor, S., Lees, R.S., Naish, N., Scaife, S., Gray, P., Labbé, G., Beech, C., Nimmo, D., Alphey, L., Vasan, S.S., Han Lim, L., Wasi, A.N. & Murad, S. 2012. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE 7(8): e42771.

Laven, H. 1967. Eradication of Culex pipiens fatigans through cytoplasmic incompatability. Nature 216: 383-384.

Lee, H.L. & Nazni, W.A. 2012. Updates on genetically modified Aedes aegypti (L.) In Proceeding to 48th Annual Scientific conference of the Malaysia Society of Parasitology and Tropical Medicine.

Lee, H.L. 2005. Germ warfare against mosquitoes. What now? In Proceedings of the Fifth International Conference on Urban Pests.

Lee, H.L., Antonietta, P.E., Seleena, P. & Chiang, Y.F. 1997. Simultaneous ultra-low-volume application of adulticide(malathion) and larvicide(Bacillus thuringiensis H-14) for the control of dengue vectors. International Medical Research Journal 1: 13-19.

Lee, H.L. & Cheong, W.H. 1987. Field evaluation of the efficacy of Bacillus thuringiensis H-14 for the control of Aedes (Stegomyia) albopictus (Skuse). Mosquito-Borne Disease Bulletin 3: 57-63.

Lee, H.L., Pe, T.H. & Cheong, W.H. 1986. Laboratory evaluation of the persistence of Bacillus thuringiensis var israelensis against Aedes aegypti larvae. Mosquito-Borne Disease Bulletin 2: 61-66.

McMeniman, C.J. & O’Neill, L. 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Neglected Tropical Diseases 4: e748.

McMeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W.C., Sidhu, M., Wang, Y.F. & O’Neill, S.L.  2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141-144.

Mohamad, N. & Zuharah, W.F. 2014. Influence of container design on predation rate of potential biocontrol agent, Toxorhynchites splendens (Diptera: Culicidae) against dengue vector. Tropical Biomedicine 31(1): 166-173.

Mohammed, A. & Chadee, D.D. 2011. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica 119: 38-43.

Natasha, E.A.M., Mikkel, B.Q. & Annelies, W.S. 2013. Epidemiology of dengue: past, present and future prospects. Clinical Epidemiology 5: 299-309.

National Biosafety Board Malaysia (NBBM). 2010. Fact sheet. Application for approval for limited markrelease-recapture of Aedes aegypti (L.) wild type and OX513A strains. NBB ref no: NRE(S)609-2/1/3. Available: http://www.biosafety. nre. gov.my/consultation/fact sheet.pdf. Accessed on 29 March 2015.

Nazni, W.A., Lee, H.L., Wan Rozita, W.M., Lian, A.C., Chen, C.D., Azahari, A.H. & Sadiyah, I. 2009. Oviposition behaviour of Aedes albopictus in temephos and Bacillus thuringiensis israelensis-treated ovitraps. Dengue Bulletin 33: 209-216.

Normile, D. 2013. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science 342(6157): 415.

Nyamah, M.A., Sulaiman, S. & Omar, B. 2011. Field observation on the efficacy of Toxorhynchites splendens (Wiedemann) as a biocontrol agent against Aedes albopictus (Skuse) larvae in a cemetery. Tropical Biomedicine 28(2): 312-319.

Ong, S.Q. & Zairi, J. 2015. Investigation of mosquito oviposition pheromone as lethal lure for the control of Aedes aegypti (L.) (Diptera: Culicidae). Parasites & Vectors 8: 28.

Orduz, S., Restrepo, W., Patino, M.M. & Rojas, W.W. 1995. Transfer of toxin genesto alternate bacterial hosts for mosquito control. Memórias do Instituto Oswaldo Cruz 90: 97-107.

Patz, J.A. & Reisen, W.K. 2001. Immunology, climate change and vector-borne diseases. Trends in Immunology 22(4): 171-172.

Phuc, H.K., Andreasen, M.H., Burton, R.S., Vass, C., Epton, M.J., Pape, G., Fu, G., Condon, K.C., Scaife, S., Donnelly, C.A., Coleman, P.G., White-Cooper, H. & Alphey, L. 2007. Late-acting dominant lethal genetic systems and mosquito control. BMC Biology. 5: 11.

Qualls, W.A. & Mullen, G.R. 2007. Evaluation of the mosquito magnet pro trap with and without 1-octen-3-ol for collecting Aedes albopictus and other urban mosquitoes. Journal of the American Mosquito Control Association 23(2): 131-136.

Rances, E., Ye, Y.H., Woolfit, M., McGraw, E.A. & O’Neill, S.L. 2012. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLOS Pathogens 8(2): e1002548. 

Rawlins, S.C., Clark, G.G. & Martinez, R. 1991. Effects of a single introduction of Toxorhynchites moctezuma upon Aedes aegypti on a Caribbean Island. Journal of the American Mosquito Control Association 7: 7-10.

Reeves, R.G., Denton, J.A., Santucci, F., Bryk, J. & Floyd, A. 2012. Standards and the regulation of genetically modified insects. PLOS Neglected Tropical Diseases 6(1): e1502.

Reiter, P. 2001. Climate change and mosquito-borne disease. Environmental Health Perspectives 109(1): 141-161.

Rose, R.I. 2009. A short note on the final environmental impact statement-October 2008: use of genetically engineered fruit fly and pink bollworm in APHIS plant pest control programs. Asia Pacific Journal of Molecular Biology and Biotechnology 17: 87-91.

Scott, R. 2014. Rear and release: a new paradigm for dengue control. Austral Entomology 53: 363-367.

Seleena, P., Lee, H.L. & Chiang, Y.F. 1999. Compatibility of Bacillus thuringiensis sero var israelensis and chemical insecticides in the control of Aedes mosquitoes. Journal of Vector Ecology 24: 216-223.

Seleena, P., Lee, H.L., Rohani, A., Nazni, W.A. & Khadri, M. 1996. Microdroplet application of mosquitocidal Bacillus thuringiensis sing ultra-low-volume generator for the control of mosquitoes. Southeast Asian Journal of Tropical Medicine and Public Health 27: 628-632.

Simmons, C.P., Farrar, J.J., Nguyen, V. & Wills, B. 2012. Dengue. The New England Journal of Medicine 366(15): 1423-1432.

Susan, A. 2008. Genetically modified mosquitoes. Nature Biotechnology 26: 725.

Tan, S.C. 2014. High-tech Mosquito Trap. The Star Online. Published on December 6, 2014 http://www.thestar.com.my/News/Community/2014/12/06/Hightech-mosquito-trap/. Assessed on 10 March 2015.

Teixeira, L., Ferreira, A. & Ashburner, M. 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLOS Biology 6(12): e2.

Teoh, El Sen. 2014. Usage of 'elephant mosquitoes' shows positive results in reducing Aedes. english.astroawani.com/malaysia-news/usage-elephant-mosquitoes-shows-positive-results-reducing-aedes-31234. Assessed on 10 March 2015.

Tham, A.S. 2000. Issue and challenges in Aedes surveillance and control workshop proceeding behavior intervention in dengue control of Malaysia Centre of Drug Malaysia. Universiti Sains Malaysia and Institute of Health Promotion, Ministry of Health, Malaysia. pp. 15-23.

Webster, D.P., Farrar, J. & Rowland-Jones, S. 2009. Progress towards a dengue vaccine. Lancet Infectious Diseases 9(11): 678-687.

Wilder-Smith, A. & Gubler, D.J. 2008. Geographic expansion of dengue: the impact of international travel. Medical Clinics of North America 92(6): 1377-1390.

Wilke, A.B. & Marrelli, M.T. 2012. Genetic control of mosquitoes: population suppression strategies. Revista do Instituto de Medicina Tropical de São Paulo. 54(5): 287-292.

Wise de Valdez, M.R., Nimmo, D., Betz, J., Gong, H.F., James, A.A., Alphey, L. & Black, W.C. 2011. Genetic elimination of dengue vector mosquitoes. In Proceeding National Academy of Sciences USA 108: 4772-4775.

WHO. 2006. Guideline for prevention and control of dengue.

WHO. 2000. Scientific working group on dengue. Meeting Report 3-5 April, 2000. http://apps.who.int/ tdr/ publications/tdr‑research‑publications/swg‑dengue/ pdf/ dengue‑swg.pdf.

WHO. 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. 2nd ed. Geneva: World Health Organization.

WHO. 1995. Guidelines for dengue surveillance and mosquito control.

Xue, R.D., Doyle, M.A. & Kline, D.L. 2008. Field evaluation of CDC and mosquito magnet X traps baited with dry ice, CO2 sachet, and octenol against mosquitoes. Journal of the American Mosquito Control Association 24(2): 249-252.

Yap, H.H., Lee, Y.W. & Zairi, J. 2002. Indoor thermal fogging against vector mosquitoes with two Bacillus thuringiensis israelensis formulations, Vectobac ABG 6511 water-dispersible granules and Vectobac 12AS liquid. Journal of the American Mosquito Control Association 18: 52-56.

Zahari, C.D. 2001. Workshop in Proceeding on Behaviour Intervention in Dengue Control in Malaysia. Centre for Drug and research and School of Communication, Universiti Sains Malaysia.

Zeichner, B.C. & Peric, M.J. 1999. Laboratory testing of a lethal ovitrap for Aedes aegypti. Medical and Veterinary Entomology 13: 234-238.

 

 

*Corresponding author; email: songguan26@gmail.com

 

 

previous