Sains Malaysiana 46(3)(2017): 503–508


Applications of Taguchi Method for Optimization of Dye Solar Cell Design

(Aplikasi Kaedah Taguchi untuk Pengoptimuman Reka Bentuk Sel Pewarna Suria)




1Electrical and Electronic Engineering Department, Universiti Teknologi Petronas

32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia


2Centre of Innovative Nanostructures & Nanodevices (COINN), Fundamental & Applied Sciences Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak Darul Ridzuan



Received: 17 December 2015/Accepted: 14 September 2016




This paper addresses the optimal Dye Solar Cell (DSC) design considering parameters namely TiO2 thickness, surface area, iodide concentration in electrolyte and TiO2 passivation layer thickness as they have influence on DSC performance. It aims to do the research of the practical use of Taguchi method in the optimization of DSC design in order to improve the performance of DSC. This work highlight on the integration of Taguchi method with simulation which showed that the optimal design of DSC is 10 μm thickness of TiO2, 90m2/g of TiO2 photoelectrode surface area, 1 M iodide concentration in electrolyte and two layers with 20 nm thickness of TiO2 passivation layer with efficiency of 4.59165%. All the features of the Taguchi-based optimization were also discussed.


Keywords: Dye solar cell; efficiency; passivation layer; Taguchi Method; TiO2



Kertas ini membincangkan tentang reka bentuk sel suria pewarna (DSC) optimal yang mengambil kira parameter seperti ketebalan TiO2, kawasan permukaan, kepekatan iodida dalam elektrolit dan ketebalan lapisan pempasifan TiO2 kerana ia mempengaruhi prestasi DSC. Tujuannya ialah untuk menjalankan penyelidikan tentang penggunaan kaedah Taguchi secara praktikal dalam pengoptimuman reka bentuk DSC untuk meningkatkan prestasi DSC. Kertas ini tertumpu kepada integrasi kaedah Taguchi dengan simulasi yang menunjukkan pengoptimuman reka bentuk DSC ialah ketebalan 10 μm TiO2, 90 m2/g TiO2 kawasan permukaan fotoelektrod, 1 M kepekatan iodida dalam elektrolit dan dua lapisan ketebalan 20 nm TiO2 lapisan pempasifan dengan kecekapan 4.59165%. Semua sifat pengoptimuman berasaskan Taguchi juga dibincangkan.


Kata kunci: Kaedah Taguchi; lapisan pempasifan; kecekapan; sel pewarna suria; TiO2


Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y. & Isoda, S. 2006. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B 110(28): 13872-13880.

Caramori, S., Cristino, V., Boaretto, R., Argazzi, R., Bignozzi, C.A. & Di Carlo, A. 2010. New components for dyesensitized solar cells. International Journal of Photoenergy 2010: Article ID 458614.

Eskandar A., Mohamed, N.M., Nayan, N., Ali, R.A.M., Sharifuddin, S.A.A. & Omar, S. 2012. Study on the use of TiO2 passivation layer to reduce recombination losses in dye sensitized solar cells. International Conference on Fundamental and Applied Sciences (ICFAS), Kuala Lumpur, June 12-14.

Fuke, N., Fukui, A., Islam, A., Komiya, R., Yamanaka, R., Harima, H. & Han, L. 2009. Influence of TiO2/electrode interface on electron transport properties in back contact dye-sensitized solar cells. Solar Energy Materials & Solar Cells 93(6-7): 720-724.

Graetzel, M. 2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4: 145-153.

Goudon, T., Miljanovi, V. & Schmeiser, C. 2007. On the Shockley-Read-Hall model: Generation-recombination in semiconductors. SIAM J. Appl. Math. 67(4): 1183-1201.

Hossain, M.F., Biswas, S. & Takahashi, T. 2008. The effect of sputter-deposited TiO2 passivating layer on the performance of dye-sensitized solar cells based on sol–gel derived photoelectrode. Thin Solid Films 517(3): 1294-1300.

Jin, Y-S., Kim, K-H., Kim, W-J., Jang, K-U. & Choi, H-W. 2012. The effect of RF-sputtered TiO2 passivating layer on the performance of dye sensitized solar cells. Ceramics International 38(Supplement 1): S505-S509. http://dx.doi. org/10.1016/j.ceramint.2011.05.064.

Michael, S., Bates, A.D. & Green, M.S. 2005. Silvaco ATLAS as a solar cell modeling tool. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, January 3-7. IEEE 0-7803-8707-4.

Mohamed, N.M., Khatani, M., Hamid, N.H., Sahmer, A.Z. & Zaine, S.N.A. 2015. Performance analysis of dye solar cell with additional TiO2 layer under different light intensities. Materials Science in Semiconductor Processing 38: 381- 386.

Oktiawati, U.Y., Mohamed, N.M. & Burhanudin, Z.A. 2014. Simulation of the effects of electrolyte concentration on dye solar cell performance. 5th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, June 3-5.

Oktiawati, U.Y., Mohamed, N.M. & Burhanudin, Z.A. 2013. Effects of TiO2 electrode thickness on the performance of dye solar cell by simulation. Regional Symposium on Micro Nano (RSM), Langkawi, Malaysia, September 25-27.

Patil, A.V., Dighavkar, C.G., Sonawane, S.K., Patil, S.J. & Borse, R.Y. 2009. Effect of firing temperature on electrical and structural characteristics of screen printed ZnO thick films. Journal of Optoelectronics and Biomedical Materials 1(2): 226-233.

Shanmugam, M., Baroughi, M.F. & Galipeau, D. 2009. High VOC dye sensitised solar cell using RF-sputtered TiO2 compact layers. Electronics Letters 45(12): 648-649.

Taguchi, G. 1990. Introduction to Quality Engineering. Tokyo: Asian Productivity Organization.

Waita, S.M., Aduda, B.O., Mwabora, J.M., Granqvist, C.G., Lindquist, S-E., Niklasson, G.A., Hagfeldt, A. & Boschloo, G. 2007. Electron transport and recombination in dye sensitized solar cells fabricated from obliquely sputter deposited and thermally annealed TiO2 films. Journal of Electroanalytical Chemistry 605: 151-156.

Zhang, Q., Dandeneau, C.S., Park, K., Liu, D., Zhou, X., Jeong, Y-H. & Cao, G. 2010. Light scattering with oxide nanocrystallite aggregates for dye-sensitized solar cell application. Journal of Nanophotonics 4(1): 041540. doi:10.1117/1.3436678.

Zhang, Z., Ito, S., Moser, J-E., Zakeeruddin, S.M. & Gratzel, M. 2009. Influence of iodide concentration on the efficiency and stability of dye-sensitized solar cell containing non-volatile electrolyte. ChemPhysChem 10(11): 1834-1838.



*Corresponding author; email: