Sains Malaysiana 46(5)(2017): 677–684

http://dx.doi.org/10.17576/jsm-2017-4605-01

 

Uniaxial Compressive Strength of Antarctic Peninsula Rocks: Schmidt Hammer

Rebound Test

(Kekuatan Mampatan Sepaksi Batuan Semenanjung Antartika: Ujian Pantulan Tukul Schmidt)

 

GOH THIAN LAI1*, NUR AMANINA MAZLAN1, MOHD SHAHRUL MOHD NADZIR1, ABDUL GHANI RAFEK2, AILIE SOFYIANA SERASA3, AZIMAH HUSSIN1, LEE KHAI ERN4

& FOONG SWEE YEOK5

 

1School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Geosciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan, Malaysia

 

3Chemical and Petroleum Engineering Department, Faculty of Engineering, Technology

and Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Federal Territory

Malaysia

 

4Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

5School of Biological Science, Universiti Sains Malaysia, Minden, 11800 Penang, Pulau Pinang

Malaysia

 

Received: 27 May 2016/Accepted: 18 October 2016

 

ABSTRACT

The uniaxial compressive strength test is a destructive and time consuming test. A number of non-destructive methods using portable testing equipment are more applicable and easier to conduct. This paper presents the results of a systematic approach to determine the uniaxial compressive strength of rock material using the Schmidt hammer rebound test. A total of five distinct locations (Graham Coast, Davis Coast, Nanson Island, Danco Coast and Trinity Island) were tested using the Schmidt rebound hammer test. Peninsula Antarctic located at northwest of Antarctic region comprising of igneous and metamorphic rocks. Statistical analysis of the results at 95% confidence level showed the Schmidt rebound value of the Graham Coast ranges from 40±1.7 to 41±1.3 with standard deviation of 8.2 to 6.4. The rebound value for Davis Coast was 39±1.6 with standard deviation of 7.7. Rocks from Nanson Island and Danco Coast have the Schmidt rebound value of 54±1.7 with standard deviation of 8.0 and 36±1.3 with standard deviation of 6.2, respectively. The Schmidt rebound value of rocks at Trinity Island ranges from 29±1.4 to 32±1.7 with standard deviation of 6.8 to 8.1. Thus, the respective uniaxial compressive strengths of rock materials from Graham Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island were 73-108, 50, 59, 164 and 45-59 MPa. The respective ISRM strength classification of rock materials of Graham Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island were strong (R4) to very strong rock (R5), medium strong rock (R3), strong rock (R4), very strong rock (R5) and medium strong (R3) to strong rock (R4). The results showed a mean of quantification of rock material strength based on the Schmidt Hammer rebound test in Antarctic Peninsula.

 

Keywords: Rock material; Schmidt hammer rebound value; uniaxial compressive strength

 

ABSTRAK

Ujian kekuatan mampatan sepaksi adalah ujian memusnah dan memakan masa. Beberapa kaedah tidak-musnah yang menggunakan peralatan ujian mudah alih adalah lebih diterima pakai dan mudah untuk dijalankan. Kertas ini membentangkan keputusan menggunakan pendekatan yang sistematik untuk menentukan kekuatan mampatan sepaksi bahan batu dengan menggunakan ujian pantulan tukul Schmidt. Sebanyak lima lokasi (Pantai Graham, Pantai Davis, Pulau Nanson, Pantai Danco dan Pulau Trinity) telah diuji menggunakan ujian pantulan tukul Schmidt. Semenanjung Antartik yang terletak di barat laut Wilayah Antartik terdiri daripada batuan igneus dan metamorfik. Keputusan analisis statistik pada tahap keyakinan 95% menunjukkan nilai pantulan Schmidt pantai Graham berjulat dari 40±1.7 ke 41±1.3 dengan sisihan piawai sebanyak 8.2 ke 6.4. Nilai pantulan pantai Davis adalah 39±1.6 dengan sisihan piawai sebanyak 7.7. Batuan dari Pulau Nanson dan Pantai Danco mempunyai nilai pantulan Schmidt masing-masing sebanyak 54±1.7 dengan sisihan piawai 8.0 dan 36±1.3 dengan sisihan piawai sebanyak 6.2. Nilai pantulan Schmidt untuk batuan di Pulau Trinity adalah dari 29±1.4 hingga 32±1.7 dengan sisihan piawai sebanyak 6.8 ke 8.1. Oleh itu, kekuatan mampatan sepaksi bahan batuan masing-masing dari Pantai Graham, Pantai Davis, Pantai Danco, Pulau Nanson dan Pulau Trinity adalah 73-108, 50, 59, 164 dan 45-59 MPa. Pengelasan kekuatan ISRM bahan batuan untuk Pantai Graham, pantai Davis, Pantai Danco, Pulau Nanson dan Pulau Trinity masing-masing adalah kuat (R4) ke batuan yang sangat kuat (R5), batuan sederhana kuat (R3), batuan kuat (R4), batuan sangat kuat (R5) dan sederhana kuat (R3) ke batuan kuat (R4). Keputusan ini menunjukkan satu purata kekuatan bahan batuan secara kuantitatif berdasarkan ujian pantulan tukul Schmidt di Semenanjung Antartik.

Kata kunci: Bahan batuan; kekuatan mampatan sepaksi; nilai pantulan tukul Schmidt

REFERENCES

Adie, A.J. 1962. The geology of Antarctica. Antarctic Research: The Matthew Fontaine Maury Memorial Symposium 7: 26-38.

Aufmuth, R.E. 1973. A systematic determination of engineering criteria for rocks. Bull. Assoc. Eng. Geol. 11: 235- 245.

Craddock, C. 1970. Tectonic Map of Antarctica. New York: American Geographical Society.

Christine, E. 2000. A review of rock weathering in Antarctica and its relationship to studies in the Northern Hemisphere. GCAS. University of Canterbury (Unpublished).

Deere, D.U. & Miller, R.P. 1966. Engineering classification and index properties for intact rocks. Tech Report Air Force Weapons Lab. pp. 65-116.

Eagles, G. 2003. Tectonic evolution of the Antarctic Phoenix plate system since 15 Ma. Earth and Planetary Science Letters 217: 97-109.

Elliot, D.H. 1975. Tectonics of Antarctica: A review. American Journal of Science 275: 45- 106.

Elliott, C.E. 2006. Physical rock weathering along the Victoria Land Coast, Antarctica. PhD Dissertation, University of Canterbury (Unpublished).

Fitzgerald, P. 2002. Tectonics and landscapes evolution of the Antarctic plate since the breakup of Gondwana, with an emphasis on the West Anatrctic Rift System and the Transantarctic Mountains. Royal Society of New Zealand Bulletin 35: 453-469.

Guild, P.W., Piper, D.Z., Lee, M.P., McCoy, F.W., Manhein, F.T., Lane-Bostwick, C.M., Swint-Iki, T.R., Grye, G. & Luepke, G. 1998. Explanatory notes for the mineral-resources map of the Circum-Pacific Region Antarctic sheet. US. Geological Survey.

Güney, A., Alt?ndağ, R., Yavuz, H. & Saraç, S. 2005. Evaluation of the relationships between schmidt hardness rebound number and other (engineering) properties of rocks. The 19th International Mining Congress and Fair of Turkey 19: 83-89.

Harley, S.L. 2007. The geology of Antarctica. Encyclopedia of Life Support Systems.

Harley, S.L., Fitzsimons, I.C.W. & Yue, Z. 2013. Antarctica and supercontinent evolution: Historical perspectives, recent advances and unresolved issues. Geological Society, London. 383: 1-34.

Lim, H-S., Jang, B-A., Kim, J-H. & Kang, S-S. 2015. Estimation of R-value and uniaxial compressive strength of rocks around the King Sejong Station, Barton Peninsula, Antarctica from SilverSchmidt Q-value. Tunnel & Underground Space 25(2): 199-209.

ISRM. 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal Rock Mechanics Mining Science and Geomechanics Abstract 15: 319-368.

Karaman, K. & Kesimal, A. 2015. Correlation of Schmidt rebound hardness with uniaxial compressive strength and P- wave velocity of rock materials. Arabian Journal for Science and Engineering 40(7): 1897-1906.

Katz, O., Reches, Z. & Roegiers, J.C. 2000. Evaluation of mechanical rock properties using a Schmidt hammer. Int. J. Rock Mech. Min. Sci. 37: 723-728.

Larter, R.D., Cunningham, A.P., Barker, P.F., Gohl, K. & Nitsche, F.O. 2002. Tectonic evolution of the Pacific margin of Antarctica 1. Late Cretaceous tectonic reconstructions. Journal of Geophysical Research 107(B12): EPM 5-1-EPM 5-19.

Majewski, W. 2000. Cape Roberts Project: Investigating the Cenozoic history of Antarctica. Polish Polar Research 21(2): 89-97.

Murat Yurdakul, Ceylan, H. & Akdas, H. 2011. A predictive model for uniaxial compressive strength of carbonate rocks from Schmidt hardness. Civil, Construction and Environmental Engineering Conference Presentations and Proceedings. p. 7.

Ramli Nazir, Momeni, E., Armaghani, D.J. & Amin, M.F.M. 2013. Prediction of unconfined compressive strength of limestone rock samples using L-type Schmidt hammer. EJGE 18: 1768-1775.

Riffenburgh, B. 2007. Encyclopedia of the Antarctic. London, Routledge: Taylor and Francis Group.

Rist, M.A., Sammonds, P.R., Murrell, S.A.F., Meredith, P.G., Oerter, H. & Doake, C.S.M. 1996. Experimental fracture and mechanical properties of Antarctic ice: Preliminary results. Ann. Glaciol. 23: 284-292.

Selby, M.J. 1980. A rock mass strength classification for geomorphic purposes: With tests from Antarctica and New Zealand. Z. Geomorpho. 24: 31-51.

Shalabi, F.I., Edward, J.C. & Al-Hattamleh, O.H. 2007. Estimation of rock engineering properties using hardness tests. Engineering Geology 90: 138-147.

Singh, R.N., Hassani, F.P. & Elk?ngton, P.A.S. 1983. The application of strength and deformation index testing to the stability assessment of coal measures excavations Proc. 24th US Symp. on Rock Mech., Texas A&M Univ. AEG Balkema, Rotterdam. pp. 599-609.

Szilágyi, K. & Borosnyói, A. 2009. 50 years of experience with the Schmidt rebound hammer. Concrete Structure.

Tabatabaei, S.H. 2003. Assessment of Schmidt rebound hammer for determination of uniaxial compressive strength. Journal of Engineering Geology 1(3): 271 -280.

Torabi, S.R., Ataei, M. & Javanshir, M. 2010. Application of Schmidt rebound number for estimating rock strength under specific geological conditions. Journal of Mining & Environment 1(2): 1- 8.

 

 

*Corresponding author; email: gdsbgoh@gmail.com