Sains Malaysiana 46(5)(2017): 733–741

http://dx.doi.org/10.17576/jsm-2017-4605-08

 

Effect of Electrolyte (NaCl) and Temperature on the Mechanism of Cetyl Trimethylammonium Bromide Micelles

(Kesan Elektrolit (NaCl) dan Suhu terhadap Mekanisme Setil Trimetilammonium

Bromida Misel)

 

ZIA UL HAQ1, NOOR REHMAN2*, FARMAN ALI2, NASIR MEHMOOD KHAN2

& HIDAYAT ULLAH3

 

1Department of Chemistry, Gomal University, D.I. Khan, Pakistan

 

2Department of Chemistry, Shaheed BB University, 18000, Sheringal, Dir (Upper), Pakistan

 

3Institute of Chemical Sciences, University of Peshawar, 25000, Pakistan

 

Received: 16 July 2016/Accepted: 24 October 2016

 

 

ABSTRACT

In the last few decades, surfactants and electrolytes interaction has gained considerable attention of researchers due to their industrial and domestic applications. In this work, the effects of electrolyte (NaCl) on the critical micelle concentration (CMC) of the cationic surfactant cetyltrymethyl ammonium bromide (CTAB) at different temperatures were investigated through different techniques such as conductometry, surface tensiometer and viscosimeter. The results showed that the values of CMC of CTAB decreased with the increase in temperature as well as with the addition of NaCl. The value of CMC for pure CTAB was calculated 0.98M at 303K, which was observed to decrease as temperature increased and got value of 0.95M at 318K. Moreover the addition of electrolyte NaCl into the surfactant lead to lowering of the CMC and obtained value of 0.90M at 3M of NaCl, indicating significant electrostatic interactions between surfactant and electrolyte. Moreover the degree of ionization(α) calculated for pure cationic surfactant CTAB was 0.219, which tends to increase with the addition of electrolyte, while that of counter ion binding values (β) was observed to decrease from 0.780 to 0.201. Furthermore, the conductivity of charged micelle of surfactant and free ions of electrolyte contributed to electric conductivity of aqueous micellar solution of surfactant. The results can be helpful to develop better understanding about interaction between electrolyte and surfactant.

 

Keywords: Electrical conductance; electrolyte NaCl; surface tension; surfactant CTAB; viscosity

 

ABSTRAK

Beberapa dekad kebelakangan ini, surfaktans dan interaksi elektrolit telah mendapat perhatian para penyelidik kerana kegunaannya dalam perindustrian dan domestik. Dalam kertas ini, kesan elektrolit (NaCl) ke atas kepekatan kritikal misel (CMC) of kationik surfaktans setiltrimetil ammonium bromida (CTAB) pada suhu yang berbeza telah dikaji melalui teknik yang berbeza seperti konduktometri, permukaan tensiometer dan meter kelikatan. Hasil kajian menunjukkan bahawa nilai CMC untuk CTAB berkurang dengan peningkatan suhu serta penambahan NaCl. Nilai CMC untuk CTAB tulen ialah 0.98M pada 303K dan diperhatikan menurun apabila suhu meningkat dan memperoleh nilai 0.95M pada 318K. Selain itu, penambahan elektrolit NaCl ke dalam surfaktans membawa kepada penurunan CMC ini dan memperoleh nilai 0.90M pada 3M NaCl yang menunjukkan interaksi elektrostatik yang penting antara surfaktans dan elektrolit. Tambahan pula, darjah pengionan(α) yang dikira untuk surfaktans kationik tulen CTAB ialah 0.219, yang cenderung untuk meningkat dengan penambahan elektrolit, manakala perbandingan nilai ikatan ion (β) diperhatikan menurun daripada 0.780 untuk 0.201. Seterusnya, konduktiviti misel bercaj surfaktans dan elektrolit ion bebas menyumbang kepada kekonduksian elektrik larutan akueus misel surfaktans. Keputusan kajian diharap dapat membantu meningkatkan pemahaman interaksi antara elektrolit dan surfaktans.

 

Kata kunci: Elektrolit NaCl; CTAB surfaktans; kekonduksian elektrik; kelikatan; ketegangan permukaan

 

REFERENCES

 

Abuin, E. & Scaiano, J.C. 1984. Exploratory study of the effect of polyelectrolyte surfactant aggregates on photochemical behavior. Journal of Americian Chemical Society 106: 6274-1983.

Anaker, E.W. & Ghose, H.M. 1968. Counterions and micelle size. II. Light scattering by solutions of cetylpyridinium salts. Journal of American Chemical Society 90: 3161-3166.

Anaker, E.W. & Ghose, H.M. 1963. Counterions and micelle size. I. light scattering by solutions of dodecyltrimethylammonium salts. Journal of Physical Chemistry 67: 1713-1716.

Antonello, D.C., Pietro, D.P., Gabriella, S., Romina, Z. & Antonella, F. 2016 Optimizing the interaction of surfactants with graphitic surfaces and clathrate hydrates. Langmuir 32: 6559-6570.

Bakshi, M.S. & Kaur, I. 2003. Head group modification controlled mixing behaviour of binary cationic surfactants: conductometry, viscometry and NMR studies. Journal of Colloid Polymer Science 281: 935-944.

Balakrishnan, V.K., Buncel, E. & Vanlood, G.W. 2005. Micellar catalyzed degradation of fenitrothion, an organophosphorus pesticide, in solution and soils. Environmental Science &Technology 39: 5824-5830.

Caron, J.E.G., Beaulieu, S. & Perron, G. 1995. Thermodynamic micellar properties of n-octyldimethylamine oxide hydrochloride in water. Langmuir 11: 1905-1911.

Chiranjeevi, P. & Vinod, L. 2009. Effect of molecular structure of cationic surfactants on biophysical interactions of the surfactant-modified nanoparticles with a model membrane and cellular uptake. Langmuir 17: 2369-2377.

Gamboa, C., Rios, H. & Sepulveda, L. 1989. Effect of the nature of counterions on the sphere-to-rod transition in cetyltrimethylammonium micelles. Journal of Physical Chemistry 93: 5540-5543.

Ghos, S. 2001. Surface chemical and micellar properties of binary and ternary surfactant mixtures (Cetyl Pyridinium Chloride, Tween-40, and Brij-56) in aqueous medium. Journal of Colloid Interface Science 244: 128-138.

Ghos, S. & Moulik, S.P. 1998. The clouding behaviours of binary mixtures of polyoxyethylene (10) cetylether (Brij-56) with polyvinyl alcohol (PVA) and methyl cellulose (MC). Journal of Colloid Interface Science 357: 201-208.

Graciani, M., Munoz, M., Rodriguez, A. & Moya, M.L. 2005. Water-N,N-dimethylformamide alkyltrimethylammonium bromide micellar solutions: Thermodynamic, structural, and kinetic studies. Langmuir 21: 3303-3310.

Hoff, E., Nystrom, B. & Lindman, B. 2001. Polymer-surfactant interactions in dilute mixtures of a nonionic cellulose derivative and an anionic surfactant. Langmuir 17: 28-34.

Kameyama, K., Muroya, A. & Takagi, T. 1997. Properties of a mixed micellar system of sodium dodecyl sulfate and octylglucoside. Journal of Colloid Interface Science 196: 48-52.

Knaebel, A. & Oda, R. 2000 Lamerall structure aqueous solutions of a dimeric surfactant. Langmuir 16: 2489-2494.

Li, M., Li, Y.Z., Hua, H., He, X. & Li, Y. 2003. Studies on 1-dodecene hydroformylation in biphasic catalytic system containing mixed micelle. Journal of Molecular Catalysis A 194: 13-17.

Lindman, B. & Wennerstrom, H. 1980. Miceles. Amphiphile aggregation in aqueous solution. Topics in Current Chemistry 87: 1-87.

Neumann’, M.G. & Tiera, M.J. 1997. Photochemical determination of the interactions between surfactants and polyelectrolytes. Journal of Pure & Applied Chemistry 69(4): 791-795.

Paredes, S., Sepulveda, L. & Tribout, M. 1984. Enthalpies of micellization of the quaternary tetradecyl- and -cetyl ammonium salts. Journal of Physical Chemistry 88: 1871- 1875.

Pethica, A. 1954. Surface tension of aqueous solutions of dodecyldimethylammonium chloride, and its adsorption on aqueous surfaces. Trans Faraday Society 50: 412-419.

Rakshit, A.K. & Sharma, B. 2003. The effect of amino acids on the surface and thermodynamic properties of poly [oxyethylene (10)] lauryl ether in aqueous solution. Colloid Polymer Science 281: 45-51.

Ramanathan, M., Shrestha, L.K., Mori, T., Ji, Q., Hill, J.P. & Ariga, K. 2013. Amphiphile nanoarchitectonics: From basic physical chemistry to advanced applications. Physical Chemistry 15: 10580-10611.

Rio, J.M., Prieto, G., Sarmieto, F. & Mosquera, V. 1995. Thermodynamics of micellization of N-octyltrimethylammonium bromide in different media. Langmuir 11: 1511-1514.

Rosen, M.J., Cohen, A.W., Dahanayake, M. & Hua, X. 1982. Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypo ly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. Journal of Physical Chemistry 86: 541-545.

Schweitzer, B., Felippe, A.C., Bo, A.D., Minatti, E., Zanette, D. & Lopes, A. 2006. Journal of Colloid Interface Science 298: 457-466.

Sharma, B.G. & Rakshit, A.K. 1989. In Surfactants in Solution, edited by Mittal, K.L. New York: Plenum Press. 7: 319-329.

Sharma, B.G. & Rakshit, A.K. 1989. Thermodynamics of micellization of a nonionic surfactant: Brij 35 in aquo-sucrose solution. Journal of Colloid Interface Science 129: 139-144.

Shinoda, K., Kobyashi, M. & Yamaguchi, N. 1987. Effect of “Iceberg” formation of water on the enthalpy and entropy of solution of paraffin chain compounds: The effect of temperature on the critical micelle concentration of lithium perfluorooctane sulfonate. Journal of Physical Chemistry 91: 5292-5294.

Sudha, M., Renu, L., Neeti, S., Rajendra, J., Narain, D., Kandpal & Kiran, P. 2012. Micellar properties of linear alkyl benzene sulphonate in aqueous glucose solution. Journal of Chemical and Pharmaceutical Research 4: 4468-4476.

Sujit, K.S., Sujeet, K.C. & Ajaya, B. 2016. The effect of methanol on the micellar properties of dodecyltrimethylammonium bromide (DTAB) in aqueous medium at different temperatures. Journal of Surfactants and Detergents 19: 201-207.

Urata, K. & Takaishi, N. 2001. A perspective on the contribution of surfactants and lipids toward “Green Chemistry”: Present states and future potential. Journal of Surfactants and Detergents 4: 191-200.

Zana, R., Yiv, S., Strazielle, C. & Lianos, P. 1981. Effect of alcohol on the properties of micellar systems: I. Critical micellization concentration, micelle molecular weight and ionization degree, and solubility of alcohols in micellar solutions. Journal of Colloid Interface Science 80: 208-223.

Zhu, B.Y. & Zhao, Z.G. 1996. Foundation of Interface Chemistry. Beijing: Chemical Industry Press. pp. 84-93.

 

*Corresponding author; email: noorrehman@sbbu.edu.pk

 

 

 

previous