Sains Malaysiana 49(12)(2020): 2913-2925

http://dx.doi.org/10.17576/jsm-2020-4912-04

 

Rapid ESKAPE Pathogens Detection Method using Tapered Dielectrophoresis Electrodes via Crossover Frequency Analysis

(Kaedah Pengesanan Pantas Patogen ESKAPE menggunakan Elektrod Dielektroforesis Tirus melalui Analisis Frekuensi Pindah Silang)

 

MUHAMMAD KHAIRULANWAR ABDUL RAHIM1*, NUR MAS AYU JAMALUDIN1, JACINTA SANTHANAM2, AZRUL AZLAN HAMZAH1 & MUHAMAD RAMDZAN BUYONG1

 

1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 2 June 2020/Accepted: 15 July 2020

 

ABSTRACT

This paper introduces the versatile of an electrokinetic technique by using the non-uniform electric field for dielectrophoresis (DEP) application. This technique is defined as electromicrofluidics. The potential application for portable and real time detection method of Enterococcus faecium (EF), Staphylococcus aureus (SA), Klebsiella pneumoniae (KP), Acinetobacter baumannii (AB), Pseudomonas aeruginosa (PA) and Enterobacter aerogenes (EA), which are the (ESKAPE) bacteria. The MATLAB analytical modelling was used in simulating the polarisation factor and velocities of bacteria based on Clausius-Mossotti factor (CMF). The validation of CMF simulation through the DEP experimental can be quantified based on the response of alternating current (AC) voltage applied using 6 voltage peak to peak (Vp-p) to their input frequencies from 100 to 15000 kHz. The droplet method was deployed to place properly 0.2 μL of sample onto DEP microelectrode. The velocities and crossover frequency (fxo) ranges of bacteria were determined through bacteria trajectory in specific time interval monitored by microscope attached with eyepiece camera. The applied range of input frequencies from 100 to 15000 kHz at 6 Vp-p for each bacteria were successfully identified the unique ranges of frequencies response for detection application. The advantages of this works are selective with rapid capability for multidrug resistant (MDR) bacteria detection application.

 

Keywords: Crossover frequency (fxo); dielectrophoresis; ESKAPE bacteria

 

ABSTRAK

Makalah ini memperkenalkan satu teknik elektrokinetik yang menggunakan medan elektrik secara tidak seragam iaitu dielektroforesis (DEP). Teknik ini ditakrifkan sebagai elektromikrofluidik. Berpotensi bagi aplikasi secara mudah alih dan pada masa nyata untuk pengesanan  Enterococcus faecium (EF), Staphylococcus aureus (SA), Klebsiella pneumoniae (KP), Acinetobacter baumannii (AB), Pseudomonas aeruginosa (PA) dan Enterobacter aerogenes (EA) yang merupakan bakteria (ESKAPE). Pemodelan analitik MATLAB digunakan dalam mensimulasi faktor polarisasi dan halaju bakteria berdasarkan faktor Clasius-Mossotti (CMF). Pengesahan simulasi CMF melalui uji kaji DEP dapat dihitung berdasarkan tindak balas voltan arus ulang alik (AC) yang menggunakan 6 volt puncak ke puncak (Vp-p) terhadap frekuensi inputnya dari 100 sehingga 15000 kHz. Kaedah titisan digunakan untuk menempatkan 0.2 μL sampel ke atas permukaan mikroelektrod DEP dengan tepat. Julat halaju dan frekuensi pindah silang (fxo) bakteria ditentukan melalui lintasan bakteria dalam selang waktu tertentu yang dipantau oleh mikroskop yang diintegrasikan bersama kamera. Julat frekuensi input yang dikenakan terhadap ESKAPE bakteria dari 100 hingga 15000 kHz pada 6 Vp-p untuk setiap bakteria berjaya dikenal pasti julat frekuensi pindah silang uniknya sebagai pengesanan. Hasil analisis, kelebihan penyelidikan ini adalah kebolehan secara selektif dengan kemampuan pantas untuk aplikasi pengesanan bakteria yang rentan kepada antibiotik (MDR), ESKAPE. Ini membolehkan aplikasi pengesan bakteria ini dilakukan secara tepat dengan menggunakan teknik yang mudah pada masa hadapan.

 

Kata kunci: Dielektroforesis; ESKAPE bacteria; frekuensi pindah silang (fxo)

 

REFERENCES

Abd Samad, M.I., Buyong, M.R., Kim, S.S. & Majlis, B.Y. 2019. Dielectrophoresis velocities response on tapered electrode profile: Simulation and experimental. Microelectronics International 36: 45-53.

Adekanmbi, E.O. & Srivastava, S.K. 2019. Applications of electrokinetics and dielectrophoresis on designing chip-based disease diagnostic platforms. In Bio-Inspired Technology. https://www.intechopen.com/books/bio-inspired-technology/applications-of-electrokinetics-and-dielectrophoresis-on-designing-chip-based-disease-diagnostic-pla. DOI: 10.5772/intechopen.82637.

Almasaudi, S.B. 2018. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi Journal of Biological Sciences 25(3): 586-596.

Brooks, L.E., Ul-Hasan, S., Chan, B.K. & Sistrom, M.J. 2018. Quantifying the evolutionary conservation of genes encoding multidrug efflux pumps in the ESKAPE pathogens to identify antimicrobial drug targets. Msystems 3(3): 1-9.

Buyong, M.R., Kayani, A.A., Hamzah, A.A. & Majlis, B.Y. 2019. Dielectrophoresis manipulation: Versatile lateral and vertical mechanisms. Biosensors 9(30): 1-26.

Buyong, M.R., Larki, F., Faiz, M.S., Hamzah, A.A., Yunas, J. & Majlis, B.Y. 2015. Tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation. Sensors 15(5): 10973-10990.

Cha, S.H., Kang, S.H., Lee, Y.J., Kim, J.H., Ahn, E.Y., Park, Y. & Cho, S. 2019. Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate. Scientific Reports 9(1): 1-12.

D'Amico, L., Ajami, N.J., Adachi, J.A., Gascoyne, P.R. & Petrosino, J.F. 2017. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab on a Chip 17(7): 1340-1348.

De Angelis, G., Posteraro, B., De Carolis, E., Menchinelli, G., Franceschi, F., Tumbarello, M., De Pascale, G., Spanu, T. & Sanguinetti, M. 2018. T2 Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. Journal of Antimicrobial Chemotherapy 73(suppl_4): iv20-iv26.

Diene, S.M., Merhej, V., Henry, M., El Filali, A., Roux, V., Robert, C., Azza, S., Gavory, F., Barbe, V., La Scola, B. & Raoult, D. 2013. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new ‘killer bugs’ are created because of a sympatric lifestyle. Molecular Biology and Evolution 30(2): 369-383.

Du, E. & Manoochehri, S. 2008. Electrohydrodynamic‐mediated dielectrophoretic separation and transport based on asymmetric electrode pairs. Electrophoresis 29(24): 5017-5025.

Gascoyne, P.R., Shim, S., Noshari, J., Becker, F.F. & Stemke, H.K. 2013. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field‐flow fractionation. Electrophoresis 34(7): 1042-1050.

Gnanamani, A., Hariharan, P. & Paul-Satyaseela, M. 2017. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus 2017: 4-28.

González-Bello. C. 2017. Antibiotic adjuvants - a strategy to unlock bacterial resistance to antibiotics. Bioorganic & Medicinal Chemistry Letters 27(18): 4221-4228.

Honegger, T. & Peyrade, D. 2013. Comprehensive analysis of alternating current electrokinetics induced motion of colloidal particles in a three-dimensional microfluidic chip. Journal of Applied Physics 113(19): 194702.

Jamaludin, N.M.A., Buyong, M.R., Rahim, M.K., Hamzah, A.A., Mailis, B.Y. & Bais, B. 2018. Dielectrophoresis: Characterization of triple-negative breast cancer using Clausius-Mossotti factor. In 2018 IEEE International Conference on Semiconductor Electronics (ICSE) IEEE. pp. 85-88.

Karlowsky, J.A., Hoban, D.J., Hackel, M.A., Lob, S.H. & Sahm, D.F. 2017. Antimicrobial susceptibility of gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013-2015. Journal of Medical Microbiology 66(1): 61-69.

Kikkeri, K., Breazeal, M.V.R., Ren, X., Pruden, A. & Agah, M. 2018. A monolithic dielectrophoresis chip with impedimetric sensing for assessment of pathogen viability. Journal of Microelectromechanical Systems 27(5): 810-817.

Lalam, C., Tantravahi, S. & Petla, N. 2015. Identification and characterization of Enterococcus feacium (MCC-2729) with antimicrobial and abiotic stress tolerance properties. International Journal of Current Microbiology and Applied Science 4(8): 309-322.

Leung, L.M., Fondrie, W.E., Doi, Y., Johnson, J.K., Strickland, D.K., Ernst, R.K. & Goodlett, D.R. 2017. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Scientific Reports 7(1): 1-10.

Mohammad, K., Buchanan, D.A., Braasch, K., Butler, M. & Thomson, D.J. 2017. CMOS single cell dielectrophoresis cytometer. Sensors and Actuators B: Chemical 249(2012): 246-255.

Pethig, R.R. 2017. Dielectrophoresis: Theory, Methodology and Biological Applications. 1st ed. London, Ontario: John Wiley & Sons. Inc. pp. 253-254.

Pethig, R. 2013. Dielectrophoresis: An assessment of its potential to aid the research and practice of drug discovery and delivery. Advanced Drug Delivery Reviews 65(11-12): 1589-1599.

Phoon, H.Y., Hussin, H., Hussain, B.M., Lim, S.Y., Woon, J.J., Er, Y.X. & Thong, K.L. 2018. Distribution, genetic diversity and antimicrobial resistance of clinically important bacteria from the environment of a tertiary hospital in Malaysia. Journal of Global Antimicrobial Resistance 14(2018): 132-140.

Rani, F.M., Rahman, N.I.A., Ismail, S., Alattraqchi, A.G., Cleary, D.W., Clarke, S.C. & Yeo, C.C. 2017. Acinobacter spp. infections in Malaysia: A review of antimicrobial resistance trends, mechanisms and epidemiology. Frontiers in Microbiology 8(2017): 1-13.

Rahim, M.K.A., Buyong, M.R., Jamaludin, N.M.A., Hamzah, A.A., Siow, K.S. & Majlis, B.Y. 2018. Characterization of permittivity and conductivity for ESKAPE pathogens detection. IEEE International Conference on Semiconductor Electronics (ICSE). pp. 132-135.

Rajeshwari, H., Nagveni, S., Oli, A., Parashar, D. & Chandrakanth, K.R. 2009. Morphological changes of Klebsiellapneumoniae in response to cefotaxime: A scanning electron microscope study. World Journal of Microbiology and Biotechnology 25(2009): 2263-2266.

Renner, L.D., Zan, J., Hu, L.I., Martinez, M., Resto, P.J., Siegel, A.C., Torres, C., Hall, S.B., Slezak, T.R., Nguyen, T.H. & Weibel, D.B. 2017. Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform. Applied and Environmental Microbiology 83(4): e02449.

Sadeghian, H., Hojjat, Y. & Soleimani, M. 2017. Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators. Journal of Electrostatics 86: 41-49.

Santajit, S. & Indrawattana, N. 2016. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International 2016: 2475067.

Shirmohammadli, V. & Manavizadeh, N. 2018. Numerical modeling of cell trajectory inside a dielectrophoresis microdevice designed for breast cancer cell screening. IEEE Sensors Journal 18(20): 8215-8222.

Siebman, C., Velev, O. & Slaveykova, V. 2018. Probing contaminant-induced alterations in chlorophyll fluorescence by AC-dielectrophoresis-based 2D-algal array. Biosensors 8(1): 2-8.

Vater, S.M., Weiße, S., Maleschlijski, S., Lotz, C., Koschitzki, F., Schwartz, T., Obst, U. & Rosenhahn, A. 2014. Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PloS ONE 9(1): e87765.

Xu, S., Wang, Q., Zhang, Q., Zhang, L., Zuo, L., Jiang, J.D. & Hu, H.Y. 2017. Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe. Chemical Communications 53(81): 11177-11180.

Yunus, F.W., Buyong, M.R., Yunas, J., Majlis, B.Y. & Hamzah, A.A. 2019. 3-dimensional electric field distributions of castellated and straight dielectrophoresis electrodes for cell separation. Sains Malaysiana 48(6): 1239-1249.

Yunus, F.W., Hamzah, A.A., Norzin, M.S., Buyong, M.R., Yunas, J. & Majlis, B.Y. 2018. Dielectrophoresis: Iron deficient anemic red blood cells for artificial kidney purposes.  IEEE International Conference on Semiconductor Electronics (ICSE). pp. 5-8.

 

*Corresponding author; email: muhdramdzan@ukm.edu.my

 

   

 

 

previous