Sains Malaysiana 50(2)(2021): 327-337

http://dx.doi.org/10.17576/jsm-2021-5002-05

 

Carotenogenesis in Nannochloropsis oculata under Oxidative and Salinity Stress

(Karotenogenesis dalam Nannochloropsis oculata di bawah Tekanan Oksidatif dan Saliniti)

 

AISAMUDDIN ARDI ZAINAL ABIDIN1,2, CHOTIKA YOKTHONGWATTANA3 & ZETTY NORHANA BALIA YUSOF1,2*

 

1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand

 

Received: 21 October 2018/Accepted: 20 July 2020

 

ABSTRACT

Nannochloropsis oculata is a unicellular microalgae which is vastly found throughout the environment and have been widely studied due to its high productivity of secondary metabolites and oil content. It is majorly cultured in the aquaculture sector as fish feed and for industries for its polyunsaturated fatty acids. This work aims to study the impact of salinity and oxidative stress on the expression of carotenoid biosynthesis genes and the accumulation of their products in N. oculata via qPCR and HPLC analyses. Three genes responsible for production of high value carotenoids namely lycopene beta-cyclase (CrTL-B/LCYB), beta-carotene oxygenase (CrTO) and beta-carotene hydroxylase (CrTR) under different stresses and time points were identified and quantified, and the amount of their products namely β-carotene, zeaxanthin, canthaxanthin, and astaxanthin was measured. N. oculata was treated with different concentrations of Cu2+ ion (1, 2, and 5 ppm) and NaCl (50, 150, 250 mM) which resembles conditions of oxidative and salinity stress, respectively. RNA and carotenoids extraction, RT-PCR, qPCR and HPLC was carried out in order to identify the correlation of carotenogenesis genes expression with carotenoids production. Under exposure of both treatments, the carotenoids biosynthesis genes were upregulated up to 6-fold compared to control and targeted carotenoids were overexpressed up to 7-fold. Results from this study gave insights which are beneficial in understanding microalgae’s responses towards abiotic stress via the synthesis of carotenoids.

 

Keywords: Carotenoids; carotenogenesis; Nannochloropsis oculata; oxidative stress; salinity stress

 

ABSTRAK

Nannochloropsis oculata ialah mikroalga unisel yang banyak ditemui di alam sekitar dan telah dikaji secara meluas kerana produktiviti tinggi metabolit sekunder dan kandungan minyaknya. Kebanyakannya digunakan di dalam sektor akuakultur sebagai makanan ikan dan di dalam sektor industri untuk asid lemak tak tepu. Kajian ini bertujuan untuk melihat kesan saliniti dan tekanan oksidatif pada pengekspresan gen biosintesis karotenoid dan pengumpulan kandungan karotenoid dalam N. oculata melalui qPCR dan analisis HPLC. Pengekspresan tiga gen yang bertanggungjawab untuk menghasilkan karotenoid bernilai tinggi iaitu beta-siklase likopin (CrTL-B / LCYB), beta-karoten oksigen (CrTO) dan beta-karoten hidroksilase (CrTR) telah dianalisa di bawah tekanan yang berbeza dan jumlah penghasilan produk akhir iaitu β-karoten, zeaxantin, cantaxantin dan astaxantintelah diukur. N. oculata telah dirawat dengan kepekatan ion Cu2+ yang berbeza (1, 2 dan 5 ppm) dan NaCl (50, 150, 250 mM) yang menyerupai keadaan tekanan oksidatif dan salin. Pengekstrakan RNA dan karotenoid, RT-PCR, qPCR dan HPLC dilakukan untuk mengenal pasti korelasi ekspresi gen carotenogen dengan pengeluaran karotenoid. Di bawah pendedahan kedua-dua tekanan, pengekspresan gen biosintesis karotenoid telah meningkat sehingga 6 kali ganda berbanding dengan kawalan dan karotenoid yang dihasilkan meningkat sehingga 7 kali ganda. Keputusan daripada kajian ini memberikan pandangan yang bermanfaat dalam memahami tindak balas mikroalga terhadap tekanan abiotik melalui sintesis karotenoid.

 

Kata kunci: Karotenoid; karotenogenesis; Nannochloropsis oculata; tekanan oksidatif; tekanan saliniti

 

REFERENCES

Abidin, A.A.Z., Wong, S.Y., Rahman, N.S.A., Idris, Z.H.C. & Balia Yusof, Z.N. 2016. Osmotic, oxidative and salinity stresses upregulate the expressions of thiamine (Vitamin B1) biosynthesis genes (THIC and THI1/THI4) in oil palm (Elaies guineensis). Journal of Oil Palm Research 28(28): 308-319.

Azim, N.H., Subki, A. & Yusof, Z.N.B. 2018. Abiotic stresses induce total phenolic, total flavonoid and antioxidant properties in Malaysian indigenous microalgae and cyanobacterium. Malaysian Journal of Microbiology 14(1): 25-33.

Borowitzka, M.A. 2013. High-value products from microalgae-their development and commercialisation. Journal of Applied Phycology 25(3): 743-756.

Borowitzka, M.A., Borowitzka, L.J. & Kessly D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology 2(2): 111-119.

Borowitzka, L.J. & Borowitzka, M.A. 1989. β-carotene (provitamin A) production with algae. Biotechnology of vitamins, pigments and growth factors. In Elsevier Applied Biotechnology Series, edited by Borowitzka: Elsevier. pp. 15-26.

Cremen, M.C.M., Martinez-Goss, M.R., Corre Jr., V.L. & Azanza, R.V. 2007. Phytoplankton bloom in commercial shrimp ponds using green-water technology. Journal of Applied Phycology 19(6): 615-624.

Chen, Y., Li, D., Lu, W., Xing, J., Hui, B. & Han, Y. 2003. Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnolology Letters 25(7): 527-529.

Erdmann, N. & Hagemann, M. 2001. Salt acclimation of algae and cyanobacteria: A comparison. In Algal Adaptation to Environmental Stresses, edited by Erdmann, N. & Hagemann M. Berlin, Heidelberg: Springer. pp. 323-361.

Fern, L.L., Abidin, A.A.Z. & Yusof, Z.N.B. 2017. Upregulation of thiamine (vitamin B1) biosynthesis gene upon stress application in Anabaena sp. and Nannochloropsis oculata. Journal of Plant Biotechnology 44(4): 462-471.

Garg, S., Wang, L. & Schenk, P.M. 2015. Flotation separation of marine microalgae from aqueous medium. Separation and Purification Technology 156: 636-641.

Goodwin, T.W. 1980. Biosynthesis of carotenoids. In The Biochemistry of the Carotenoids, edited by Goodwin, T.W. Dordrecht: Springer. pp. 33-76.

Gu, N., Lin, Q., Li, G., Qin, G., Lin, J. & Huang, L. 2012. Effect of salinity change on biomass and biochemical composition of Nannochloropsis oculata. Journal of World Aquaculture Society 43(1): 97-106.

Habib, M.A.B., Phang, S.M., Kamarudin, M.S. & Mohamed, S. 1998. Chemical characteristics and essential nutrients of agro-industrial effluents in Malaysia. Asian Fisheries 11(3-4): 279-286.

Hossain, A.B.M.S., Salleh, A., Boyce, A.N., Chowdhury, P. & Naqiuddin, M. 2008. Biodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology 4(3): 250-254.

Ip, P.F. & Chen, F. 2005. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochemistry 40(11): 3491-3496.

Khairy, H.M. 2009. Toxicity and accumulation of copper in Nannochloropsis oculata (Eustigmatophyceae, Heterokonta). World Applied Science Journal 6(3): 378-384.

Kobayashi, M., Kurimura, Y. & Tsuji, Y. 1997. Light-independent, astaxanthin   production by the green microalga Haematococcus pluvialis under salt stress. Biotechnology Letters 19(6): 507-509.

Küpper, H., Götz, B., Mijovilovich, A., Küpper, F.C. & Meyer-Klaucke, W. 2009. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology 151(2): 702-714.

Lembi, C.A. & Waaland, J.R. 1988. Algae and Human Affairs. New York: Cambridge University Press. pp. 87-181.

Lemoine, Y. & Schoefs, B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynthesis Research 106(1-2): 155-177.

Lesser, M.P. 2006. Oxidative stress in marine environments: Biochemistry and physiological ecology. Annual Review of Physiology 68: 253-278.

Liu, B.H. & Lee, Y.K. 2000. Secondary carotenoids formation by the green alga Chlorococcum sp. Journal of Applied Phycology 12(3-5): 301-307.

Lorenz, R.T. & Cysewski, G.R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18(4): 160-167.

Lubián, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., González-del Valle, M. & Parés, G. 2000. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology 12(3-5): 249-255.

Mallick, N. 2004. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: Response of the antioxidant system. Journal of Plant Physiology 161(5): 591-597.

Maznah, W.W., Al-Fawwaz, A.T. & Surif, M. 2012. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. Journal of Environmental Sciences 24(8): 1386-1393.

Milledge, J.J. 2011. Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science Biotechnology 10(1): 31-41.

Mendes, A., Reis, A., Vasconcelos, R., Guerra, P. & Da Silva, T.L. 2009. Crypthecodinium cohnii with emphasis on DHA production: A review. Journal of Applied Phycology 21(2): 199-214.

Mulders, K.J., Lamers, P.P., Martens, D.E. & Wijffels, R.H. 2014. Phototrophic pigment production with microalgae: Biological constraints and opportunities. Journal of Phycology 50(2): 229-242.

Natrah, F.M.I., Yusoff, F.M., Shariff, M., Abas, F. & Mariana, N.S. 2007. Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology 19(6): 711-718.

Ort, D.R. & Baker, N.R. 2002. A photoprotective role for O2 as an alternative electron sinks in photosynthesis? Current Opinion in Plant Biology 5(3): 193-198.

Pal, D., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. 2011. The effect of light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbioliogy and Biotechnology 90(4): 1429-1441.

Pfaffl, M.W. 2004. Quantification strategies in real-time PCR. In Applied Microbiology, edited by Pfaffl, M.W. Semantic Scholar. pp. 53-62.

Pinto, F.L., Thapper, A., Sontheim, W. & Lindblad, P. 2009. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Molecular Biology 10(1): 79.

Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11): 807-815.

Santabarbara, S., Agostini, A., Casazza, A.P., Zucchelli, G. & Carbonera, D. 2015. Carotenoid triplet states in photosystem II: Coupling with low-energy states of the core complex. BBA-Bioenergetics 1847(2): 262-275.

Sarada, R., Tripathi, U. & Ravishankar, G.A. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochemistry 37(6): 623-627.

Shaari, A.L., Surif, M., Latiff, F.A., Omar, W.M.W. & Ahmad, M.N. 2011. Monitoring of water quality and microalgae species composition of Penaeus monodon ponds in Pulau Pinang, Malaysia. Tropical Life Sciences Research 22(1): 51-69.

Singh, S., Kate, B.N. & Banerjee, U.C. 2005. Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology 25(3): 73-95.

Srivastava, A.K., Bhargava, P. & Rai, L.C. 2005. Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of Anabaena doliolum. World Journal of Microbioliogy and Biotechnology 21(6-7): 1291-1298.

Steinbrenner, J. & Sandmann, G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Applied and Environmental Microbiology 72(12): 7477-7484.

Stephens, E., Ross, I.L., King, Z., Mussgnug, J.H., Kruse, O., Posten, C., Borowitzka, M.A. & Hankamer, B. 2010. An economic and technical evaluation of microalga biofuels. Nature Biotechnology 28(2): 126-128.

Takaichi, S. 2011. Carotenoids in algae: Distributions, biosynthesis and functions. Marine Drugs 9(6): 1101-1118.

Telfer, A. 2005. Too much light? How β-carotene protects the photosystem II reaction centre. Photochemical and Photobiological Sciences 4(12): 950-956.

Tjahjono, A.E., Hayama, Y., Kakizono, T., Terada, Y., Nishio, N. & Nagai, S. 1994. Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnology Letters 16(2): 133-138.

Van Heukelem, L. & Thomas, C.S. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A 910(1): 31-49.

Vieler, A., Wu, G., Tsai, C.H., Bullard, B., Cornish, A.J., Harvey, C. & Campbell, M.S. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genetics 8(11): e1003064.

Wang, D., Ning, K., Li, J., Hu, J., Han, D., Wang, H. & Chang, X. 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genetics 10(1): e1004094.

Wijffels, R.H., Barbosa, M.J. & Eppink, M.H. 2010. Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioproducts and Biorefining 4(3): 287-295.

Ye, Z.W., Jiang, J.G. & Wu, G.H. 2008. Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects. Biotechnology Advances 26(4): 352-360.

 

*Corresponding author; email: zettynorhana@upm.edu.my

   

 

 

 

previous