Sains Malaysiana 50(2)(2021): 361-371

http://dx.doi.org/10.17576/jsm-2021-5002-08

 

Thermal and Mechanical Characterisation of Poly(ω -Hydroxy Pelargonate): A Preliminary Study for Bioplastic

(Pencirian Terma dan Mekanik Poli(ω-Pelargonat Hidroksi): Kajian Awal untuk Bioplastik)

 

SITI FAIEZA ABD HADI, MUHAMMAD FADHLI KAMARUZAMAN, JUMAT SALIMON & MOHD FIRDAUS MOHD YUSOFF*

 

Center for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 4 November 2019/Accepted: 21 July 2020

 

ABSTRACT

Poly(ω-hydroxy pelargonate) or P(ω-OHP) is a potential biodegradable plastic which was prepared by melt condensation of its monomer (ω-hydroxy pelargonic acid). In this study, the performances of P(ω-OHP) in thermal and mechanical aspects, as well as the method employed for the monomer preparation was presented. Although this type of monomer is well established for pharmaceutical and cosmetic application, its possibility to be applied in bioplastic has not been extensively studied. Previous research also showed that the monomer preparation was rather complicated, expansive, and hazardous. Thus, this study offers the safe method through chemical modification which conducted in mild condition. The monomer structure was verified by using ESI-MS at 173.1 m/z with 92% purity. After melt-condensation process was carried out at 190 °C for 4 h, the formation of P(ω-OHP) was identified by the present of methylene ester bond indicated on 1H NMR peak at 4.05 ppm. The thermal properties were analyzed by DSC, TGA, and rheometer. P(ω-OHP) was melted at 72.8 °C and start to degrade at 220 °C with rheology analysis represented Newtonian flow at 80 and 180 °C. P(ω-OHP) contains 73.5% degree of crystallinity as determined by XRD with fewer amorphous area has affecting low mechanical value in hardness (31) and compressive strength (modulus 47.3 MPa, yield 1.03 MPa). The results suggest that P(ω-OHP) is thermally stable and physically hard and brittle. The findings have implications for bioplastic custom and subjected to improvement via polymer blending or block co-polymerization for application flexibility.

 

Keywords: Bioplastic; characterization; omega hydroxy pelargonic acid; poly(omega hydroxy pelargonate)

 

ABSTRAK

Poli(ω-pelargonat hidroksi) atau P(ω-OHP) merupakan bahan yang berpotensi untuk dijadikan plastik terbiodegradasi dan telah disediakan melalui kaedah penyejatan lebur terhadap monomer (asid ω-hidroksi pelargonik). Kajian ini mempamerkan prestasi P(ω-OHP) terhadap aspek terma dan mekanik dan juga kaedah penyediaan monomer. Walaupun monomer jenis ini telah banyak diaplikasikan dalam bidang farmaseutik dan kosmetik, namun masih kurang kajian penggunaannya untuk aplikasi bioplastik. Kajian terdahulu turut melaporkan bahawa kaedah penyediaan monomer ini adalah sukar, mahal dan berbahaya. Maka, kajian ini menawarkan satu kaedah yang lebih selamat dilaksanakan melalui pengubahsuaian tindak balas kimia. Struktur monomer telah ditentusahkan menggunakan ESI-MS pada caj 173.1 m/z dengan ketulenan 92%. Setelah proses kondensasi lebur dijalankan pada suhu 190 °C selama 4 jam, penghasilan P(ω-OHP) dikenal pasti dengan ikatan ester metilena yang ditunjukkan pada puncak 1H NMR pada 4.05 ppm. Sifat terma dianalisis dengan DSC, TGA dan reometer. P(ω-OHP) melebur pada suhu 72.8 °C dan mula terurai pada suhu 220 °C serta analisis reologi menunjukkan sifat aliran Newton pada suhu 80 dan 180 °C. P(ω-OHP) mengandungi 73.5% darjah pengkristalan yang telah ditentukan oleh XRD dengan kawasan amorfus yang rendah, ia memberi kesan terhadap nilai mekanikal yang rendah dengan kekerasan (31) dan kekuatan mampatan (modulus 47.3 MPa, purata 1.03 MPa). Hasil kajian menunjukkan bahawa P(ω-OHP) adalah stabil secara terma dengan sifat fizikalnya yang keras dan rapuh. Penemuan ini menunjukkan implikasinya untuk digunakan sebagai bioplastik dan dapat ditambah baik melalui pengadunan polimer atau blok pengkopolimeran untuk kefleksibelan aplikasi.

 

Kata kunci: Asid omega hidroksi pelargonik; bioplastik; pencirian; poli(omega hidroksi pelargonat)

 

REFERENCES

Ahmed, J., Luciano, G., Schizzi, I., Arfat, Y.A., Maggiore, S. & Arockia, T.L.T. 2018. Non-isothermal crystallization behavior, rheological properties and morphology of poly(ɛ-caprolactone)/graphine oxidenanosheets composite films. Thermochimica Acta 659: 96-104.

Aoyagi, Y., Yamashita, K. & Doi, Y. 2002. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ɛ-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability 76: 53-59.

Barrett, J.S.F. & Srienc, F. 2011. Green chemistry for the production of biodegradable, biorenewable, biocompatible, and polymers. Biocatalysis for Green Chemistry and Chemical Process Development. https://doi/abs/10.1002/9781118028308.ch13.

Chae, D.W., Nam, Y., Sung, G.A., Chang, G.C., Lee, E.J. & Kim, B.C. 2017. Effects of molecular architecture on the rheological and physical properties of polycaprolactone. Korea - Australia Rheology Journal 29(2): 129-135.

Cvetković, I., Milić, J., Ionescu, M. & Petrović, Z.S. 2008. Preparation of 9-hydroxynonanoic acid methyl ester by ozonolysis of vegetable oils and its polycondensation. Hemijska Industrija 62(6): 319-328.

Ebata, H., Toshima, K. & Matsumura, S. 2008. Lipase-catalyzed synthesis and properties of poly[(12-hydroxydodecanoate)-co-(12-hydroxystearate)] directed towards novel green and sustainable elastomers. Macromolecular Biosciences 8(1): 38-45.

Eshraghi, S. & Das, S. 2010. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterial 6(7): 2467-2476.

Flieger, M., Kantorová, M., Prell, A., Řezanka, T. & Votruba, J. 2003. Biodegradable plastics from renewable sources. Folia Microbiologica 48(1): 27-44.

Fore, S.P., Ward, T.L. & Dollear, F.G. 1963. The preparation of lauryl alcohol and 6-hydroxycaproic acid from petroselinic acid. Journal of the American Oil Chemists' Society 40(1): 30-33.

Hadi, S.F.A. & Salimon, J. 2018. Preparation of ω-hydroxy pelargonic acid. AIP Conference Proceedings 1940(1): 020103.

Haliru, M., Badmus, B.B., Farizul, H.K. & Dachyar, A. 2016. Screening and production of polyhydroxybutyrate (PHB) by bacterial strains isolated from rhizosphere soil of groundnut plants. Sains Malaysiana 45(10): 1469-1476.

Huf, S., Krügener, S., Hirth, T., Rupp, S. & Zibek, S. 2011. Biotechnological synthesis of long‐chain dicarboxylic acids as building blocks for polymers. European Journal of Lipid Science and Technology 113(5): 548-561.

Jose, J., Pourfallah, G., Merkley, D., Li, S., Bouzidi, L., Leao, A.L. & Narine, S.S. 2014. Thermoplastic polyesters and co-polyesters derived from vegetable oil: Synthesis and optimization of melt polycondensation for medium and long chain poly(ω-hydroxyfatty acid)s and their ester derivatives. Polymer Chemistry 5(9): 3203-3213.

Karger, K.J. 1995. Polypropylene: Structure, Bends and Composites. London: Chapman and Hall.

Köckritz, A. & Martin, A. 2011. Synthesis of azelaic acid from vegetable oil-based feedstocks. European Journal of Lipid Science and Technology 113(1): 83-91.

Kula, J., Smigielski, K., Quang, T.B., Grzelak, I. & Sikora, M. 1999. Preparation of ω-hydroxynonanoic acid and its ester derivatives. Journal of the American Oil Chemists Society 76(7): 811-817.

Labet, M. & Thielemans, W. 2009. Synthesis of polycaprolactone: A review. Chemical Society Reviews 38: 3484-3504.

Liu, G., Kong, X., Wan, H. & Narine, S. 2008. Production of 9-hydroxynonanoic acid from methyl oleate and conversion into lactone monomers for the synthesis of biodegradable polylactones. Biomacromolecules 9(3): 949-953.

Mat Uzir, W., Azman, H., Akos, N.I., Nurhayati, A.Z. & Kayathre, K. 2015. Mechanical, thermal and chemical resistance of epoxidized natural rubber toughened polylactic acid blends. Sains Malaysiana44(11): 1615-1623.

Mehta, R., Kumar, V., Bhunia, H. & Upadhyay, S.N. 2005. Polymer review. Journal of Macromolecular Science 45: 325-349.

Mitrus, M., Wojtowicz, A. & Moscicki, L. 2009. Biodegradable polymers and their practical utility. In Thermoplastic Starch, edited by Janssen, L.P.B.M. & Moscicki, L. Weinheim: Wiley-VCH. pp. 1-33.

Nair, L.S. & Laurencin, C.T. 2007. Biodegradable polymers as biomaterials. Progress in Polymer Science 32(8): 762-798.

Nehra, K., Jamdagni, P. & Lathwal, P. 2017. Bioplastics: A sustainable approach toward healthier environment. Plant Biotechnology: Recent Advancement and Development 15: 297-314.

Petrović, Z.S., Milić, J., Xu, Y. & Cvetković, I. 2010. A chemical route to high molecular weight vegetable oil-based polyhydroxyalkanoate. Macromolecules 43(9): 4120-4125.

Rajabi, M., Lanfranchi, M., Campo, F. & Panza, L. 2014. Synthesis of a series of hydroxycarboxylic acids as standards for oxidation of nonanoic acid. Synthetic Communications 44(8): 1149-1154.

Rudin, A. & Choi, P. 2013. The Elements of Polymer Science & Engineering. 3rd ed. Boston: Academic Press.

Scholz, C. & Khemani, K. 2006. Degradable polymers and materials. American Chemical Society 939(1): 2-11.

Sonnenberger, S., Lange, S., Langner, A., Neubert, R.H.H. & Dobner, B. 2016. Synthesis of ceramides Ns and Np with perdeuterated and specifically ω deuterated N-Acyl residues. Journal of Labelled Compounds and Radiopharmaceuticals 59(12): 531-542.

Steinbüchel, A. 2005. Non-biodegradable biopolymers from renewable resources: Perspectives and impacts. Current Opinion in Biotechnology 16(6): 607-613.

Tyagi, P., Yamamoto, S. & Kawamura, K. 2015. Hydroxy fatty acids in fresh snow samples from northern Japan: Long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon. Biogeosciences 12: 7071-7080.

Xiang, H., Wen, X., Miu, X., Li, Y., Zhou, Z. & Zhu, M. 2016. Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Progress in Natural Science: Materials International 26(1): 58-64.

Xiao, K., Yue, X.H., Chen, W.C., Zhou, X.R., Wang, L., Xu, L., Huang, F.H. & Wan, X. 2018. Metabolic engineering for enhanced medium chain omega hydroxy fatty acid production in Escherichia coli. Frontiers in Microbiology 9: 139.

Yokota, T. & Watanabe, A. 1990. Process for Producing Omega - Hydroxy Fatty Acids. Nippon Mining Company Limited. http://www.google.com/patents/EP0357865A2?cl=en. Accessed on 18 April 2016.

 

*Corresponding author; email: fir_my@ukm.edu.my

   

 

 

 

previous