Sains Malaysiana 50(9)(2021): 2591-2602

http://doi.org/10.17576/jsm-2021-5009-08

 

In-silico Characterization and Expression Analysis of NB-ARC Genes in Response to Erwinia mallotivora in Carica papaya

(Pencirian In-silico dan Analisis Pengekspresan Gen NB-ARC sebagai Gerak Balas kepada Erwinia mallotivora pada Carica papaya)

 

NUR SYAZANA ABU BAKAR1, NOOR BAITY SAIDI1,3, LINA ROZANO2, MOHD PUAD ABDULLAH1 & SUHAINA SUPIAN2*

 

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Biodiversity Unit, Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 20 October 2020/Accepted: 21 January 2021

 

ABSTRACT

Disease resistance in plants is commonly associated with resistance (R) genes that encode nucleotide binding site-leucine rich repeat (NBS-LRR) domains that are essential for pathogen recognition and defence signalling. In this study, we identified and analyzed the sequence of putative pathogen-responsive NB-ARC transcripts from Carica papaya transcriptome database, carried out the structural and phylogenetic analysis, and determined the expression profile of the transcripts in C. papaya challenged with Erwinia mallotivora. The findings indicate CpNBS1, the only pathogen-responsive NB-ARC protein identified in this study belongs to the CC-NBS-LRR group. Semi-quantitative PCR showed CpNBS1 was differentially expressed in response to E. mallotivora. Structural analysis of the 4993-Eksotika and 4993-Viorica translated proteins showed striking differences in terms of the number of β-sheets and α-helixes as well their ligand-binding surface, suggesting the role of the LRR domain in determining the specificity of recognition of E. mallotivora effector. Collectively, this study provides new insights into the role of NBS-LRR genes in C. papaya and its implications for enhancing of plant disease resistance through genetic engineering.

 

Keywords: E. mallotivora; nucleotide binding site-leucine rich repeat; resistance gene

 

ABSTRAK

Kerintangan penyakit pada tumbuhan sering dikaitkan dengan gen kerintangan (R) yang mempunyai domain tapak pengikat nukleotida-ulangan kaya leusina(NBS-LRR) yang berperanan untuk mengenal pasti patogen dan isyarat pertahanan. Dalam kajian ini, kami mengenal pasti dan menganalisis jujukan daripada pangkalan data transkriptomCarica papaya, menjalankan analisis struktur dan filogenetik serta memprofil pengekspresan transkripC. papaya yang telah dicabar denganErwinia mallotivora. Keputusan kajian ini menunjukkan bahawa CpNBS1 adalah satu-satunya protein yang bergerak balas terhadap patogen dan berada dalam kumpulan CC-NBS-LRR. Analisis separa-kuantitatif PCR menunjukkan bahawa CpNBS1 telah diungkapkan secara berbeza sebagai gerak balas kepadaE. mallotivora. Analisis struktur pula menunjukkan perbezaan yang nyata daripada segi bilangan kepingan beta dan heliks alfa serta permukaan ikatan ligan, yang mencadangkan peranan domain LRR dalam menentukan ketepatan pengecaman efektor E. mallotivora. Secara keseluruhannya, kajian ini mendedahkan pandangan baharu fungsi gen NBS-LRR dalamC. papaya dan kesannya kepada penambahbaikan kerintangan penyakit dalam tumbuhan melalui kejuruteraan genetik.

 

Kata kunci: E. mallotivora; gen kerintangan; tapak pengikat nukleotida-ulangan kaya leusina

 

REFERENCES

Baggs, E., Dagdas, G. & Krasileva, K.V. 2017. NLR diversity, helpers and integrated domains: Making sense of the NLR identity. Current Opinion in Plant Biology 38: 59-67.

Balint-Kurti, P. 2019. The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology 20: 1163-1178.

Bayless, A.M. & Nishimura, M.T. 2020. Enzymatic functions for Toll/Interleukin-1 receptor domain proteins in the plant immune system. Frontiers in Genetics 11: 539.

Boyes, D.C., Nam, J. & Dangl, J.L. 1998. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proceedings of National Academy of Sciences USA 95: 15849-15854.

Cheong, Y.H., Chang, H-S., Gupta, R., Wang, X., Zhu, T. & Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661-677.

Costanzo, S. & Jia, Y. 2009. Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa. Plant Science 177: 468-478.

Couto, D. & Zipfel, C. 2016. Regulation of pattern recognition receptor signaling in plants. Nature Reviews Immunology 16: 537-522.

Cui, Y., Jiang, J., Yang, H., Zhao, T., Xu, X. & Li, J. 2018. Virus-induced gene silencing (VIGS) of the NBS-LRR gene SLNLC1 compromises Sm-mediated disease resistance to Stemphylium lycopersici in tomato. Biochemical and Biophysical Research Communications 503: 1524-1529.

Dang, P.M., Lamb, M.C., Bowen, K.L. & Chen, C.Y. 2019. Identification of expressed R-genes associated with leaf spot diseases in cultivated peanut. Molecular Biology Reports 46: 225-239.

Deller, M.C., Kong, L. & Rupp, B. 2016. Protein stability: A crystallographer's perspective. Acta Crystallographica Section F, Structural Biology Communications 72(Part 2): 72-95.

Goyal, N., Bhatia, G., Sharma, S., Garewal, N., Upadhyay, A., Upadhyay, S.K. & Singh, K. 2020. Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 112(1): 312-322.

Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.

He, S.L., Jiang, J.Z., Chen, B.H., Kuo, C.K. & Ho, S.L. 2018. Overexpression of a constitutively active truncated form of OsCDPK1 confers disease resistance by affecting OsPR10a expression in rice. Scientific Reports 8: 403.

Kim, S.B., Lee, H.Y., Choi, E.H., Park, E., Kim, J.H., Moon, K.B., Kim, H.S. & Choi, D. 2018. The coiled-coil and leucine-rich repeat domain of the potyvirus resistance protein Pvr4 has a distinct role in signaling and pathogen recognition. Molecular Plant-Microbe Interactions 31(9): 906-913.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.

Lai, Y. & Eulgem, T. 2017. Transcript-level expression control of plant NLR genes. Molecular Plant Pathology 19(5): 1267-1281.

Lee, J., Konc, J., Janežič, D. & Brook, B.R. 2017. Global organization of a binding site network gives insight into evolution and structure-function relationships of proteins. Scientific Reports 7: 11652.

Lozano, R., Hamblin, M.T., Prochnik, S. & Jannick, J.L. 2015. Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics 16(360): 1-14.

Lupas, A., Van Dyke, M. & Stock, J. 1991. Predicting coiled coils from protein sequences. Science 252: 1162-1164.

Marone, D., Russo, M.A., laido, G., DeLeonardis, A.M. & Mastrangelo, A.M. 2013. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. International Journal of Molecular Sciences 14: 7302-7326.

Mat Amin, N., Bunawan, H., Redzuan, R.A. & Jaganath, I.B.S. 2011. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. Int. J. Mol. Sci. 12: 39-45.

McHale, L., Tan, X., Koehl, P. & Michelmore, R.W. 2006. Plant NBS-LRR proteins: Adaptable guards. Genome Biology 7: 212.

Meunier, E. & Broz, P. 2017. Evolutionary convergence and divergence in NLR function and structure. Trends Immunology 38(10): 744-757.

Mohd Azhar, H., Johari, S., Nur Sulastri, J., Razali, M., Muhammad Zulfa, M.R., Noor Faimah, G. & Mariatulqabtiah, A.R. 2020. Field performance of selected papaya hybrids for tolerance to dieback disease. Journal of Tropical Agriculture and Food Sciences 48(1): 25-33.

Monteiro, F. & Nishimura, M.T. 2018. Structural, functional, and genomic diversity of plant NLR proteins: An evolved resource for rational engineering of plant immunity. Annual Review of Phytopathology 56: 243-267.

Noman, A., Aqeel, M. & Lou, Y. 2019. PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. International Journal of Molecular Sciences 20(8): 1882.

Padmanabhan, M., Cournoyer, P. & Dinesh-Kumar, S.P. 2009. The leucine-rich repeat domain in plant innate immunity: A wealth of possibilities. Cellular Microbiology 11(2): 191-198.

Porter, B.W., Paidi, M., Ming, R., Alam, M., Nishijima, W.T. & Zhu, Y. 2009. Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Molecular Genetics and Genomics 281: 609-626.

Sekeli, R., Hamid, M.H., Razak, R.A., Wee, C.Y. & Abdullah, J.O. 2018. Malaysian Carica papaya L. var. Eksotika: Current research strategies fronting challenges. Frontiers in Plant Science 9: 1380.

Sharma, R., Rawat, V. & Suresh, C.G. 2017. Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea). Genomics Data 14: 24-31.

Sokalingam, S., Raghunathan, G., Soundrarajan, N. & Lee, S.G. 2012. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS ONE 7: e40410.

Stanger, H.E., Syud, F.A., Espinosa, J.F., Giriat, I., Muir, T. & Gellman, S.H. 2001. Length-dependent stability and strand length limits in antiparallel β-sheet secondary structure. PNAS 98: 12015-12020.

Steele, J.F.C., Hughes, R.K. & Banfield, M.J. 2019. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS ONE 14(8): e0221226.

Strickler, S.S., Gribenko, A.V., Gribenko, A.V., Keiffer, T.R., Tomlinson, J., Reihle, T., Loladze, V.V. & Makhatadze, G.I. 2006. Protein stability and surface electrostatics: A charged relationship. Biochemistry 45: 2761-2766.

Supian, S., Saidi, N.B., Wee, C.Y. & Abdullah, M.P. 2017. Antioxidant-mediated response of a susceptible papaya cultivar to a compatible strain of Erwinia mallotivora. Physiological and Molecular Plant Pathology 98: 37-45.

Tian, S., Yin, X., Fu, P., Wu, W. & Lu, J. 2020. Ectopic expression of grapevine gene VaRGA1 in Arabidopsis improves resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 but increases susceptibility to Botrytis cinerea. International Journal of Molecular Sciences 21(1): 193.

Wang, J., Chen, T., Han, M., Qian, L., Li, J., Wu, M., Han, T., Cao, J., Nagalakshmi, U., Rathjen, J.P., Hong, Y. & Liu, Y. 2020. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain. PLoS Pathogens 16(4): e1008475.

Wei, C., Kuang, H., Li, F. & Chen, J. 2014. The l2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by MiRNAs. BMC Genomics 15: 743.

Zhang, Y., Xia, R., Kuang, H. & Meyers, B.C. 2016. The diversification of plant NBS-LRR defense genes direct the evolution of MicroRNAs that target them. Molecular Biology and Evolution 33(10): 2692-2705.

Zhou, Z., Bar, I., Sambasivam, P.T. & Ford, R. 2019. Determination of the key resistance gene analogs involved in Ascochyta rabiei recognition in chickpea. Frontiers in Plant Science 10(644): 1-12.

 

*Corresponding author; email: suhaina@mardi.gov.my

 

 

         

previous