Sains Malaysiana 51(10)(2022): 3171-3182

http://doi.org/10.17576/jsm-2022-5110-05

 

Comparative Analysis on the Role of 2,4-dichlorophenoxyacetic Acid in the Expression of Bioactive Compounds in Callus of Capsicum frutescens

(Analisis Perbandingan Peranan Asid 2,4-diklorofenoksiasetik dalam Pengekspresan Sebatian Bioaktif dalam Kalus Capsicum frutescens)

 

JAMILAH SYAFAWATI YAACOB1,2,*, MUHAMMAD AIMAN RAMLI1, MUHAMAD HAFIZ ABD RAHIM3, ABIGAIL MARIE ROBERT SELVARAJ1 & LAAVANYA NYANASAIGRAN1

 

1Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

3Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 26 November 2021/Accepted: 14 June 2022

 

Abstract

Plant cell culture technology serves as an effective alternative system for in vitro production of bioactive molecules, as it allows for the exploration of valuable compounds under a controlled environment. The present study was conducted to evaluate the effect of plant growth regulator (PGR); 2,4-dichlorophenoxyacetic acid (2,4-D) on the expression of compounds in coloured callus of Capsicum frutescens, a vital spice in various cuisines worldwide. The differential accumulation of compounds in the callus was analysed using liquid chromatography-mass spectrometry (LCMS) and the PGR concentration that resulted in the highest accumulation of the valuable compounds was identified. In this study, calli of various colours (cream, yellow and green) were successfully produced from C. frutescens through plant tissue culture. The increase in 2,4-D concentrations was found to increase callus growth index (GI) and specific growth rate (Sg), where the highest GI (0.5690) and Sg (0.6348 mg/week) were observed in callus produced in media supplemented with 0.5 mg/L 2,4-D. LCMS data analyses showed that 19 compounds were detected in the callus, with 8 compounds (fatty acids and phenolics) were successfully identified, while the remaining 11 compounds were reported as unknowns. Yellow-coloured callus was observed to contain the highest number of compounds (18 compounds), while green callus contained the least (14 compounds). This analysis provides valuable information on the application of biotechnological tools such as plant tissue culture as an alternative for sustainable production of compounds with high bioactivity in Capsicum frutescens.

 

Keywords: 2,4-dichlorophenoxyacetic acid; Capsicum frutescens; compounds; LCMS; plant growth regulator

 

Abstrak

Teknologi kultur sel tumbuhan berfungsi sebagai sistem alternatif yang berkesan untuk menghasilkan molekul bioaktif secara in vitro kerana ia membolehkan penerokaan sebatian berharga dijalankan di bawah persekitaran yang terkawal. Kajian ini dijalankan untuk menilai kesan pengatur pertumbuhan tumbuhan (PGR); asid 2,4-diklorofenoksiasetik (2,4-D) ke atas pengekspresan sebatian dalam kalus berwarna Capsicum frutescens yang merupakan rempah penting dalam pelbagai masakan di seluruh dunia. Perbezaan kandungan sebatian dalam kalus tersebut dianalisis menggunakan kromatografi cecair spektrometri jisim (LCMS) dan sukatan PGR yang menghasilkan kandungan sebatian yang tertinggi telah dikenal pasti. Dalam kajian ini, kalus pelbagai warna (krim, kuning dan hijau) berjaya dihasilkan daripada C. frutescens melalui kultur tisu tumbuhan. Peningkatan sukatan 2,4-D didapati meningkatkan indeks pertumbuhan kalus (GI) dan kadar pertumbuhan khusus (Sg) dengan kalus yang dihasilkan dalam media yang ditambah dengan 0.5 mg/L 2,4-D didapati menunjukkan GI (0.5690) dan Sg (0.6348 mg/minggu) yang paling tinggi. Analisis data LCMS pula menunjukkan bahawa 19 sebatian telah dikesan dalam kalus tersebut dengan 8 sebatian (asid lemak dan fenolik) berjaya dikenal pasti, manakala 11 sebatian selebihnya dilaporkan sebagai tidak diketahui. Kalus berwarna kuning didapati mengandungi jumlah sebatian tertinggi (18 sebatian), manakala kalus hijau mengandungi jumlah sebatian yang paling sedikit (14 sebatian). Analisis ini telah memberi maklumat berharga tentang aplikasi teknik bioteknologi seperti kultur tisu tumbuhan sebagai alternatif untuk penghasilan sebatian dengan bioaktiviti tinggi dalam Capsicum frutescens secara mapan.

 

Kata kunci: Asid 2,4-diklorofenoksiasetik; Capsicum frutescens; LCMS; pengatur pertumbuhan tumbuhan; sebatian

 

REFERENCES

Abbas, M.S., El-Shabrawi, H.M., Soliman, A.S. & Selim, M.A. 2018. Optimization of germination, callus induction, and cell suspension culture of African locust beans Parkia biglobosa (Jacq.) Benth. Journal of Genetic Engineering and Biotechnology 16(1): 191-201.

Aboul-Enein, A.M., El-Ela, F.A., Shalaby, E.A. & El-Shemy, H.A. 2012. Traditional medicinal plants research in Egypt: Studies of antioxidant and anticancer activities. Journal of Medicinal Plants Research 6(5): 689-703.

Adil, M., Abbasi, B.H. & ul Haq, I. 2019. Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnology Reports 24: e00380.

Adil, M., Ren, X., Kang, D.I. & Jeong, B.R. 2018. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Molecular Biology Reports 45(6): 1919-1927.

Alam, M.A., Syazwanie, N.F., Mahmod, N.H., Badaluddin, N.A., Mustafa, K.A., Alias, N., Aslani, F. & Prodhan, M.A. 2018. Evaluation of antioxidant compounds, antioxidant activities and capsaicinoid compounds of Chili (Capsicum sp.) germplasms available in Malaysia. Journal of Applied Research on Medicinal and Aromatic Plants 9: 46-54.

Balla, J., Medveďová, Z., Kalousek, P., Matiješčuková, N., Friml, J., Reinöhl, V. & Procházka, S. 2016. Auxin flow-mediated competition between axillary buds to restore apical dominance. Scientific Reports 6: 35955.

Bhatia, S. 2015. Chapter 2 - Plant tissue culture. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences, edited by Bhatia, S., Sharma, K., Dahiya, R. & Bera, T. Boston: Academic Press. pp. 31-107.

Bhojwani, S.S. & Dantu, P.K. 2013. Culture Media. Plant Tissue Culture: An Introductory Text. Springer. pp. 27-37.

Bosland, P.W., Votava, E.J. & Votava, E.M. 2012. Peppers: Vegetable and Spice Capsicums. CABI.

Budisantoso, I., Amalia, N. & Kamsinah, K. 2017. In vitro callus induction from leaf explants of Vanda sp. stimulated by 2, 4-D. Biosaintifika: Journal of Biology & Biology Education 9(3): 492-497.

Chuah, A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J. & Matoba, T. 2008. Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry 111(1): 20-28.

Csilléry, G. 2006. Pepper taxonomy and the botanical description of the species. Acta Agronomica Hungarica 54(2): 151-166.

da Rocha Neto, A.C., Maraschin, M. & Di Piero, R.M. 2015. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International Journal of Food Microbiology 215: 64-70.

do Rêgo, M.M., do Rêgo, E.R. & Barroso, P.A. 2016. Tissue culture of Capsicum spp. In Production and Breeding of Chilli Peppers (Capsicum spp.). Springer. pp. 97-127.

Dubey, S. 2017. Indian spices and their medicinal value. Indian Journal of Pharmaceutical Education and Research 51(3): S330-S332.

Ebrahimi, M.A. & Payan, A. 2013. Induction of callus and somatic embryogenesis from cotyledon explants of Fagonia indica Burm. Journal of Medicinal Plants and By-Products 2(2): 209-214.

Furumoto, H., Nanthirudjanar, T., Kume, T., Izumi, Y., Park, S.B., Kitamura, N., Kishino, S., Ogawa, J., Hirata, T. & Sugawara, T. 2016. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicology and Applied Pharmacology 296: 1-9.

Fusco, B.M. & Alessandri, M. 1992. Analgesic effect of capsaicin in idiopathic trigeminal neuralgia. Anesthesia and Analgesia 74(3): 375-377.

Guedes, V., Castro, J.P. & Brito, I. 2018. Topical capsaicin for pain in osteoarthritis: A literature review. Reumatología Clínica (English Edition) 14(1): 40-45.

Gupta, S.C., Prasad, S., Tyagi, A.K., Kunnumakkara, A.B. & Aggarwal, B.B. 2017. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine 34: 14-20.

Gurnani, N., Gupta, M., Mehta, D. & Mehta, B.K. 2016. Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). Journal of Taibah University for Science 10(4): 462-470.

Hegde, V., Partap, P. & Yadav, R. 2017. Plant regeneration from hypocotyl explants in capsicum (Capsicum annuum L.). International Journal of Current Microbiology and Applied Sciences 6(7): 545-557.

Higashitani, A. 2013. High temperature injury and auxin biosynthesis in microsporogenesis. Frontiers in Plant Science 4: 47.

Johnson, T.S., Ravishankar, G.A. & Venkataraman, L.V. 1991. Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens mill. Food Biotechnology 5(2): 197-205.

Jørgensen, M.R. & Pedersen, A.M.L. 2017. Analgesic effect of topical oral capsaicin gel in burning mouth syndrome. Acta Odontologica Scandinavica 75(2): 130-136.

Kantar, M.B., Anderson, J.E., Lucht, S.A., Mercer, K., Bernau, V., Case, K.A., Le, N.C., Frederiksen, M.K., DeKeyser, H.C. & Wong, Z.Z. 2016. Vitamin variation in Capsicum spp. provides opportunities to improve nutritional value of human diets. PLoS ONE 11(8): e0161464.

Karakas, F.P. 2020. Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiology and Biochemistry 146: 384-391.

Khan, N., Bano, A.M. & Babar, A. 2020. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PloS ONE 15(4): e0231426.

Kumar, S., Mehta, N., Singh, J.K., Kumar, M. & Kumar, A. 2017. A protocol for callus induction in chilli genotypes from hypocotyls as explant. International Journal of Current Microbiology and Applied Sciences 6(10): 4937-4942.

Luczkiewicz, M., Kokotkiewicz, A. & Glod, D. 2014. Plant growth regulators affect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro cultures of Genista tinctoria. Plant Cell, Tissue and Organ Culture 118(3): 419-429.

Mahendra, C., Murali, M., Manasa, G. & Sudarshana, M. 2020. Biopotentiality of leaf and leaf derived callus extracts of Salacia macrosperma Wight. — An endangered medicinal plant of Western Ghats. Industrial Crops and Products 143: 111921.

Martínez, S., López, M., González-Raurich, M. & Bernardo Alvarez, A. 2005. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). International Journal of Food Sciences and Nutrition 56(1): 45-51.

Materska, M. & Perucka, I. 2005. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and Food Chemistry 53(5): 1750-1756.

McCarthy-Suárez, I. 2017. Role of reactive oxygen species in auxin herbicide phytotoxicity: Current information and hormonal implications - are gibberellins, cytokinins, and polyamines involved? Botany 95(4): 369-385.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497.

Okoye, T.C., Uzor, P.F., Onyeto, C.A. & Okereke, E.K. 2014. 18 - Safe African medicinal plants for clinical studies. In Toxicological Survey of African Medicinal Plants, edited by Kuete, V. Elsevier. pp. 535-555.

Osman, N.I., Sidik, N.J. & Awal, A. 2016. Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L. Asian Pacific Journal of Tropical Biomedicine 6(2): 143-147.

Othman, A., Ismail, I., Abdullah, N. & Ahmad, S. 2019. Identification of anti-inflammatory compound/compounds in hexane fraction of Jatropha curcas root extract. Asia-Pacific Journal of Molecular Biology and Biotechnology 27(4): 62-68.

Parsaeimehr, A., Martinez-Chapa, S.O. & Parra-Saldívar, R. 2017. Chapter 13 - Medicinal plants versus skin disorders: A survey from ancient to modern herbalism. In The Microbiology of Skin, Soft Tissue, Bone and Joint Infections, edited by Kon, K. & Rai, M. Boston: Academic Press. pp. 205-221.

Priscilla, D.H. & Prince, P.S.M. 2009. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions 179(2-3): 118-124.

Ptak, A., Tahchy, A., Skrzypek, E., Wójtowicz, T. & Laurain-Mattar, D. 2013. Influence of auxins on somatic embryogenesis and alkaloid accumulation in Leucojum aestivum callus. Open Life Sciences 8(6): 591-599.

Qin, Y., Ran, L., Wang, J., Yu, L., Lang, H.D., Wang, X.L., Mi, M.T. & Zhu, J.D. 2017. Capsaicin supplementation improved risk factors of coronary heart disease in individuals with low HDL-C levels. Nutrients 9(9): 1037.

Raber, J.M., Reichelt, D., Grüneberg-Oelker, U., Philipp, K., Stubbe-Dräger, B. & Husstedt, I.W. 2015. Capsaicin 8% as a cutaneous patch (Qutenza™): Analgesic effect on patients with peripheral neuropathic pain. Acta Neurologica Belgica 115(3): 335-343.

Radić, S., Vujčić, V., Glogoški, M. & Radić-Stojković, M. 2016. Influence of pH and plant growth regulators on secondary metabolite production and antioxidant activity of Stevia rebaudiana (Bert). Periodicum Biologorum 118(1): 9-19.

Raj, D., Kokotkiewicz, A., Drys, A. & Luczkiewicz, M. 2015. Effect of plant growth regulators on the accumulation of indolizidine alkaloids in Securinega suffruticosa callus cultures. Plant Cell, Tissue and Organ Culture 123(1): 39-45.

Rameshkumar, R., Satish, L., Pandian, S., Rathinapriya, P., Rency, A.S., Shanmugaraj, G., Pandian, S.K., Leung, D.W. & Ramesh, M. 2018. Production of squalene with promising antioxidant properties in callus cultures of Nilgirianthus ciliatus. Industrial Crops and Products 126: 357-367.

Reid, J.B. & Ross, J.J. 2011. Regulation of tissue repair in plants. Proceedings of the National Academy of Sciences 108(42): 17241-17242.

Renfiyeni, Y. & Trisno, J. 2017. Calli induction of some chili pepper (Capsicum annuum l.) genotypes as material for genetic transformation. International Journal of Agricultural Sciences 1(1): 75-80.

Rizwan, H.M., Irshad, M., He, B., Liu, S., Lu, X., Sun, Y. & Qiu, D. 2020. Role of reduced nitrogen for induction of embryogenic callus induction and regeneration of plantlets in Abelmoschus esculentus L. South African Journal of Botany 130: 300-307.

Sachan, A., Kumar, S., Kumari, K. & Singh, D. 2018. Medicinal uses of spices used in our traditional culture: Worldwide. Journal of Medicinal Plants Studies 6(3): 116-122.

Sahraroo, A., Babalar, M., Mirjalili, M.H., Fattahi Moghaddam, M.R. & Nejad Ebrahimi, S. 2014. In-vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iranian Journal of Pharmaceutical Research 13(4): 1447-1456.

Sobhani, M., Farzaei, M.H., Kiani, S. & Khodarahmi, R. 2020. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Reviews International 37(8): 759-811.

Song, Y. 2014. Insight into the mode of action of 2, 4‐dichlorophenoxyacetic acid (2, 4‐D) as an herbicide. Journal of Integrative Plant Biology 56(2): 106-113.

Suwanseree, V., Phansiri, S. & Yapwattanaphun, C. 2019. A comparison of callus induction in 4 Garcinia species. Electronic Journal of Biotechnology 40: 45-51.

Tarigholizadeh, S., Motafakkerazad, R., Kosari-Nasab, M., Movafeghi, A., Mohammadi, S., Sabzi, M. & Talebpour, A.H. 2021. Influence of plant growth regulators and salicylic acid on the production of some secondary metabolites in callus and cell suspension culture of Satureja sahendica Bornm. Acta Agriculturae Slovenica 117(4): 1-12.

Varghese, S., Kubatka, P., Rodrigo, L., Gazdikova, K., Caprnda, M., Fedotova, J., Zulli, A., Kruzliak, P. & Büsselberg, D. 2017. Chili pepper as a body weight-loss food. International Journal of Food Sciences and Nutrition 68(4): 392-401.

Veeresham, C. 2012. Natural Products Derived from Plants as a Source of Drugs. Wolters Kluwer--Medknow Publications.

Zemlyanskaya, E.V., Omelyanchuk, N.A., Ubogoeva, E.V. & Mironova, V.V. 2018. Deciphering auxin-ethylene crosstalk at a systems level. International Journal of Molecular Sciences 19(12): 4060.

Zhao, M.T., Liu, Z.Y., Li, A., Zhao, G.H., Xie, H.K., Zhou, D.Y. & Wang, T. 2021. Gallic acid and its alkyl esters emerge as effective antioxidants against lipid oxidation during hot air drying process of Ostrea talienwhanensis. LWT 139: 110551.

 

*Corresponding author; email: jamilahsyafawati@um.edu.my

 

 

 

 

previous