Sains Malaysiana 51(10)(2022): 3251-3259

http://doi.org/10.17576/jsm-2022-5110-11

 

Hydrogen Production from Water Splitting using TiO2/CoS Composite Photocatalyst

(Penghasilan Hidrogen daripada Pemisahan Air menggunakan Komposit Fotomangkin TiO2/CoS)

 

MUTIA AGUSTINA1, SITI NURUL FALAEIN MORIDON2, AMILIA LINGGAWATI1, KHUZAIMAH ARIFIN2,*, LORNA JEFFERY MINGGU2 & MOHAMMAD B. KASSIM3

 

1Department of Chemistry, Faculty of Mathematic and Natural Science, University of Riau, Kampus Binawidya, Km 12.5, Simpang Baru, Pekanbaru Riau, Indonesia

2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 8 February 2022/Accepted: 1 June 2022

 

Abstract

Photocatalytic water splitting reaction has been considered an ideal method for hydrogen generation. In this study, a composite of TiO2/CoS photocatalyst prepared by hydrothermal synthesis method assisted by ball milling crushing process was used. The TiO2/CoS composites prepared with three variation compositions of 90/10, 80/20, and 70/30 were named M-10, M-20, and M-30, respectively. Field-emission scanning electron microscopy images showed that the morphologies of the composites were porous and uniform of nanospheres. The X-ray diffraction and energy dispersive spectroscopy analyses confirmed the presence of CoS in the composites. Ultraviolet–visible absorption characterization demonstrated the smallest bandgap value of approximately 2.72 eV presented by sample M-30 with the photocurrent density of 0.32 mA cm−2 at 0.9 V vs. Ag/AgCl. The presence of CoS in this study could increase the PC hydrogen generation of TiO2 by nearly 2.5 times. The composites forming a p-n heterojunction between TiO2 and CoS could prevent electron–hole recombination and increase the overall photoactivity of TiO2.

 

Keywords: Composite; hydrogen production; hydrothermal; water splitting

 

Abstrak

Tindak balas pemisahan air secara fotokatalisis telah dianggap sebagai kaedah yang ideal untuk penjanaan hidrogen dengan menggunakan semikonduktor sebagai fotomangkin. Dalam kajian ini, komposit fotomangkin TiO2/CoS yang disediakan melalui kaedah sintesis hidroterma dibantu oleh proses penghancuran penggilingan bebola telah digunakan. Komposit TiO2/CoS yang disediakan dengan tiga komposisi variasi 90/10, 80/20 dan 70/30 masing-masing dinamakan M-10, M-20 dan M-30. Imej mikroskopi elektron pengimbasan pelepasan medan menunjukkan bahawa morfologi komposit adalah berliang dan nanosfera yang seragam. Analisis difraksi sinar-X dan spektroskopi penyebaran tenaga mengesahkan kehadiran CoS dalam komposit. Pencirian penyerapan cahaya ultraungu-nampak menunjukkan nilai celah jalur terkecil kira-kira 2.72 eV yang ditunjukkan oleh sampel M-30 dengan ketumpatan arus foto 0.32 mA cm−2 pada 0.9 V lwn. Ag/AgCl. Kehadiran CoS dalam kajian ini boleh meningkatkan penjanaan hidrogen PC TiO2 sebanyak hampir 2.5 kali ganda. Komposit yang membentuk hetero-simpang p-n antara TiO2 dan CoS boleh mengurangkan penggabungan semula lohong dan elektron serta meningkatkan keseluruhan fotoaktiviti TiO2.

 

Kata kunci: Hidroterma; komposit; pemisahan air; pengeluaran hidrogen

 

REFERENCES

Arifin, K., Yunus, R.M., Minggu, L.J. & Kassim, M.B. 2021. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal Hydrogen Energy 46(7): 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063

Dincer, I. & Acar, C. 2015. Review and evaluation of hydrogen production methods for better sustainability, I. International Journal Hydrogen Energy 40: 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

Dincer, I. & Bicer, Y. 2018. Photoelectrochemical energy conversion. In Comprehensive Energy Systems, Vol. 1. Energy Fundamental, edited by Ibrahim Dincer. pp. 816-855. https://doi.org/10.1016/B978-0-12-809597-3.00438-7

Franchi, G., Capocelli, M., De Falco, M., Piemonte, V. & Barba, D. 2020. Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes 10: 10. https://doi.org/10.3390/membranes10010010

Guo, W., Zhang, X., Yu, R., Que, M., Zhang, Z., Wang, Z., Hua, Q., Wang, C., Wang, Z.L. & Pan, C. 2015. CoS NWs/Au hybridized networks as efficient counter electrodes for flexible sensitized solar cells. Advanced Energy Materials 5: 1500141. https://doi.org/10.1002/aenm.201500141

Hankin, A., Bedoya-Lora, F.E., Alexander, J.C., Regoutz, A. & Kelsall, G.H. 2019. Flat band potential determination: Avoiding the pitfalls. Journal of Materials Chemistry A  7: 26162-26176. https://doi.org/10.1039/C9TA09569A

Herkert, E., Sterl, F., Strohfeldt, N., Walter, R. & Giessen, H. 2020. Low-cost hydrogen sensor in the PPM range with purely optical readout. ACS Sensors 5(4): 978-983. https://doi.org/10.1021/acssensors.9b02314

Liu, Y., Wang, Z. & Huang, W. 2016. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Applied Surface Science 389: 760-767. https://doi.org/10.1016/j.apsusc.2016.07.173.

Liu, C., Yang, Y., Lie, J. & Chen, S. 2018. Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity. Nanotechnology 29: 265401. https://doi.org/10.1088/1361-6528/aabd6e

Makuła, P., Pacia, M. & Macyk, W. 2018. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The Journal of Physical Chemistry Letters 9(23): 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892

Molinari, R., Lavorato, C., Argurio, P., Szymański, K., Darowna, D. & Mozia, S. 2019. Overview of photocatalytic membrane reactors in organic synthesis, energy storage and environmental applications. Catalysts 9: 239. https://doi.org/10.3390/catal9030239

Moridon, S.N.F., Salehmin, M.N.I., Arifin, K., Minggu, L.J. & Kassim, M.B. 2021. Synthesis of cobalt oxide on FTO by hydrothermal method for photoelectrochemical water splitting application. Applied Sciences 11: 3031. https://doi.org/10.3390/app11073031

Moridon, S.N.F., Salehmin, M.I., Mohamed, M.A., Arifin, K., Minggu, L.J. & Kassim, M.B. 2019. Cobalt oxide as photocatalyst for water splitting: Temperature-dependent phase structures. International Journal Hydrogen Energy 44: 25495-25504. https://doi.org/10.1016/j.ijhydene.2019.08.075

Niu, Y., Li, F., Yang, K., Wu, Q., Xu, P. & Wang, R. 2018. Highly efficient photocatalytic hydrogen on CoS/TiO2 photocatalysts from aqueous methanol solution.
International Journal of Photoenergy 2018: Article ID. 8143940.
https://doi.org/10.1155/2018/8143940

Ouyang, W., Liu, S., Yao, K., Zhao, L., Cao, L., Jiang, S. & Hou, H. 2018. Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties. Composites Communications 9: 76-80. https://doi.org/10.1016/j.coco.2018.06.006

Rambey, M.N., Arifin, K., Minggu, L.J. & Kassim, M.B. 2020. Cobalt sulfide as photoelectrode of photoelectrochemical hydrogen generation from water.  Sains Malaysiana  49(12): 3117-3123. http://dx.doi.org/10.17576/jsm-2020-4912-24

Rosen, M.A. & Koohi-Fayegh, S. 2016. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment 1: 10-29. https://doi.org/10.1007/s40974-016-0005-z

Scott, K. 2019. Chapter 1: Introduction to electrolysis, electrolysers and hydrogen production, in electrochemical methods for hydrogen production. The Royal Society of Chemistry’s Books pp. 1-27. https://doi.org/10.1039/9781788016049-00001

Wang, Q., An, N., Bai, Y., Hang, H., Li, J., Lu, X., Liu, Y., Wang, F., Li, Z. & Lei, Z. 2013. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. International Journal of Hydrogen Energy 38(25): 10739-10745. https://doi.org/10.1016/j.ijhydene.2013.02.131

 

*Corresponding author; email: khuzaim@ukm.edu.my

 

 

 

 

 

previous