Sains Malaysiana 51(11)(2022): 3715-3729

http://doi.org/10.17576/jsm-2022-5111-16

 

Effects of Starter Culture and Sweetener on Biochemical Compounds and Microbial Diversity of Kombucha Tea

(Kesan Kultur Pemula dan Pemanis pada Sebatian Biokimia serta Kepelbagaian Mikrob Teh Kombucha)

 

AHMAD AZFARALARIFF1,6, BATUL VOHRA2, SHAZRUL FAZRY1,2,3, DOUGLAS LAW5, FAREED SAIRI4 & BABUL AIRIANAH OTHMAN1,2,3,*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

4Department of Biology Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

5Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

6Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

Received: 22 March 2022/Accepted: 28 June 2022

 

Abstract

Kombucha tea has been claimed to have several health benefits. Many factors influence the properties of kombucha tea produced. This study focused on the effects of starter cultures (kombucha liquid broth (KLB) and cellulosic pellicle (KCP)) and sweetener (white sugar (S), honey (H) and jaggery (J)) used in the production of kombucha tea. The results showed that all kombucha teas prepared using KLB had a lower pH and a higher concentration of acetic acid during fermentation. The ethanol content for samples prepared using KLB increased (0.7 ± 0.26 mg/L to 1.73 ± 0.58 mg/L) during the fermentation period, compared to KCP which was the maximum after 72 h fermentation, and continued to decrease (2.97 ± 1.24 mg/L to 0.90 ± 0.44 mg/L). Although not too much differences in pH and ethanol content were observed when different sweetener sources were used, they did have significant differences in antioxidant properties and antimicrobial activity. Samples prepared using jaggery had the lowest antioxidant activity while kombucha tea prepared using KLB and white sugar (KLB-S) had the highest antioxidant and antibacterial activity and was mostly colonized by Acetobacteracea and Aspergillus fumigatus. Fermentation significantly increases the number of active compounds present in KLB-S from 11 to 25 compounds. New compounds such as docosanedioic acid, muramic acid and thiolactomycin were formed. Thiolactomycin, a natural antibiotic is suggested to contribute to the high antimicrobial activity of KLB-S. In conclusion, KLB and white sugar are better suited in preparing kombucha tea as more benefits and consistent results were observed.

 

Keywords: Antimicrobial; antioxidant; cellulose; kombucha; pellicle; starter cultures

 

Abstrak

Teh kombucha dilaporkan mempunyai pelbagai manfaat kesihatan. Terdapat banyak faktor yang mempengaruhi ciri-ciri teh kombucha yang dihasilkan. Kajian ini memberi tumpuan kepada kesan penggunaan kultur pemula (air teh kombucha (KLB) dan lapisan selulosa (KCP)) serta pemanis (gula putih (S), madu (H) dan gula palma (J)) yang berbeza dalam penghasilan teh kombucha. Hasil kajian menunjukkan bahawa semua teh kombucha yang disediakan menggunakan KLB mempunyai pH yang lebih rendah dan kepekatan asid asetik yang lebih tinggi sepanjang tempoh fermentasi. Kandungan etanol untuk sampel yang disediakan menggunakan KLB juga semakin meningkat (0.7 ± 0.26 mg/L kepada 1.73 ± 0.58 mg/L) sepanjang tempoh fermentasi, berbanding KCP yang mempunyai kepekatan maksimum selepas 72 jam dan terus menurun (2.97 ± 1.24 mg/L hingga 0.90 ± 0.44 mg/L). Walaupun tiada perbezaan yang ketara pada pH dan kandungan etanol direkodkan apabila sumber pemanis yang berbeza digunakan, keputusan analisis menunjukkan perbezaan yang ketara dilihat pada sifat antioksidan dan aktiviti antimikrob. Sampel yang disediakan menggunakan gula palma mempunyai aktiviti antioksida yang paling rendah manakala teh kombucha yang disediakan menggunakan klb dan gula putih (klb-s) mempunyai aktiviti antioksida dan antibakteria yang paling tinggi dan dikoloni oleh acetobacteracea dan aspergillus fumigatus. fermentasi didapati telah mengubah komposisi sebatian aktif yang terdapat dalam klb-s daripada 11 sebatian kepada 25 sebatian. sebatian baru seperti asid dokosanedioik, asid muramik dan tiolaktomisin telah terhasil. tiolaktomisin yang merupakan antibiotik semula jadi dalam sampel klb-s dipercayai menjadi punca aktiviti antimikrob yang tinggi. sebagai kesimpulan, klb dan gula putih lebih sesuai digunakan dalam penyediaan teh kombucha kerana menghasilkan teh kombucha yang lebih banyak faedah dan keputusan yang lebih konsisten.

 

Kata kunci: Antimikrob; antioksida; kombucha; kultur pemula; pelikel; selulosa

 

REFERENCES

Ahmed, R.F., Hikal, M.S. & Abou-Taleb, K.A. 2020. Biological, chemical and antioxidant activities of different types Kombucha. Annals of Agricultural Sciences 65(1): 35-41.

Al-Kalifawi, E.J. 2014. Produce bacterial cellulose of kombucha (Khubdat Humza) from honey. Journal of Genetic and Environmental Resources Conservation 2(1): 39-45.

Amarasinghe, H., Weerakkody, N.S. & Waisundara, V.Y. 2018. Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition 6(3): 659-665.

Arıkan, M., Mitchell, A.L., Finn, R.D. & Gürel, F. 2020. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science 85(2): 455-464.

Battikh, H., Bakhrouf, A. & Ammar, E. 2012. Antimicrobial effect of Kombucha analogues. LWT - Food Science and Technology 47(1): 71-77.

Nummer, B.A. 2013. Kombucha brewing under the food and drug administration model food code: Risk analysis and processing guidance abstract. Journal of Environmental Health 76(4): 8-11.

Brown, M.S., Akopiants, K., Resceck, D.M., McArthur, H.A.I., McCormick, E. & Reynolds, K.A. 2003. Biosynthetic origins of the natural product, thiolactomycin: A unique and selective inhibitor of type II dissociated fatty acid synthases. Journal of the American Chemical Society 125(34): 10166-10167.

Cardoso, R.R., Neto, R.O., dos Santos D’Almeida, C.T., do Nascimento, T.P., Pressete, C.G., Azevedo, L., Martino, H.S.D., Cameron, L.C., Ferreira, M.S.L. & de Barros, F.A.R. 2020. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International 128: 108782.

Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D. & Gachhui, R. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63-72.

Chand, K., Shahi, N.C., Lohani, U.C. & Garg, S.K. 2011. Effect of storage conditions on keeping qualities of jaggery. Sugar Tech 13(1): 81-85.

Chen, C. & Liu, B.Y. 2000. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89(5): 834-839.

Chu, S.C. & Chen, C. 2006. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry 98(3): 502-507.

Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G. & Coton, E. 2017. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology 93(5): 1-16.

da Silva, I.A.A., da Silva, T.M.S., Camara, C.A., Queiroz, N., Magnani, M., de Novais, J.S., Soledade, L.E.B., de Oliveira Lima, E., de Souza, A.L. & de Souza, A.G. 2013. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chemistry 141(4): 3552-3558.

De Filippis, F., Troise, A.D., Vitaglione, P. & Ercolini, D. 2018. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology 73: 11-16.

De Roos, J. & De Vuyst, L. 2018. Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology 49: 115-119.

Deghrigue, M., Chriaa, J., Battikh, H. & Abid, K. 2013. Antiproliferative and antimicrobial activities of kombucha tea. African Journal of Microbiology Research 7(27): 3466-3470.

Dufresne, C. & Farnworth, E. 2000. Tea, Kombucha, and health: A review. Food Research International 33: 409-421.

Fu, C., Yan, F., Cao, Z., Xie, F. & Lin, J. 2014. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology (Campinas) 34(1): 123-126.

Gramza-Michalowska, A., Kulczynski, B., Xindi, Y. & Gumienna, M. 2016. Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Scientiarum Polonorum, Technologia Alimentaria 15(4): 447-457.

Greenwalt, C.J., Steinkraus, K.H. & Ledford, R.A. 2000. Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. Journal of Food Protection 63(7): 976-981.

Gyllang, H. & Martinson, E. 1976. Aspergillus fumigatus and Aspergillus amstelodami as causes of gushing. Journal of the Institute of Brewing 82(3): 182-183.

Huang, F., Zheng, X., Ma, X., Jiang, R., Zhou, W., Zhou, S., Zhang, Y., Lei, S., Wang, S., Kuang, J., Han, X., Wei, M., You, Y., Li, M., Li, Y., Liang, D., Liu, J., Chen, T., Yan, C., Wei, R., Rajani, C., Shen, C., Xie, G., Bian, Z., Li, H., Zhao, A. & Jia, W. 2019. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications 10(1): 4971.

Ivanišová, E., Meňhartová, K., Terentjeva, M., Harangozo, Ľ., Kántor, A. & Kačániová, M. 2020. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. Journal of Food Science and Technology 57(5): 1840-1846.

Jagannadha Rao, P.V.K., Das, M. & Das, S.K. 2010. Effect of moisture content on glass transition and sticky point temperatures of sugarcane, palmyra-palm and date-palm jaggery granules. International Journal of Food Science and Technology 45(1): 94-104.

Jayabalan, R., Marimuthu, S. & Swaminathan, K. 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102(1): 392-398.

Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M. & Swaminathan, K. 2008. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109(1): 227-234.

Jin, X., Song, J. & Liu, G-Q. 2020. Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus. Energy 190: 116395.

Keshk, S.M.A.S. & Sameshima, K. 2005. Evaluation of different carbon sources for bacterial cellulose production. African Journal of Biotechnology 4(6): 478-482.

Laavanya, D., Shirkole, S. & Balasubramanian, P. 2021. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production 295: 126454.

Laureys, D., Britton, S.J. & De Clippeleer, J. 2020. Kombucha tea fermentation: A review. Journal of the American Society of Brewing Chemists 78(3): 165-174.

Lobo, R., Dias, F. & Shenoy, C. 2017. Kombucha for healthy living: Evaluation of antioxidant potential and bioactive compounds. International Food Research Journal 24(2): 541-546.

Ma, Y., Ling, T-J., Su, X-Q., Jiang, B., Nian, B., Chen, L-J., Liu, M., Zhang, Z-Y., Wang, D-P., Mu, Y-Y., Jiao, W-W., Liu, Q-T., Pan, Y-H. & Zhao, M. 2021. Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chemistry 334: 127560.

Malbaša, R.V., Lončar, E.S., Vitas, J.S. & Čanadanović-Brunet, J.M. 2011. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry 127(4): 1727-1731.

Mamlouk, D. & Gullo, M. 2013. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian Journal of Microbiology 53(4): 377-384.

Marsh, A.J., O’Sullivan, O., Hill, C., Ross, R.P. & Cotter, P.D. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38: 171-178.

Nazemi, L., Hashemi, S.J., Daie Ghazvini, R., Saeedi, M., Khodavaisy, S., Barac, A., Modiri, M., Akbari Dana, M., Zare Shahrabadi, Z. & Rezaie, S. 2019. Investigation of cgrA and cyp51A gene alternations in Aspergillus fumigatus strains exposed to kombucha fermented tea. Current Medical Mycology 5(3): 36-42.

Oishi, H., Noto, T., Sasaki, H., Suzuki, K., Hayashi, T., Okazaki, H., Ando, K. & Sawada, M. 1982. Thiolactomycin, a new antibiotic: I. taxonomy of the producing organism, fermentation and biological properties. The Journal of Antibiotics 35(4): 391-395.

Quiao-Won, M.E. & Teves, F.G. 2018. Characteristics of kombucha fermentation from different substrates and cytotoxicity of tea broth. Sustainable Food Production 4: 11-19.

Sumbhate, S.V., Nayak, S., Goupale, D., Tiwari, A. & Jadon, R.S. 2012. Colorimetric method for the estimation of ethanol in alcoholic drinks. Journal of Analytical Techniques 1(1): 1-6.

Sievers, M., Lanini, C., Weber, A., Schuler-Schmid, U. & Teuber, M. 1995. Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology 18(4): 590-594.

Singh, J. 2013. Manufacturing jaggery, a product of sugarcane, as health food. Agrotechnology 01(S11): 10-12.

Soares, M.G., de Lima, M. & Reolon Schmidt, V.C. 2021. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends in Food Science and Technology 110(May 2020): 539-550.

Sreeramulu, G., Zhu, Y. & Knol, W. 2001. Characterization of antimicrobial activity in kombucha fermentation. Acta Biotechnologica 21(1): 49-56.

Sreeramulu, G., Zhu, Y. & Knol, W. 2000. Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry 48(6): 2589-2594.

Tu, C., Azi, F., Huang, J., Xu, X., Xing, G. & Dong, M. 2019. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains. Lwt 113(February): 108258.

Veena, K.S., Sameena, M.T., Padmakumari, A.K.P., Srinivasa, G.T.K., Nishanth, K.S. & Reshma, M.V. 2018. Development and validation of HPLC method for determination of sugars in palm sap, palm syrup, sugarcane jaggery and palm jaggery. International Food Research Journal 25(2): 649-654.

Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.P. & Taillandier, P. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83(3): 580-588.

Vitas, J.S., Vukmanović, S.Z., Malbaša, R.V. & Tepić Horecki, A.N. 2019. Influence of process temperature on ethanol content in Kombucha products obtained by fermentation of flotated must effluent. Acta Periodica Technologica 50: 311-315.

Vohra, B., Fazry, S., Sairi, F. & Othman, B.A. 2019a. Effects of medium variation and fermentation time towards the pH level and ethanol content of Kombucha. AIP Conference Proceedings 2111(1998): 298-302.

Vohra, B., Fazry, S., Sairi, F. & Othman, B.A. 2019b. Effects of medium variation and fermentation time on the antioxidant and antimicrobial properties of Kombucha. Malaysian Journal of Fundamental and Applied Sciences 15(2-1): 298-302.

Wang, Q., Gong, J., Chisti, Y. & Sirisansaneeyakul, S. 2014. Bioconversion of tea polyphenols to bioactive theabrownins by Aspergillus fumigatus. Biotechnology Letters 36(12): 2515-2522.

Watawana, M.I., Jayawardena, N., Ranasinghe, S.J., Waisundara, V.Y., Gunawardhana, C.B., Waisundara, V.Y., Ranasinghe, S.J. & Waisundara, V.Y. 2017. Evaluation of the effect of different sweetening agents on the polyphenol contents and antioxidant and starch hydrolase inhibitory properties of Kombucha. Journal of Food Processing and Preservation 41(1): e12752..

Williams, M.B. & Darwin Reese, H. 1950. Colorimetric determination of ethyl alcohol. Analytical Chemistry 22(12): 1556-1561.

 

*Corresponding author; email: airianah@ukm.edu.my

 

 

previous