Sains Malaysiana 51(6)(2022): 1799-1810

http://doi.org/10.17576/jsm-2022-5106-16

 

Kehadiran Interaksi Supramolekul dalam Sebatian Polimer Koordinatan Baharu Terbitan Ligan N,N-2,6-bis(3-piridilmetil)piridina Dikarboksiamida

(Presence of Supramolecule Interaction in New Coordination Polimer Compound Derive Ligand N,N-2,6-bis(3-pyridylmethyl)pyridine Dicarboxyamide)

 

NAFISAH MANSOR1,*, NUR SHUHAILA HARYANI HARIS1 & MAISARA ABDUL KADIR1,2

 

1Fakulti Sains dan Sekitaran Marin, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

2Kumpulan Penyelidikan Bahan Termaju Nano (ANoMa), Fakulti Sains dan Sekitaran Marin, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Received: 23 August 2021/ Accepted: 20 November 2021

 

ABSTRAK

Kehadiran beberapa interaksi supramolekul seperti ikatan hidrogen dan susunan pi-pi adalah penting bukan sahaja untuk menstabilkan struktur molekul tetapi juga memainkan peranan sebagai molekul perumah. Oleh itu, dalam kajian ini, ligan berasaskan amida yang mempunyai bentuk U iaitu N,N-2,6-bis(3-piridilmetil)piridina dikarboksiamida (L1) telah digunakan sebagai ligan yang berupaya membentuk ikatan hidrogen dengan anion, dan kajian ini berfokus kepada peranannya dalam keadaan polimer koordinatan. Sebagai permulaan, L1 ditindakbalas dengan beberapa logam peralihan melalui kaedah penyejatan perlahan untuk menghasilkan tiga polimer koordinatan yang baharu. Polimer koordinatan ini mempunyai formula molekul, {[Cd(L1)2(H2O)2](NO3)2.H2O}n (1), {[Cd(L1)2(H2O)2](ClO4)2}n (2) dan {[Co(L1)2(H2O)2](NO3)2}n (3) yang dicirikan melalui analisis unsur, FTIR spektroskopi dan kristalografi sinar-X. Polimer koordinatan 1, 2 and 3 menghablur dalam sistem triklinik dan kumpulan ruang P-1. Konformasi sebatian ini digambarkan sebagai logam-makrosiklik dinuklear yang tersusun seperti rantai leher. L1 didapati bersambung melalui logampusat daripada atom nitrogen, secara berulang-ulang untuk membentuk jaringan satu dimensi. Struktur molekul sebatian baharu ini distabilkan oleh kehadiran ikatan hidrogen intermolekul dan intramolekul, yang terjadi di kawasan NH amida, serta susunan pi-pi di antara gelang aromatik piridina. Dalam struktur hablur ini juga, jaringan metilina membentuk ikatan hidrogen dengan kaunter anion pada moieti2,6-piridina dikarboksamida, menunjukkan potensi sebagai sebatian penerima anion. Kajian DFT telah dijalankan untuk mengenal pasti tenaga interaksi kompleks.

 

Kata kunci: Ikatan hidrogen; isomorfus; penerima anion; polimer koordinatan; rantaian; 2,6-piridina dikarboksamida

 

ABSTRACT

The presence of several supramolecular interactions such as hydrogen bonds and pi-pi arrangements are important not only to stabilize the molecular structure, but also to play a role as a host molecule. Therefore, in this study, an amide-based ligand that has a U shape namely N,N’-2,6-bis(3-pyridylmethyl)pyridine dicarboxamide (L1) was used as a ligand capable of forming hydrogen bonds with anions, and this study focusing on its role in the coordination polymer state. For a start, L1 was reacted with several transition metals via a slow evaporation method to produce three new coordination polymers. This coordination polymer has the molecular formula, {[Cd(L1)2(H2O)2](NO3)2.H2O}n (1), {[Cd(L1)2(H2O)2](ClO4)2}n (2) dan {[Co(L1)2(H2O)2](NO3)2}n (3) characterized through elemental analysis, FTIR spectroscopy and X-ray crystallography. Coordination polymers 1, 2, and 3 crystallize in the triclinic system and the P-1 space group. The molecular conformation of these compounds is described as a dinuclear macrocyclic metal arranged like a necklace. L1 was found to connect through the central metal of the nitrogen atom, repeatedly to form a one-dimensional network. The molecular structure of this new compound is stabilized by the presence of intermolecular and intramolecular hydrogen bonds, which occur in the NH amide region, as well as the pi-pi arrangement between the pyridine aromatic rings. In this crystal structure as well, the methylene network forms a hydrogen bond with an anion counter on the 2,6-pyridine dicarboxamide moiety, indicating the potential of the compound as an anion acceptor. DFT study is carried out to investigate the interaction energies of the complexes.

 

Keywords: Anion receptors; coordination polymers; hydrogen bond; isomorphous; 2,6-pyridine dicarboxamide

 

REFERENCES

Ali, R., Ku Bulat, K.H., Azmi, A.A. & Anuar, S.T. 2019. Theoretical approach of DFT B3LYP/6-31G (d,p) on evaluating the performance of tert-butylhydroquinone and free fatty acids in inhibiting the oxidation of palm olein. Journal of Palm Oil Research 31(1): 122-129.

Aljammal, N., Jabbour, C., Chaemchuen, S., Juzsakova, T. & Verpoort, F. 2019. Flexibility in metal-organic frameworks: A basic understanding. Catalysts 9: 512.

Banarjee, S., Adarsh, N.N. & Dastidar, P. 2010. Selective separation of the sulfate anion by in situ crystallization of Cdii coordination compounds derived from bis(pyridyl) ligands equipped with a urea/amide hydrogen-bonding backbone. European Journal of Inorganic Chemistry 4: 3770-3779.

Barbour, L.J. 2001. X-Seed - A software tool for supramolecular crystallography. Journal of Supramolecular Chemistry 1(4-6): 189-191.

Busschaert, N., Caltagirone, C., Rossom, W.V. & Gale, P.A. 2015. Applications of supramolecular anion recognition. Journal of American Chemical Society 115(15): 8038-8155.

Custelcean, R. 2010. Anions in crystal engineering. Chemical Society Reviews 39: 3675-3685.

Desiraju, G.R. 2002. Hydrogen bridges in crystal engineering:  Interactions without borders. Accounts of Chemical Research 35(7): 565-573.

Duke, R.M. & Gunnlaugsson, T. 2007. Selective fluorescent PET sensing of fluoride (F−) using naphthalimide–thiourea and–urea conjugates. Tetrahedron Letters 48(5): 8043-8047.

Dutta, B., Jana, R., Bhanja, A.K., Ray, P.P., Sinha, C. & Mir, M.H. 2019. Supramolecular aggregate of Cadmium(II)-based one-dimensional coordination polymer for device fabrication and sensor application. Inorganic Chemistry 58(4): 2686-2694.

Gong, Y., Li, J., Qin, J., Wu, T., Cao, R. & Li, J. 2011. Metal(II) coordination polymers derived from bis-pyridyl-bis-amide ligands and carboxylates: Syntheses, topological structures, and photoluminescence properties. Crystal Growth Design 11(5): 1662.

Haris, N.S.H., Mansor, N., Yusof, M.S.M., Sumby, C.J. & Kadir, M.A. 2021. Investigating the potential of flexible and pre-organized tetraamide ligands to encapsulate anions in one-dimensional coordination polymers: Synthesis, spectroscopic studies and crystal structures. Crystals 11: 77.

Hirata, G. & Maeda, H. 2018. Pyrrole-based anion-responsive π-electronic molecules as hydrogen-bonding catalysts. Organic Letters 20(10): 2853-2856.

Kadir, M.A., Hanton, L.R. & Sumby, C.J. 2011. Self-assembled metallo-macrocycle based coordination polymers with unsymmetrical amide ligands. Dalton Transactions40(45): 12374-12380.

Kadir, M.A., Yusof, M.S.M. & Sumby, C.J. 2018. Conjoint experimental and theoretical evaluation of zinc (II) coordination polymer as potential anion receptors for nitrate and chromate. ASM Science Journal 1: 136-146.

Kumar, D.K., Das, A. & Dastidar, P. 2006. One-dimensional chains, two-dimensional corrugated sheets having a cross-linked helix in metal−organic frameworks:  Exploring hydrogen-bond capable backbones and ligating topologies in mixed ligand systems. Crystal Growth & Design 6(8): 1903-1909.

Langton, M.J., Serpell, C.J. & Beer, P.D. 2016. Anion recognition in water: Recent advances from a supramolecular and macromolecular perspective. Angewandte Chemie International Edition55(6): 1974-1987.

Leong, W.L. & Vittal, J.J. 2011. One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chemical Reviews 111(2): 688-764.

Mcphillips, T., Mcphillips, S., Chiu, H., Cohen, A., Deacon, A., Ellis, P., Garman, E., Gonzalez, A., Sauter, N., Phizackerley, R., Soltis, S. & Kuhn, P. 2002.  Blu-ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. Journal of Synchrotron Radiation 9(6): 401-406.

Miller, F.A. & Wilkins, C.H. 1952. Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry 13: 1253-1294.

Neto, J.A.D.N., Silva, C.C.D., Ribeiro, L., Valdo, A.K.S.M. & Martins, F.T. 2018. Competition between coordination bonds and hydrogen bonding interactions in solvatomorphs of copper(II), cadmium(II) and cobalt(II) complexes with 2,2′-bipyridyl and acetate. Zeitschrift für Kristallographie - Crystalline Materials 234(2): 119-128.

Qiao, R., Zhang, Z.Y. & Zhu, M.A. 2017. Synthesis, crystal structure and water vapor adsorption properties of a porous supramolecular architecture. Crystals 7: 297.

Rachuri, Y., Parmar, B., Bisht, K.K. & Suresh, E. 2017. Solvothermal self-assembly of Cd2+ coordination polymers with supramolecular networks involving n-donor ligands and aromatic dicarboxylates: Synthesis, crystal structure and photoluminescence studies. Dalton Transactions 46: 3623-3630.

Russ, T.H., Pramanik, A., Khansari, M.E., Wong, B.M. & Hossain, M.A. 2011. A quinoline based bis-urea receptor for anions: A selective receptor for hydrogen sulfate. Natural Product Communications 7(3): 301-304.

Salehzadeh, S., Bayat, M. & Gholiee, Y. 2013. A theoretical study on the importance of steric effects, electronic properties, interaction and solvation energies in the ‘host-guest’ chemistry of protonated azacryptands and halide anions. Tetrahedron 69(4): 9183-9191.

Sheldrick, G.M. 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry 71(1): 3-8.

Sheldrick, G.M. 2008. A short history of SHELX. Acta Crystallographica Section A: Foundations of Crystallography 64(1): 112-122.

Sheldrick, G.M. 1990. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallographica Section A: Foundations of Crystallography 46(6): 467-473.

Sumby, C.J. & Hanton, L.R. 2009. Syntheses and studies of flexible amide ligands: A toolkit for studying metallo-supramolecular assemblies for anion binding. Tetrahedron 65(24): 4681.

You, L., Zha, D. & Anslyn, E.V. 2015. Recent advances in supramolecular analytical chemistry using optical sensing. Journal of the American Chemical Society 115(15): 7840-7892.

Zhang, X., Zhang, Y., Liu, S., Xu, H., Li, J. & Hou, H. 2014. 0D and 1D PbII complexes constructed from pyridyldicarboxamide by varying the ratios of mixed solvent. Inorganic Chemistry Communications 46: 289-294.

 

*Corresponding author; email: maisara@umt.edu.my

 

   

previous