Sains Malaysiana 51(9)(2022): 2937-2954

http://doi.org/10.17576/jsm-2022-5109-16

 

Zirconium(IV)-BTC-Based MOF Modified with Nickel as a Catalyst for Hydrogenation of Citronellal

(Zirkonium(IV)-BTC-Berdasarkan MOF Terubah Suai dengan Nikel sebagai Pemangkin untuk Penghidrogenan Sitronela)

 

WITRI WAHYU LESTARI1,*, ARIFTI NUR LAILY AQNA1, FAUZAN IBNU PRIHADIYONO1, RIANDY PUTRA1, MAULIDAN FIRDAUS1, VENANSIA AVELIA ROSARI1, UBED SONAI FAHRUDIN ARROZI2 & GRANDPRIX T. M. KADJA3,4,5

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir Sutami No. 36A, Kentingan-Jebres, Surakarta, Central Java, Indonesia

2Department of Chemistry, Faculty of Mathematics and Science, State University of Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia

3Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

4Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

5Research Center for Nano sciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

 

Received: 14 January 2022/Accepted: 19 April 2022

 

Abstract

This study is designed to determine the effect of nickel (Ni) metal bearing on zirconium(IV) benzene 1,3,5-tricarboxylate based MOF, [Zr6O4(OH)4(O2C2H3)6(BTC)2] (Zr-BTC) and its application as a catalyst in the citronellal hydrogenation. The synthesis of Zr-BTC was carried out under solvothermal condition, while the wet impregnation method was used to synthesize 2.5 wt.% Ni/Zr-BTC. The catalytic test of citronellal hydrogenation was performed in a batch reactor at 80 °C for 6 h with various hydrogen pressures. XRD characterization showed the suitability of the prominent peaks of Zr-BTC to the standard pattern, while Ni metal could not be detected clearly but was confirmed by EDX analysis. FTIR analysis showed a significant shift in the wavenumber from 1722 cm-1 to 1567 cm-1 indicating coordination of deprotonated ligands to the Zr4+ metal ions. Nickel loading reduced the surface area of Zr-BTC to 523 m2/g and the pore volume to 0.11 cc/g according to the nitrogen sorption isotherm. The catalytic tests showed that 30% Ni loading enhanced the activity and selectivity of Zr-BTC in citronellal hydrogenation, resulting in 62.1% yield of isopulegol (for batch reactor) and 14.1% yield of citronellol (for hydrogen balloon).

 

Keywords: Catalyst; citronellal; hydrogenation; MOFs; Ni/Zr-BTC

 

Abstrak

Kajian ini adalah untuk menentukan kesan galas logam nikel (Ni) ke atas zirkonium(IV) benzena 1,3,5-trikarboksilat berasaskan MOF, [Zr6O4(OH)4(O2C2H3)6(BTC)2] (Zr-BTC) dan penggunaannya sebagai pemangkin dalam penghidrogenan sitronela. Sintesis Zr-BTC telah dijalankan dalam keadaan solvoterma, manakala kaedah impregnasi basah digunakan untuk mensintesis 2.5 wt.% Ni/Zr-BTC. Ujian pemangkin hidrogenasi sitronela dilakukan dalam reaktor kelompok pada suhu 80 °C selama 6 jam dengan pelbagai tekanan hidrogen. Pencirian XRD menunjukkan puncak tajam pada Zr-BTC sepadan dengan puncak piawai, manakala logam Ni tidak dapat dikesan dengan jelas tetapi disahkan oleh analisis EDX. Analisis FTIR menunjukkan perubahan ketara pada nombor gelombang daripada 1722 cm-1 kepada 1567 cm-1 yang menunjukkan koordinasi ligan terdeprotonasi kepada ion logam Zr4+. Pertambahan nikel telah mengurangkan luas permukaan Zr-BTC kepada 523 m2/g dan isi padu liang kepada 0.11 cc/g mengikut isoterma penyerapan nitrogen. Ujian pemangkin pula mendedahkan bahawa penambahan 30% Ni meningkatkan aktiviti dan kepemilihan Zr-BTC dalam penghidrogenan sitronela, seterusnya menghasilkan 62.1% isopulegol (untuk reaktor kelompok) dan 14.1% sitronelo (untuk belon hidrogen).

 

Kata kunci: MOFs; Ni/Zr-BTC; pemangkin; penghidrogenan; sitronela

 

References

Ardila-Suárez, C., Díaz-Lasprilla, A.M., Díaz-Vaca, L.A., Balbuena, P.B., Baldovino-Medrano, V.G. & Ramírez-Caballero, G.E. 2019. Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconium-tricarboxylate metal-organic framework: Towards the addition of acid active sites. CrystEngComm 21(19): 3014-3030.

Bai, Y., Dou, Y., Xie, L.H., Rutledge, W., Li, J.R. & Zhou, H.C. 2016. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chemical Society Reviews 45(8): 2327-2367.

Bettahar, M.M. 2020. The hydrogen spillover effect. A misunderstanding story. Catalysis Reviews - Science and Engineering 64(1): 87-125.

Bueken, B., Reinsch, H., Reimer, N., Stassen, I., Vermoortele, F., Ameloot, R., Stock, N., Kirschhock, C.E.A. & De Vos, D. 2014. A zirconium squarate metal-organic framework with modulator-dependent molecular sieving properties. Chemical Communications 50(70): 10055-10058.

Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. & Lillerud, K.P. 2008. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society 130(42): 13850-13851.

Chuah, G.K., Liu, S.H., Jaenicke, S. & Harrison, L.J. 2001. Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids. Journal of Catalysis 200(2): 352-359.

Cirujano, F.G., Corma, A. & Xamena, F.X.L.I. 2015. Conversion of Levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science 124: 52-60.

Cirujano, F.G., Corma, A. & Xamena, F.X.L.I. 2012. MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions 41(14): 4249-4254.

Claus, P. 1998. Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Topics in Catalysis 5: 51-62.

Feng, D., Gu, Z.Y., Li, J.R., Jiang, H.L., Wei, Z. & Zhou, H.C. 2012. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angewandte Chemie - International Edition 51(41): 10307-10310.

Furukawa, H., Gándara, F., Zhang, Y.B., Jiang, J., Queen, W.L., Hudson, M.R. & Yaghi, O.M. 2014. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society 136(11): 4369-4381.

Genna, D.T., Pfund, L.Y., Samblanet, D.C., Wong-Foy, A.G., Matzger, A.J. & Sanford, M.S. 2016. Rhodium hydrogenation catalysts supported in metal organic frameworks: Influence of the framework on catalytic activity and selectivity. ACS Catalysis 6(6): 3569-3574.

Guenther, E. 1982. The Essential Oils: Individual Essential Oils of the Plant Families Gramineae, Lauraceae, Burseraceae, Myrtaceae, Umbelliferae and Geraniaceae. Krieger, R.E. Publishing Company. p. 507.

Hadjiivanov, K.I., Panayotov, D.A., Mihaylov, M.Y., Ivanova, E.Z., Chakarova, K.K., Andonova, S.M. & Drenchev, N.L. 2021. Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chemical Reviews 121: 1286-1424.

Hanif, Q.A., Nugraha, R.E. & Lestari, W.W. 2018. Kajian metal-organic frameworks (MOFs) sebagai material baru pengantar obat. ALCHEMY Jurnal Penelitian Kimia 14(1): 16.

Horcajada, P., Surblé, S., Serre, C., Hong, D.Y., Seo, Y.K., Chang, J.S., Grenèche, J.M., Margiolaki, I. & Férey, G. 2007. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications 100(27): 2820-2822.

Hwang, Y.K., San Chang, J., Hong, D.Y., Hwang, D.W., Lee, U.H., Cho, K.H., Valekar, A.H. & Lee, S.K. 2017. Zirconium-based metal-organic frameworks as catalyst for transfer hydrogenation. https://patents.google.com/patent/US10195592B2/en. Accessed on 9 November 2017.

Ide, M.S., Hao, B., Neurock, M. & Davis, R.J. 2012. Mechanistic insights on the hydrogenation of α,β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts. ACS Catalysis 2(4): 671-683.

Kandiah, M., Nilsen, M.H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E.A., Bonino, F. & Lillerud, K.P. 2010. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials 22(24): 6632-6640.

Kim, M. & Cohen, S.M. 2012. Discovery, development, and functionalization of Zr(Iv)-based metal-organic frameworks. CrystEngComm 14(120): 4096-4104.

Larasati, I., Winarni, D., Putri, F.R., Hanif, Q.A. & Lestari, W.W. 2017. Synthesis of metal-organic frameworks based on Zr4+ and benzene 1,3,5-tricarboxylate linker as heterogeneous catalyst in the esterification reaction of palmitic acid. IOP Conference Series: Materials Science and Engineering 214: 012006.

Le, T.D., Nguyen, K.D., Nguyen, V.T., Truong, T. & Phan, N.T.S. 2016. 1,5-benzodiazepine synthesis via cyclocondensation of 1,2-diamines with ketones using iron-based metal-organic framework MOF-235 as an efficient heterogeneous catalyst. Journal of Catalysis 333: 94-101.

Lestari, W.W., Prajanira, L.B., Putra, R., Purnawan, C., Prihadiyono, F.I. & Arrozi, U.S.F. 2021. Green-synthesized MIL-100(Fe) modified with palladium as a selective catalyst in the hydrogenation of citronellal to citronellol. Materials Research Express 8(April 1): 045504.

Li, Y.Z., Wang, H.H., Yang, H.Y., Hou, L., Wang, Y.Y. & Zhu, Z. 2018. An uncommon carboxyl-decorated metal–organic framework with selective gas adsorption and catalytic conversion of CO2. Chemistry - A European Journal 24(4): 865-871.

Liang, W., Chevreau, H., Ragon, F., Southon, P.D., Peterson, V.K. & D’Alessandro, D.M. 2014. Tuning pore size in a zirconium-tricarboxylate metal-organic framework. Crystal Engineering Community 16: 6530-6533.

Mäki-Arvela, P., Kumar, N.,  Nieminen, V., Sjöholm, R., Salmi, T. & Murzin, D.Y. 2004. Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis 225(1): 155-169.

Mertens, P., Verpoort, F., Parvulescu, A.N. & De Vos, D. 2006. Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. Journal of Catalysis 243(1): 7-13.

Milone, C., Gangemi, C., Ingoglia, R., Neri, G. & Galvagno, S. 1999. Role of the support in the hydrogenation of citronellal on ruthenium catalysts. Applied Catalysis A: General 184: 89-94.

Morris, W., Volosskiy, B., Demir, S., Gándara, F., McGrier, P.L., Furukawa, H., Cascio, D., Stoddart, J.F. & Yaghi, O.M. 2012. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorganic Chemistry 51(12): 6443-6445.

Müller, P., Wolf, P. & Hermans, I. 2016. Insights into the complexity of heterogeneous liquid-phase catalysis: Case study on the cyclization of citronellal. ACS Catalysis 6(5): 2760-2769.

Nagai, D., Nishibori, M., Itoh, T., Kawabe, T., Sato, K. & Shin, W. 2015. Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sensors and Actuators B: Chemical 206: 488-494.

Nie, Y., Niah, W., Jaenicke, S. & Chuah, G.K. 2007. A tandem cyclization and hydrogenation of (±)-citronellal to menthol over bifunctional Ni/Zr-beta and mixed Zr-beta and Ni/MCM-41. Journal of Catalysis 248: 1-10.

O’Brien, K.E. & Wicht, D.K. 2008. A greener organic chemistry experiment: Reduction of citronellal to citronellol using poly(methylhydro)siloxane. Green Chemistry Letters and Reviews 1(3): 149-154.

Park, Y.K., Choi, S.B., Nam, H.J., Jung, D.Y., Ahn, H.C., Choi, K., Furukawa, H. & Kim, J. 2010. Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chemical Communications 46(18): 3086-3088.

Plessers, E., Fu, G., Tan, C.Y.X., De Vos, D.E. & Roeffaers, M.B.J. 2016. Zr-based MOF-808 as meerwein–ponndorf–verley reduction catalyst for challenging carbonyl compounds. Catalysts 6(7): 104.

Putra, R., Lestari, W.W., Wibowo, F.R. & Susanto, B.H. 2018. Fe/Indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel production from palm oil. Bulletin of Chemical Reaction Engineering & Catalysis 13(2): 245-255.

Qneibi, M., Jaradat, N. & Emwas, N. 2019. Effect of geraniol and citronellol essential oils on the biophysical gating properties of AMPA receptors. Applied Sciences (Switzerland) 9(21): 4693.

Qu, P.F., Chen, J.G., Song, Y.H., Liu, Z.T., Liu, Z.W., Li, Y., Lu, J. & Jiang, J. 2015. Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications 68(3): 105-109.

Reinsch, H., Bueken, B., Vermoortele, F., Stassen, I., Lieb, A., Lillerud, K.P. & De Vos, D. 2015. Green synthesis of zirconium-MOFs. CrystEngComm 17(22): 4070-4074.

Ren, J., Segakweng, T., Langmi, H.W., Musyoka, N.M., North, B.C., Mathe, M. & Bessarabov, D. 2014. Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications. International Journal of Materials Research 105(5): 516-519.

Silverstein, R.M., Webster, F.X. & Kiemle, D.J. 2005. Spectrometric Identification of Organic Compounds. 7th ed. New York: John Wiley & Sons.

Simsek, E.B., Özdemir, E. & Beker, U. 2013. Zeolite supported mono- and bimetallic oxides: Promising adsorbents for removal of As(V) in aqueous solutions. Chemical Engineering Journal 220: 402-411.

Stassen, I., Styles, M., Van Assche, T., Campagnol, N., Fransaer, J., Denayer, J., Tan, J.C., Falcaro, P., De Vos, D. & Ameloot, R. 2015. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap. Chemistry of Materials 27(5): 1801-1807.

Sudiyarmanto, S., Adilina, I.B., Aditya, R.R., Sukandar, D. & Tursiloadi, S. 2020. Catalytic conversion of citronellal to citronellol over skeletal Ni catalyst. Journal of Physics: Conference Series 1442(1): 012047.

Užarević, K., Wang, T.C., Moon, S.Y., Fidelli, A.M., Hupp, J.T., Farha, O.K. & Friščić, T. 2016. Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. Chemical Communications 52(10): 2133-2136.

Xu, J., Liu, J., Li, Z., Wang, X. & Wang, Z. 2019. Synthesis, structure and properties of Pd@MOF-808. Journal of Materials Science 54(19): 12911-12924.

Yongzhong, Z., Yuntong, N., Jaenicke, S. & Chuah, G.K. 2005. Cyclisation of citronellal over zirconium zeolite beta - A highly diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis 229(2): 404-413.

Yu, W., Liu, H., Liu, M. & Liu, Z. 2000. Selective hydrogenation of citronellal to citronellol over polymer-stabilized noble metal colloids. Reactive and Functional Polymers 44(1): 21-29.

Yuan, Q., Zhang, D., Van Haandel, L., Ye, F., Xue, T., Hensen, E.J.M. & Guan, Y. 2015. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. Journal of Molecular Catalysis A: Chemical 406: 58-64.

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J. & Zhou, H-C. 2018. Stable metal–organic frameworks: Design, synthesis, and applications. Advanced Materials 30(37): 1704303.

Zhao, H., Song, H. & Chou, L. 2012. Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications 15: 261-265.

Zhao, Z.W., Zhou, X., Liu, Y.N., Shen, C.C., Yuan, C.Z., Jiang, Y.F., Zhao, S.J., Ma, L.B., Cheang, T.Y. & Xu, A.W. 2018. Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catalysis Science and Technology 8(12): 3160-3165.

Zhen, W., Gao, F., Tian, B., Ding, P., Deng, Y., Li, Z., Gao, H. & Lu, G. 2017. Enhancing activity for carbon dioxide methanation by encapsulating (1 1 1) facet Ni particle in metal–organic frameworks at low temperature. Journal of Catalysis 348: 200-211.

Zong, M., Fan, C., Yang, X. & Wang, D. 2021. Promoting Ni-MOF with metallic Ni for highly-efficient p-nitrophenol hydrogenation. Molecular Catalysis 509(March): 111609.

 

*Corresponding author; email: witri@mipa.uns.ac.id

 

 

 

previous