Sains Malaysiana 52(2)(2023): 547-561

http://doi.org/10.17576/jsm-2023-5202-17

 

Methylene Blue Adsorption by Acid Post-Treated Low Temperature Biochar Derived from Banana (Musa acuminata­) Pseudostem

(Penjerapan Metilena Biru oleh Bioarang Bersuhu Rendah Selepas Dirawat Asid Dihasilkan daripada Batang Pseudo Pisang (Musa acuminata))

 

NOOR HALINI BAHARIM*, FRIDELINA SJAHRIR, RAHMAD MOHD TAIB, NORAZLINA IDRIS & TUAN AZMAR TUAN DAUD

 

Department of Science and Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor, Jalan Timur Tambahan, 45600 Bestari Jaya, Selangor Darul Ehsan, Malaysia

 

Received: 17 July 2022/Accepted: 19 December 2022

 

Abstract

The adsorption of methylene blue dye solution using low temperature biochar (PSB) and acid post-treated biochar (PT-PSB) derived from banana (Musa acuminata) pseudostem was investigated. The raw material was oven-dried at 105 °C for 24 h and then carbonized via slow pyrolysis at a low temperature of 300 °C for 1 h. The biochar was further treated with 1.0 M HCl for 24 h. At room temperature, batch adsorption experiments were conducted to determine the removal efficiency of methylene blue at different parameters; solution pH (3-10), adsorbent dosage (0.05-0.30 g) and initial concentration (25-150 mg/L). The results exhibited that the highest removal efficiency of methylene blue using PSB was 96.6% at optimum solution pH 6 with the adsorbent dosage of 0.20 g. Nevertheless, the better removal efficiency of methylene blue using PT-PSB was identified (99.3%) at optimum solution pH 7 and adsorbent dosage of 0.25 g. The initial concentration of 25 mg/L showed the maximum removal efficiency for both PSB and PT-PSB. The adsorption isotherm analysis showed that both PSB and PT-PSB were better fitted with the Freundlich isotherm model which indicates multilayer adsorption onto the heterogeneous surface of the adsorbents. Kinetic data showed that the adsorption of methylene blue onto PSB and PT-PSB was well fitted by the pseudo-second order model, indicating chemical adsorption. Banana pseudostem showed great potential to be used as an efficient low-cost and environmentally friendly adsorbent for the removal of methylene blue from aqueous solution.

 

Keywords: Acid post-treated biochar; adsorption; banana pseudostem; methylene blue

 

Abstrak

Penjerapan larutan pewarna metilena biru menggunakan bioarang bersuhu rendah (PSB) dan bioarang selepas dirawat asid (PT-PSB) yang berasal daripada batang pseudo pisang (Musa acuminata) dikaji. Bahan mentah dikeringkan dengan ketuhar pada suhu 105 °C selama 24 jam dan seterusnya dibakar melalui pirolisis perlahan pada suhu rendah 300 °C selama 1 jam. Bioarang seterusnya dirawat dengan 1.0 M HCl untuk 24 jam. Pada suhu bilik, uji kaji penjerapan kumpulan dijalankan untuk menentukan kecekapan penyingkiran metilena biru pada parameter pemboleh ubah yang berbeza; pH larutan (3-10), dos penjerap (0.05-0.30 g) dan kepekatan awal (25-150 mg/L). Keputusan menunjukkan kecekapan penyingkiran tertinggi metilena biru menggunakan PSB adalah 96.6% pada pH larutan optimum 6 dengan dos penjerap 0.20 g. Walau bagaimanapun, kecekapan penyingkiran metilena biru yang lebih baik menggunakan PT-PSB ditentukan (99.3%) pada pH larutan optimum 7 dan dos penjerap 0.25 g. Kepekatan awal 25 mg/L menunjukkan kecekapan penyingkiran yang maksimum bagi kedua-dua PSB dan PT-PSB. Analisis isoterma penjerapan menunjukkan kedua-dua PSB dan PT-PSB adalah lebih berpadanan dengan model isoterma Freundlich yang menunjukkan penjerapan berbilang lapisan ke permukaan heterogen penjerap. Data kinetik menunjukkan penjerapan metilena biru ke PSB dan PT-PSB adalah sangat berpadanan dengan model tertib kedua pseudo, menunjukkan penjerapan kimia. Batang pseudo pisang berpotensi besar digunakan sebagai penjerap berkos rendah yang cekap dan mesra alam untuk penyingkiran metilena biru daripada larutan akues.

 

Kata kunci: Batang pisang pseudo; bioarang selepas dirawat asid; metilena biru; penjerapan

 

References

Abd-Elhamid, A.I., Emran, M., El-Sadek, M.H., El-Shanshory, A.A., Soliman, H.M.A., Akl, M.A. & Rashad, M. 2020. Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Applied Water Science 10(45). https://doi.org/10.1007/s13201-019-1128-0

Ahmad, A., Khan, N., Giri, B.S., Chowdhary, P. & Chaturvedi, P. 2020. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresource Technology https://doi.org/10.1016/j.biortech.2020.123202

Al‐Mokhalelati, K., Al‐Bakri, I. & Al Shibeh Al Wattar, N. 2021. Adsorption of methylene blue onto sugarcane bagasse‐based adsorbent materials. Journal of Physical Organic Chemistry 34(7). https://doi:10.1002/poc.4193

Ali, H. 2010. Biodegradation of synthetic dyes-a review. Water Soil Pollution 213: 251-273. https://doi.org/10.1007/s11270-010-0382-4

Amin, M.T., Alazba, A.A. & Shafiq, M. 2019. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Environmental Monitoring and Assessment 191(12): 735. https://doi.org/10.1007/s10661-019-7915-0

Amin, N.K. 2009. Removal of direct blue-106 dye from aqueous solution using a new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials 165: 52-62.

Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C. & Karakaya, N. 2016. Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous Mesoporous Material 235: 78-86.

Baharim, N.H., Sjahrir, F., Taib, R.M., Idris, N., Daud, T.A.T., Solleh, M.R.M. & Radin, H. 2022. Removal of copper ion from aqueous solution using biosorbent derived from banana pseudo stem. Selangor Science and Technology Review 6(2): 44-50.

Bhatia, D., Datta, D., Joshi, A., Gupta, S. & Gote, Y. 2018. Adsorption study for the separation of isonicotinic acid from aqueous solution n using activated carbon/Fe3O4 composites. Journal of Chemical and Engineering Data 63: 436-445.

Chahm, T., Martins, B.A. & Rodrigues, C.A. 2018. Adsorption of methylene blue and crystal violet on low-cost adsorbent: Waste fruits of Rapanea ferruginea (ethanol-treated
and H2SO4-treated). Environmental Earth Sciences 77(13).
https://doi:10.1007/s12665-018-76812

Chen, W., Chen, F., Ji, B., Zhu, L. & Song, H. 2019. Insights into the mechanism of methylene blue removed by novel and classic biochars. Water Science and Technology 79(8):
1561-1570.

Chen, Y., Lin, Y., Ho, S., Zhou, Y. & Ren, N. 2018. Highly efficient adsorption of dyes by biochar derived from pigments extracted macroalgae pyrolyzed at different temperature. Bioresources Technology 259: 104-110.

Choi, H.J. & Yu, S.W. 2019. Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob. Environmental Engineering Research 24(1): 99-106.

Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology 97(9): 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001

Da Silva, J.S., da Rosa, M.P., Beck, P.H., Peres, E.C., Dotto, G.L., Kessler, F. & Grasel, F.S. 2018. Preparation of an alternative adsorbent from Acacia mearnsii wastes through acetosolv method and its application for dye removal. Journal of Cleaner Production 180: 386-394.

Deng, H., Li, Y.F., Tao, S.Q., Li, A.Y., Li, Q.Y. & Hu, L.N. 2021. Efficient adsorption capability of banana and cassava biochar for malachite green: Removal process and mechanism exploration. Environmental Engineering Research 27(3). https://doi.org/10.4491/eer.2020.575

Hariz, A.R.M., Azlina, W.A.K.G.W., Fazly, M.M., Norziana, Z.Z., Ridzuan, M.D.M., Tosiah, S. & Ain, A.B.N. 2015. Local practices for production of rice husk biochar and coconut shell biochar: Production methods, product characteristics, nutrient and field water holding capacity. Journal of Tropical Agriculture and Food Science 43(1): 91-101.

Hu, Z.P. & Gao, Z.M. 2018. High-surface-area activated red mud for efficient removal of methylene blue form wastewater. Adsorption Science and Technology 36(1-2): 62-79.

Jadhav, S.K. & Thorat, S.R. 2022. Adsorption isotherm study of crystal violet dye onto biochar prepared from agriculture waste. Oriental Journal of Chemistry 38(2): 475-481.

Kapoor, R.T., Rafatullah, M., Siddiqui, M.R., Khan, M.A. & Sillanpää, M. 2022. Removal of reactive black 5 dye by banana peel biochar and evaluation of its phytotoxicity on tomato. Sustainability 14: 4176. https://doi.org/10.3390/su14074176

Karim, A.A., Kumar, M., Mohapatra, S., Panda, C.R. & Singh, A. 2015. Banana peduncle biochar: Characteristics and adsorption of hexavalent chromium from aqueous solution. International Research Journal of Pure & Applied Chemistry 7(1): 1-10.

Katheresan, V., Kansedo, J. & Lau, S.Y. 2018. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering 6:
4676-4697.

Khataee, A.R., Vafaei, F. & Jannatkhah, M. 2013. Biosorption of three textile dyes from contaminated water by filamentous green Algal spirogyra sp.: Kinetic, isotherm and thermodynamic studies. International Biodeterioration and Biodegradation 83: 33-40.

Kim, H., Ko, R.A., Lee, S. & Chon, K. 2020. Removal efficiencies of manganese and iron using pristine and phosphoric acid pre-treated biochars made from banana peels. Water 12(4): 1173. https://doi.org/10.3390/w12041173

Kumar, P.S., Sivaprakash, S. & Jayakumar, N. 2017. Removal of methylene blue dye from aqueous solutions using Lagerstroemia indica seed (LIS) activated carbon. International Journal of Materials Science 12(1): 107-116.

Kumar, U., Vibhute, B. & Parikh, S. 2021. Experimental study of adsorption efficiency of methylene blue dye by using banana leaf biochar as an adsorbent. Journal of Physics: Conference Series 1979: 012003. https://doi:10.1088/1742-6596/1979/1/012003

Kumar, U., Vibhute, B., Sharma, N. & Sahay, A. 2022. Efficient removal of methylene blue dye by alkaline-treated banana stem biochar through adsorption method. Applied Ecology and Environmental Sciences 10(4): 236-243.

Li, Y., Zhang, Y., Zhang, Y., Wang, G., Li, S., Han, R. & Wei, W. 2018. Reed biochar supported hydroxyapatite nanocomposite: Characterization and reactivity for methylene blue removal from aqueous media. Journal of Molecular Liquids 263: 53-63.

Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y. & Xue, X. 2019. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue
at low temperature. Bioresource Technology 282: 48-55.
https://doi.org/10.1016/j.biortech.2019.02.092

Mahdi, Z., Hanandeh, A.E. & Yu, Q.J. 2019. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper and nickel removal from aqueous solutions. Journal of Environmental Chemical Engineering 7: 103379. https://doi.org/10.1016/j.jece.2019.103379

Nayak, A., Bhushan, B., Gupta, V. & Sharma, P. 2017. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions. Journal of Colloid Interface Science 493: 228-240.

Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., Li, X., Zhang, K. & Zhu, T. 2017. Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal 326: 454-461. https://doi.org/10.1016/j.cej.2017.05.146

Praveen, S., Bhagavathi, P.T., Gokulan, R. & Jegan, J. 2020. Evaluation of the adsorption capacity of Cocos nucifera shell derived biochar for basic dyes sequestration from aqueous solution. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1800142

Saini, R.D. 2017. Textile organic dyes: Polluting effects and elimination methods from textile waste water. International Journal of Chemical Engineering Research 9(1): 121-136.

Shoukat, S., Bhatti, H.N., Iqbal, M. & Noreen, S. 2017. Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous and Mesoporous Materials 239: 180-189.

Tang, R., Dai, C., Li, C., Liu, W., Gao, S. & Wang, C. 2017. Removal of methylene blue from aqueous solution using agricultural solution using agricultural residue walnut shell: Equilibrium, kinetic and thermodynamic studies. Journal of Chemistry 4: 1-10. https://doi.org/10.1155/2017/8404965

Tharaneedhar, V., Kumar, P.S., Saravanan, A., Ravikumar, C. & Jaikumar, V. 2016. Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustainable Materials and Technologies 11: 1-11.

Yao, X., Ji, L., Guo, J., Ge, S., Lu, W., Cai, L., Wang, Y., Song, W. & Zhang, H. 2020. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresource Technology 302: 122842. https://doi:10.1016/j.biortech.2020.12284

Yuan, X., Zhuo, S.P., Xing, W., Cui, H.Y., Dai, X.D., Liu, X.M. & Yan, Z.F. 2007. Aqueous dye adsorption on ordered mesoporous carbons. Journal of Colloid and Interface Science 310(1): 83-89.

Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., Marliana, E., Rafique, R.F. & Johan, R. 2017. Pyrolysis: A sustainable way to generate energy from waste. In: Pyrolysis, edited by Mohamed Samer. London: Intech Open Science. pp. 3-36.

Zhou, Y., Hu, Y., Huang, W., Cheng, G., Cui, C. & Lu, J. 2018. A novel amphoteric B-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chemical Engineering Journal 341: 47-57.  https://doi.org/10.1021/acs.est.5b02227

 

*Corresponding author; email: halini@unisel.edu.my

 

 

 

previous